5,751 research outputs found

    Social distancing strategies against disease spreading

    Get PDF
    The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, i.ei.e, the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, i.ei.e, the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.Comment: to be published in "Perspectives and Challenges in Statistical Physics and Complex Systems for the Next Decade", Word Scientific Pres

    Can VMD improve the estimate of the muon g-2 ?

    Full text link
    We show that a VMD based theoretical input allows for a significantly improved accuracy for the hadronic vacuum polarization of the photon which contributes to the theoretical estimate of the muon g-2. We also show that the only experimental piece of information in the τ\tau decay which cannot be accounted for is the accepted value for {\rm Br}(\tau \ra \pi \pi \nu_\tau), while the spectum lineshape is in agreement with expectations from e+e−e^+ e^- annihilations.Comment: 6 pages, 1 figure Proceedings of the PhiPsi09, Oct. 13-16, 2009, Beijing, Chin

    Immunization strategy for epidemic spreading on multilayer networks

    Get PDF
    In many real-world complex systems, individuals have many kind of interactions among them, suggesting that it is necessary to consider a layered structure framework to model systems such as social interactions. This structure can be captured by multilayer networks and can have major effects on the spreading of process that occurs over them, such as epidemics. In this Letter we study a targeted immunization strategy for epidemic spreading over a multilayer network. We apply the strategy in one of the layers and study its effect in all layers of the network disregarding degree-degree correlation among layers. We found that the targeted strategy is not as efficient as in isolated networks, due to the fact that in order to stop the spreading of the disease it is necessary to immunize more than the 80 % of the individuals. However, the size of the epidemic is drastically reduced in the layer where the immunization strategy is applied compared to the case with no mitigation strategy. Thus, the immunization strategy has a major effect on the layer were it is applied, but does not efficiently protect the individuals of other layers.Comment: 8 pages, 2 figure

    On the zero set of G-equivariant maps

    Full text link
    Let GG be a finite group acting on vector spaces VV and WW and consider a smooth GG-equivariant mapping f:V→Wf:V\to W. This paper addresses the question of the zero set near a zero xx of ff with isotropy subgroup GG. It is known from results of Bierstone and Field on GG-transversality theory that the zero set in a neighborhood of xx is a stratified set. The purpose of this paper is to partially determine the structure of the stratified set near xx using only information from the representations VV and WW. We define an index s(Σ)s(\Sigma) for isotropy subgroups Σ\Sigma of GG which is the difference of the dimension of the fixed point subspace of Σ\Sigma in VV and WW. Our main result states that if VV contains a subspace GG-isomorphic to WW, then for every maximal isotropy subgroup Σ\Sigma satisfying s(Σ)>s(G)s(\Sigma)>s(G), the zero set of ff near xx contains a smooth manifold of zeros with isotropy subgroup Σ\Sigma of dimension s(Σ)s(\Sigma). We also present a systematic method to study the zero sets for group representations VV and WW which do not satisfy the conditions of our main theorem. The paper contains many examples and raises several questions concerning the computation of zero sets of equivariant maps. These results have application to the bifurcation theory of GG-reversible equivariant vector fields

    Transient dynamics of a flexible rotor with squeeze film dampers

    Get PDF
    A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior

    Effect of degree correlations above the first shell on the percolation transition

    Full text link
    The use of degree-degree correlations to model realistic networks which are characterized by their Pearson's coefficient, has become widespread. However the effect on how different correlation algorithms produce different results on processes on top of them, has not yet been discussed. In this letter, using different correlation algorithms to generate assortative networks, we show that for very assortative networks the behavior of the main observables in percolation processes depends on the algorithm used to build the network. The different alghoritms used here introduce different inner structures that are missed in Pearson's coefficient. We explain the different behaviors through a generalization of Pearson's coefficient that allows to study the correlations at chemical distances l from a root node. We apply our findings to real networks.Comment: In press EP

    Reconstruction and Particle Identification for a DIRC System

    Get PDF
    We study the reconstruction and particle identification (PID) problem for Ring Imaging devices providing a good knowledge of the direction of the Cerenkov photons, as the DIRC system, on which we specialize. We advocate first the use of the stereographic projection as a tool allowing a suitable representation of the photon data, as it allows to represent the Cerenkov cone always as a circle. We set up an algorithm able to perform reliably a fit of circle arcs of small angular opening, by minimising a true Chi2 expression. The system we develop for PID relies on this algorithm and on a procedure able to remove background photons with a high efficiency. We thus show that, even when the background is large, it is possible to perform an efficient PID by means of a fit algorithm which finally provides all the circle parameters; these are connected with the charged track direction and its Cerenkov angle. It is shown that background effects can be dealt without spoiling significantly the reconstruction probability distributions.Comment: 67 pages, 23 figure

    Slow epidemic extinction in populations with heterogeneous infection rates

    Get PDF
    We explore how heterogeneity in the intensity of interactions between people affects epidemic spreading. For that, we study the susceptible-infected-susceptible model on a complex network, where a link connecting individuals ii and jj is endowed with an infection rate βij=λwij\beta_{ij} = \lambda w_{ij} proportional to the intensity of their contact wijw_{ij}, with a distribution P(wij)P(w_{ij}) taken from face-to-face experiments analyzed in Cattuto et  al.et\;al. (PLoS ONE 5, e11596, 2010). We find an extremely slow decay of the fraction of infected individuals, for a wide range of the control parameter λ\lambda. Using a distribution of width aa we identify two large regions in the a−λa-\lambda space with anomalous behaviors, which are reminiscent of rare region effects (Griffiths phases) found in models with quenched disorder. We show that the slow approach to extinction is caused by isolated small groups of highly interacting individuals, which keep epidemic alive for very long times. A mean-field approximation and a percolation approach capture with very good accuracy the absorbing-active transition line for weak (small aa) and strong (large aa) disorder, respectively
    • …
    corecore