research

On the zero set of G-equivariant maps

Abstract

Let GG be a finite group acting on vector spaces VV and WW and consider a smooth GG-equivariant mapping f:VWf:V\to W. This paper addresses the question of the zero set near a zero xx of ff with isotropy subgroup GG. It is known from results of Bierstone and Field on GG-transversality theory that the zero set in a neighborhood of xx is a stratified set. The purpose of this paper is to partially determine the structure of the stratified set near xx using only information from the representations VV and WW. We define an index s(Σ)s(\Sigma) for isotropy subgroups Σ\Sigma of GG which is the difference of the dimension of the fixed point subspace of Σ\Sigma in VV and WW. Our main result states that if VV contains a subspace GG-isomorphic to WW, then for every maximal isotropy subgroup Σ\Sigma satisfying s(Σ)>s(G)s(\Sigma)>s(G), the zero set of ff near xx contains a smooth manifold of zeros with isotropy subgroup Σ\Sigma of dimension s(Σ)s(\Sigma). We also present a systematic method to study the zero sets for group representations VV and WW which do not satisfy the conditions of our main theorem. The paper contains many examples and raises several questions concerning the computation of zero sets of equivariant maps. These results have application to the bifurcation theory of GG-reversible equivariant vector fields

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020