22 research outputs found

    Calcium Binding Rigidifies the C2 Domain and the Intradomain Interaction of GIVA Phospholipase A2 as Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry*

    No full text
    The GIVA phospholipase A2 (PLA2) contains two domains: a calcium-binding domain (C2) and a catalytic domain. These domains are linked via a flexible tether. GIVA PLA2 activity is Ca2+-dependent in that calcium binding promotes protein docking to the phospholipid membrane. In addition, the catalytic domain has a lid that covers the active site, presumably regulating GIVA PLA2 activity. We now present studies that explore the dynamics and conformational changes of this enzyme in solution utilizing peptide amide hydrogen/deuterium (H/D) exchange coupled with liquid chromatographymass spectrometry (DXMS) to probe the solvent accessibility and backbone flexibility of the C2 domain, the catalytic domain, and the intact GIVA PLA2. We also analyzed the changes in H/D exchange of the intact GIVA PLA2 upon Ca2+ binding. The DXMS results showed a fast H/D-exchanging lid and a slow exchanging central core. The C2 domain showed two distinct regions: a fast exchanging region facing away from the catalytic domain and a slow exchanging region present in the “cleft” region between the C2 and catalytic domains. The slow exchanging region of the C2 domain is in tight proximity to the catalytic domain. The effects of Ca2+ binding on GIVA PLA2 are localized in the C2 domain and suggest that binding of two distinct Ca2+ ions causes tightening up of the regions that surround the anion hole at the tip of the C2 domain. This conformational change may be the initial step in GIVA PLA2 activation

    X-Ray Reflectivity Studies of cPLA(2)α-C2 Domains Adsorbed onto Langmuir Monolayers of SOPC

    Get PDF
    X-ray reflectivity is used to study the interaction of C2 domains of cytosolic phospholipase A(2) (cPLA(2)α-C2) with a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) supported on a buffered aqueous solution containing Ca(2+). The reflectivity is analyzed in terms of the known crystallographic structure of cPLA(2)α-C2 domains and a slab model representing the lipid layer to yield an electron density profile of the lipid layer and bound C2 domains. This new method of analysis determines the angular orientation and penetration depth of the cPLA(2)α-C2 domains bound to the SOPC monolayer, information not available from the standard slab model analysis of x-ray reflectivity. The best-fit orientation places the protein-bound Ca(2+) ions within 1 Å of the lipid phosphate group (with an accuracy of ±3 Å). Hydrophobic residues of the calcium-binding loops CBL1 and CBL3 penetrate deepest into the lipid layer, with a 2 Å penetration into the tailgroup region. X-ray measurements with and without the C2 domain indicate that there is a loss of electrons in the headgroup region of the lipid monolayer upon binding of the domains. We suggest that this is due to a loss of water molecules bound to the headgroup. Control experiments with a non-calcium buffer and with domain mutants confirm that the cPLA(2)α-C2 binding to the SOPC monolayer is Ca(2+)-dependent and that the hydrophobic residues in the calcium-binding loops are critical for membrane binding. These results indicate that an entropic component (due to water loss) as well as electrostatic and hydrophobic interactions contributes to the binding mechanism
    corecore