371 research outputs found

    On-line Tools for Solar Data Compiled at the Debrecen Observatory and their Extensions with the Greenwich Sunspot Data

    Get PDF
    The primary task of the Debrecen Heliophysical Observatory (DHO) has been the most detailed, reliable, and precise documentation of the solar photospheric activity since 1958. This long-term effort resulted in various solar catalogs based on ground-based and space-borne observations. A series of sunspot databases and on-line tools were compiled at DHO: the Debrecen Photoheliographic Data (DPD, 1974--), the dataset based on the Michelson Doppler Imager (MDI) of the Solar and Heliospheric Observatory (SOHO) called SOHO/MDI--Debrecen Data (SDD, 1996--2010), and the dataset based on the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) called SDO/HMI--Debrecen Data (HMIDD, 2010--). User-friendly web-presentations and on-line tools were developed to visualize and search data. As a last step of compilation, the revised version of Greenwich Photoheliographic Results (GPR, 1874--1976) catalog was converted to DPD format, and a homogeneous sunspot database covering more than 140 years was created. The database of images for the GPR era was completed with the full-disc drawings of the Hungarian historical observatories \'Ogyalla and Kalocsa (1872--1919) and with the polarity drawings of Mount Wilson Observatory. We describe the main characteristics of the available data and on-line tools.Comment: 25 pages, 11 figures, accepted for publication in Solar Physic

    State curves and flipping for an orbiting cylinder at low Reynolds numbers

    Get PDF
    Sudden changes found in the time-mean and rms values of forcecoefficients of a circular cylinder in forced orbital motion placed in a uniform stream when plotted against ellipticity of the orbital path suggest that two solutions(states) exist. This 2D numerical simulation was performed in order to gain furtherevidence of this hypothesis through flipping of the solution. Time histories and limit cycle curves of force coefficients for stationary, in-line, and orbital paths around the time of the flip were investigated, as well as time-mean and rms values of lift, drag, and base pressure coefficients versus ellipticity for the flipped solution. Results provide evidence of the existence of two solutions

    Numerical Simulation of Mechanical Energy Transfer between Fluid and a Circular Cylinder Forced to Follow an Elliptical Path

    Get PDF
    Low-Reynolds number two-dimensional flow around a circular cylinder forced to follow an elliptical path and placed in a uniform stream is investigated numerically using a thoroughly tested finite difference code. Mechanical energy transfer E and time-mean of lift and drag are investigated within the lock-in domain against the transverse oscillation amplitude for Reynolds numbers Re=150 and 200 and frequency ratios 0.8, 0.9 and 1.0 at six different in-line to transverse oscillation amplitude ratio values. The main objective of the paper is to investigate the effects of the shape of the cylinder path (amplitude ratio) and of frequency ratio on the time-mean of lift and drag coefficients and especially on the mechanical energy transfer between the fluid and cylinder. Findings show that both the frequency and amplitude ratios have important effects on the positive E values that may play important roles in the vortex-induced vibration (VIV) of elastically supported cylinders

    Analysis of low Reynolds number flow around a heated circular cylinder

    Get PDF
    The objective of this study is to investigate the forced convection from and the flow around a heated cylinder. Experimental and computational results are presented for laminar flow around a heated circular cylinder with a diameter of 10 mm. The experiments were carried out using Particle Image Velocimetry (PIV) in a wind tunnel, and numerical simulations using an in-house code and a commercial software package, FLUENT. This paper pre-sents comparisons for vorticity and temperature contours in the wake of the cylinder. Experimental and computa-tional results are compared with those available in the literature for heated and unheated cylinders. An equation is suggested for a temperature-dependent coefficient defining a reference temperature to be used in place of the con-stant used in other studies. An attempt is also made to correct differences between average cylinder surface tem-perature and measured interior temperature of the cylinder

    Excess electron solvation in ammonia clusters

    Get PDF
    We performed a combination of quantum chemical calculations and molecular dynamics simulations to assess the stability of various size ("N" "H" _"3" )_n^- ammonia cluster anions up to n = 32 monomers. In the n = 3 – 8 size range, cluster anions are optimized and the vertical detachment energy of the excess electron (VDE) from increasing size clusters are computed using various level methods including density functional theory (DFT), MP2 and CCSD(T) calculations. These clusters bind the electron in non-branched hydrogen bonding chains in dipole bound states. The VDE increases with size from a few meV up to ~200 meV. The electron binding energy is weaker than in water clusters but comparable to small methanol cluster VDEs. We located the first branched hydrogen bonding cluster that binds the excess electron at n = 7. For larger (n = 8 – 32) clusters we generated cold, neutral clusters by semiempirical and ab initio molecular dynamics (AIMD) simulations, and added an extra electron to selected neutral configurations. VDE calculations on the adiabatic and the relaxed anionic structures suggest that the n = 12 - 32 neutral clusters weakly bind the excess electron. Electron binding energies for these clusters (~ 100 meV) appear to be significantly weaker than extrapolated from experimental data. The observed excess electron states are diffuse and localized outside the molecular frame (surface states) with minor (~1%) penetration to the nitrogen frontier orbitals. Stable minima with excess electron states surrounded by solvent molecules (cavity states) were not found in this size regime

    Hydrodynamic forces on circular cylinders oscillating with small amplitude in still fluid or transverse to a free stream

    Get PDF
    In the present study we compare the hydrodynamic forces acting on circular cylinders oscillating in still fluid with corresponding oscillations transverse to a free stream. We find that at small amplitudes of motion the time history of the total force acting in the direction of oscillation in the presence of a free stream is virtually the same as in still fluid and in very good agreement with Stokes–Wang analytical solutions. However, the flow patterns around the cylinders that generate the consistent force history are remarkably disparate

    Characterization of the rabbit neonatal Fc receptor (FcRn) and analyzing the immunophenotype of the transgenic rabbits that overexpresses FcRn

    Get PDF
    The neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes an active role in phagocytosis, and delivers antigen for presentation. We have previously shown that overexpression of FcRn in transgenic mice significantly improves the humoral immune response. Because rabbits are an important source of polyclonal and monoclonal antibodies, adaptation of our FcRn overexpression technology in this species would bring significant advantages. We cloned the full length cDNA of the rabbit FcRn alpha-chain and found that it is similar to its orthologous analyzed so far. The rabbit FcRn - IgG contact residues are highly conserved, and based on this we predicted pH dependent interaction, which we confirmed by analyzing the pH dependent binding of FcRn to rabbit IgG using yolk sac lysates of rabbit fetuses by Western blot. Using immunohistochemistry, we detected strong FcRn staining in the endodermal cells of the rabbit yolk sac membrane, while the placental trophoblast cells and amnion showed no FcRn staining. Then, using BAC transgenesis we generated transgenic rabbits carrying and overexpressing a 110 kb rabbit genomic fragment encoding the FcRn. These transgenic rabbits - having one extra copy of the FcRn when hemizygous and two extra copies when homozygous - showed improved IgG protection and an augmented humoral immune response when immunized with a variety of different antigens. Our results in these transgenic rabbits demonstrate an increased immune response, similar to what we described in mice, indicating that FcRn overexpression brings significant advantages for the production of polyclonal and monoclonal antibodies

    Novel (Hetero)arylalkenyl propargylamine compounds are protective in toxin-induced models of Parkinson's disease

    Get PDF
    Background: Mitochondrial dysfunction, oxidative stress and their interplay are core pathological features of Parkinson's disease. In dopaminergic neurons, monoamines and their metabolites provide an additional source of reactive free radicals during their breakdown by monoamine oxidase or auto-oxidation. Moreover, mitochondrial dysfunction and oxidative stress have a supraadditive impact on the pathological, cytoplasmic accumulation of dopamine and its subsequent release. Here we report the effects of a novel series of potent and selective MAO-B inhibitory (hetero)arylalkenylpropargylamine compounds having protective properties against the supraadditive effect of mitochondrial dysfunction and oxidative stress. Results: The (hetero)arylalkenylpropargylamines were tested in vitro, on acute rat striatal slices, pretreated with the complex I inhibitor rotenone and in vivo, using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced acute, subchronic, and chronic experimental models of Parkinson's disease in mice. The compounds exhibited consistent protective effects against i) in vitro oxidative stress induced pathological dopamine release and the formation of toxic dopamine quinone in the rat striatum and rescued tyrosine hydroxylase positive neurons in the substantia nigra after rotenone treatment; ii) in vivo MPTP-induced striatal dopamine depletion and motor dysfunction in mice using acute and subchronic, delayed application protocols. One compound (SZV558) was also examined and proved to be protective in a chronic mouse model of MPTP plus probenecid (MPTPp) administration, which induces a progressive loss of nigrostriatal dopaminergic neurons. Conclusions: Simultaneous inhibition of MAO-B and oxidative stress induced pathological dopamine release by the novel propargylamines is protective in animal models and seems a plausible strategy to combat Parkinson's disease

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms

    Get PDF
    Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection
    corecore