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L. Baranyi

Abstract Sudden changes found in the time-mean and rms values of force
coefficients of a circular cylinder in forced orbital motion placed in a uniform
stream when plotted against ellipticity of the orbital path suggest that two solutions
(states) exist. This 2D numerical simulation was performed in order to gain further
evidence of this hypothesis through flipping of the solution. Time histories and limit
cycle curves of force coefficients for stationary, in-line, and orbital paths around the
time of the flip were investigated, as well as time-mean and rms values of lift, drag,
and base pressure coefficients versus ellipticity for the flipped solution. Results
provide evidence of the existence of two solutions.

Keywords Orbiting cylinder � Numerical simulation � Flipping � 2D flow � Low
Reynolds number

1 Introduction

Although there are countless studies for flow around a circular cylinder, either sta-
tionary or oscillating in one direction, investigations concentrating upon orbital
motions are still rather uncommon (see e.g. [10, 11]). Among these, studies of a
cylinder in forced orbital motion in a uniform stream are relatively rare. Didier and
Borges [7] were able to identify lock-in for in-line and transverse cylinder oscilla-
tion and for a cylinder orbiting in a circular path.

Lu and Dalton [8], working with forced transverse cylinder oscillation and in-
vestigating the effect of oscillation frequency, found switches in flow patterns and
sudden 180ı phase angle change between lift and cylinder displacement. Blackburn
and Henderson [6] confirmed these findings, as well as identifying sudden changes
in energy transfer between cylinder and fluid.
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In earlier studies, the author identified sudden jumps in the time-mean and rms
values of force coefficients when plotted against ellipticity of orbit. Since these sud-
den jumps occur between two envelope curves [2], the author’s hypothesis is that
there are two solutions (states) that characterise the wake flow, and these represent
changes in the structure of flow patterns. These jumps were investigated for several
cases at different Reynolds numbers, and at different amplitudes of the in-line com-
ponent of orbit [3]. A pre- and post-jump study also incorporated energy transfer,
limit cycle curves, phase angle differences, and flow patterns [4]. All showed sudden
switches, in agreement with the forced transverse results of [6] and [8].

This study attempts to gather further evidence of wake behaviour through flip-
ping the solutions, as this has been recommended as one method of confirming the
presence of two solutions [5].

2 Governing Equations and Numerical Method

The dimensionless governing equations for an incompressible constant property
Newtonian fluid flow around an orbiting circular cylinder are the two components of
the Navier—Stokes equations, the continuity equation and pressure Poisson equa-
tion written in a non-inertial system fixed to the cylinder:
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In these equations r2 is the 2D Laplacian operator, x; y are Cartesian co-ordinates,
u; v are the x; y components of velocity in the system fixed to the cylinder, a0x; a0y
are the components of cylinder acceleration, p is the pressure, D is dilation. Here
Re is the Reynolds number, Re D Ud=� where d is the cylinder diameter, U is the
free stream velocity and � is the kinematic viscosity.

Although in Equation (4) the dilationD D 0 by continuity (3), I retain its partial
derivative with respect to time to reduce numerical errors. Equations (1), (2) and (4)
will be solved while the continuity equation (3) is satisfied at every time step.

No-slip boundary condition is used on the cylinder surface for the velocity and
a Neumann-type condition is used for pressure p. A potential flow distribution is
assumed far from the cylinder.
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Boundary fitted coordinates are used to impose the boundary conditions
accurately. Using unique, single-valued functions, the physical domain bounded
by two concentric circles can be mapped into a rectangular computational domain
where the spacing is equidistant in both directions. In the physical domain logarith-
mically spaced radial cells are used, providing a fine grid scale near the cylinder
wall and a coarse grid in the far field. Using the mapping functions, not speci-
fied here, the governing equations and boundary conditions are transformed into
the computational plane. The transformed equations are solved by using the finite
difference method. For further details see [1].

The 2D code developed by the author has been extensively tested against experi-
mental and computational results for a stationary cylinder and good agreement has
been found [1]. The code was extended first for an oscillating and then for an orbit-
ing cylinder. For this study the dimensionless time step was 0.0005 and the number
of grid points 301 � 177. For all Re investigated in this study .Re D 120–180/ the
solution was grid independent. The ratio of the radius of the outer computational
domain and cylinder radius was 40.

Figure 1 shows the flow arrangement. The motion of the centre of the cylinder
with unit diameter is specified as follows:

x0 .t/ D Ax cos .2�f t/ ; y0 .t/ D �Ay sin .2�f t/ (5)

where f is the dimensionless oscillation frequency, Ax;Ay are the dimensionless
amplitudes of oscillations in x and y directions, respectively. In Fig. 1 U is the
free stream velocity. Here the frequencies in the two directions are identical, which
for nonzero Ax; Ay amplitudes gives an ellipse, shown in the dotted line in the
figure. If one of the amplitudes is zero, in-line or transverse oscillation is obtained.
Ax alone yields pure in-line oscillation, and then as Ay is increased, the ellipticity
e D Ay=Ax increases to yield a full circle at e D 1. The negative sign in y0 in
Equation (5) makes the cylinder orbit clockwise (clw); by changing this sign of y0
an anticlockwise (aclw) orbit is obtained.

Fig. 1 Cylinder in orbital
motion
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3 Computational Results

During each set of computations Re and Ax are fixed and f is kept constant at
some percentage of Strouhal number St0 (the frequency of vortex shedding from a
stationary cylinder at that Re). In this study this percentage was between 70–105 to
ensure lock-in at moderate oscillation amplitudes.

An interesting phenomenon was observed when looking at the time-mean value
(TMV) and root-mean-square (rms) values of lift, drag and base pressure coeffi-
cients for an orbiting cylinder in a uniform flow. Abrupt jumps were found when
these values were plotted against ellipticity e with Re and Ax kept constant, [3].
A typical example for the TMV of lift coefficient for both clockwise and anticlock-
wise direction of orbit is shown in Fig. 2a for Re D 160; Ax D 0:4; f D 0:85St0.
The filled triangles show results for a cylinder orbiting anticlockwise (aclw in the
figure). Note that there are two envelope curves, which are roughly parallel with
each other and of negative slope. On the other hand, the empty squares in Fig. 2a
show results for a clockwise (clw) orbit, with the other parameters unchanged. The
two envelope curves can be seen, again roughly parallel, but the slope is positive,
and they are a mirror image of the envelope curves of the cylinder orbiting anti-
clockwise. Although it cannot be seen well at small e values in the figure, there
are eight jumps or switches in state. For both directions of orbit the jumps occur at
the same ellipticity values and computational points for the two cases lie on differ-
ent state curves except for the values near e D 0. In all calculations made so far,
CLmean has shown this pattern. Time histories of CLmean before and after the jumps
are substantially different, [2].

The TMV and rms of drag and base pressure, further the rms of lift, behaved dif-
ferently from CLmean, characterised by two state curves which are not parallel but
intersect each other at e D 0. A typical example is shown in Fig. 2b. The main pa-
rameters (Re, Ax and f ) are the same as in Fig. 2a. From the sets of computations,
it is clear that the two pairs of envelope or state curves are independent of the direc-
tion of orbit. Here the computational points belonging to the same e values coincide
with each other and thus naturally lie on the same envelope curve. This is reassuring
in two ways: (1) The code produces the same time-mean and rms results for two
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Fig. 2 Time-mean and rms values of lift versus ellipticity for clockwise (clw) and anticlockwise
(aclw) direction of orbit .Re D 160I Ax D 0:4; f D 0:85St0 D 0:15997/
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different situations represented by the two directions of orbit, and this confirms that
the code is consistent, and (2) the existence of envelope curves is proved by results
obtained for two different cases. This finding also supports the idea that there are
two states or solutions and the solution jumps from one state to the other and back.

To sum up the findings, there appear to be two states between which the solution
switches which indicates a strong possibility of bifurcation. The two solutions can
be obtained (a) by using different initial conditions or (b) by flipping the solution. It
was shown in [4] that changing the initial condition for the orbiting cylinder yields
two different solutions. With flipping, if both states are obtained, this is additional
evidence for a two-state solution. For this purpose the solution for a circular cylinder
(stationary, moving in-line, or in orbital motion) placed in an otherwise uniform flow
is flipped. This is done by replacing every quantity (velocity and pressure fields) by
its mirror image values, at one instant .� ! 2���/ without changing the cylinder
motion, where � is the polar angle. Time-histories and limit cycles were plotted in
order to compare pre-flip and post-flip solutions. Two types of limit cycles were
produced: one for two components of flow velocity at a point, and the other for
drag and lift coefficients. To check that the code for flipping was effective, the least
complicated cases were attempted first.

3.1 Flipping for a Stationary Cylinder

Computations were carried out for a stationary cylinder at Re D 180 for the dimen-
sionless time interval of [0, 500] and the solution was flipped at t1 D 250 when
the flow was already periodic (limit cycle). Time histories of lift and drag coeffi-
cients and those of u and v velocity components were stored at points P1 (2,1) and
P2 .2;�1/, as these points have been shown to be reliable for experimental mea-
surement of velocity signals (see [9]). Points P1 and P2, shown in Fig. 1, are mirror
images of each other and are located in the wake of the cylinder on the physical
plane, where the origin of the coordinate system is fixed to the centre of the cylinder
and coordinates are made dimensionless by the cylinder diameter d . Time history
and limit cycle curves for velocity components at these points, i.e. .u1; v1/; .u2; v2/
and limit cycle curves for force coefficients .CD; CL/ were plotted before and after
the flip. It was found that:

– All three limit cycle curves mentioned remain unchanged after flipping.
– There was an approximately 180ı phase shift in CL .t/ at flipping and practically

no phase shift in CD .t/.
– For a stationary cylinder the shape of lift and drag coefficient signals are regular

and this feature of the solution is preserved after the flipping as well.
– Due to symmetry in the position of points P1 and P2, limit cycle curves for the

velocity components are mirror images of each other, i.e. .u1; v1/ D .u2;�v2/
and .u2; v2/ D .u1;�v1/.

All these expected results serve to show that the code works well. Due to lack of
space no figures are included for the stationary cylinder.
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3.2 Flipping for In-Line Oscillation

Computations were carried out for a cylinder oscillating in-line at Re D 180 with
Ax D 0:3 amplitude and f D 0:9 St0 D 0:1737 frequency. Flipping was carried out
when the oscillating cylinder reached its furthest downstream position .x0 D Ax/.
In this case, velocity signals were measured at points P1 and P2, which are fixed to
the oscillating cylinder. In this way, the velocity components at the two points are
relative velocities measured in the coordinate system fixed to the cylinder.

– Figure 3 shows the CL .t/ signal around the flip .t1 D 247:5535/. The shape of
the signal, after a short transitional period, is reversed, i.e. the more rounded
peaks switch from bottom to top. This is evidence for the existence of two
solutions.

– Here, all limit cycle curves change with the flip. Still, some symmetries can be
found between quantities before .t < t1/ and after .t > t1/ the flip, e.g.

.u1; v1 j t < t1/ D .u2;�v2 j t > t1/ (see Fig. 4a, b)

.u2; v2 j t < t1/ D .u1;�v1 j t > t1/ (see Fig. 4c, d)

.CD; CL j t < t1/ D .CD;�CL j t > t1/ (see Fig. 5)

Figure 5 shows the relationship between CL and CD through the flip. The thin and
thick closed curves show the .CD; CL/ limit cycle curves before and after the flip,
respectively. Arrows show the orientation of the curves. The thin straight line repre-
sents the flip, when the solution jumps between the two states.
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Fig. 5 Relationship between CD and CL near flip (parameters as in Fig. 4)
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3.3 Flipping for Orbiting Cylinder

To break the symmetry of in-line motion an orbiting cylinder was investigated,
although due to lack of space we cannot go into detail here. A disturbance to in-line
motion, the amplitude of transverse oscillation Ay , is chosen to be much smaller
than Ax . In this way we expect that the symmetry features obtained for the cylinder
oscillating in-line are not much distorted. The main parameters of the investigated
case are: Re D 160I Ax D 0:3; Ay D 0:012 and f D 0:9 St0 D 0:16938; t1 D
247:5535.

– The CL .t/ signal around the flip is reversed, similarly to the one shown in Fig. 5
after a short transitional period; i.e. the more rounded peaks switch from bottom
to top.

– Limit cycle curves show similar features, with the difference that relations men-
tioned for limit cycle curves in Section 3.2 are just approximately true.

– Limit cycle .CL; y0/ alters to a near-mirror image with the flip, while .CD; x0/
hardly alters at all.

3.4 Effect of Flipping on Time-Mean and rms of Force
Coefficients

For all investigated cases the cylinder was orbiting in clockwise direction. Sets of
computations were performed to investigate the effect of flipping on the TMV and
rms values of different force coefficients. Out of the four sets investigated, two pat-
terns have been identified. Representatives are shown in Figs. 6 and 7, where the
CLmean curves are plotted against ellipticity e. The main feature of the first pattern
(see Fig. 6) is that solutions flipped when the cylinder position is characterised by
x0 � x0max (‘3 o’clock’ position) roughly correspond to the solutions belonging
to the anticlockwise direction of orbit (see also Fig. 2a), while keeping the other
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Fig. 6 Flipped and unflipped TMV of lift versus e .Re D 160; Ax D 0:3; f D 0:9 St0 D
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Fig. 8 Original and doubly flipped TMV of lift versus e (as in Fig. 7)

parameters (Re; Ax and f ) unchanged. This means that CLmean has negative slope,
and that the flipped results are basically complementary to the values belonging to
the case before flipping. The discrepancy tends to become larger with increasing
e, but at times returns to near zero. If the solution is flipped once more (flipped
back), however, we obtained an almost perfect reproduction of the original curve
after two flippings! Although only CLmean versus e is shown here, similar results
were obtained for the other TMV and rms values.

Figure 7 shows the other characteristic pattern found belonging to flipping time
when the cylinder position is characterised by y0 D y0max (‘12 o’clock’ position)
Interestingly in this case the flipped solutions approximate the results belonging to
the clockwise direction of orbit. The location of the jumps is unchanged and the
flipped results are complementary to the unflipped solutions (i.e. can be found on
the other state curve). In this respect the effect of flipping is very similar to that
of changing the initial conditions for the cylinder motion [4]. The other surprising
thing is that the flipped solution reproduces the state curves very accurately over
the whole investigated e domain. The flipped solution was flipped back; Figure 8
shows an almost perfect reproduction of the original curve after two flippings. At
this stage it is unclear what kind of mechanism leads to either pattern 1 or pattern
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2. Hence further investigations are needed. It seems, though, that the position of
the cylinder at the time when the flipping takes place has a crucial effect. Results
for both patterns, however, give some extra evidence for the existence of a double
solution, which seems as if it might be a case of bifurcation.

4 Conclusions

The effect of flipping on flow features for a stationary, oscillating or orbiting cylin-
der in a uniform stream was studied. Limit cycle and time history curves were
investigated, and results for a cylinder either stationary or in in-line motion gave ev-
idence for the existence of two solutions (states). Simulations of an orbiting cylinder
with small cross-wise amplitude further supported this conclusion. The time-mean
and rms values of force coefficients were investigated versus ellipticity e for a cylin-
der orbiting clockwise, and two patterns were identified: (1) the flipped solution
approximates the solution belonging to the anticlockwise orbit, discrepancy increas-
ing with e, or (2) the flipped solution gave a very accurate complementary solution
to the clockwise orbit, even when double-flipped.

Further research is needed to explain why two patterns appear, and to further
clarify the phenomenon causing sudden changes in time-mean and rms values of
force coefficients. POD analysis is planned to identify the type of bifurcation.

Acknowledgements The support provided by the Hungarian Research Foundation (OTKA,
Project No. T 042961) is gratefully acknowledged. The author also thanks Prof. D. Barkley of
Warwick University for his valuable advice, and Mr. S. Ujvárosi for his help in figure preparation.
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