5,626 research outputs found
Genetics of Euglossini bees (Hymenoptera) in fragments of the Atlantic Forest in the region of Viçosa, MG
With uncontrolled deforestation, forest fragments remain, which in most cases are in different stages of regeneration and present isolated populations. In the present study we analyzed the genetic patterns of Eulaema nigrita populations in seven Atlantic Forest fragments of different sizes and successional stages in the region of Viçosa, MG. This was done by RAPD molecular markers. We observed that the area of the fragments had no effect on the genetic variability of E. nigrita in the direction predicted by meta-population models. Medium-sized well-preserved woods presented the lowest variability, whereas large and small woods were statistically identical. The evidence supports the notion that rural areas present greater dispersal among fragments, implying greater similarity between the populations of fragments located in rural areas when compared to fragments in urban areas.Com o desmatamento descontrolado das florestas há a formação de fragmentos de mata que, na maioria das vezes, se encontram em distintos estágios de regeneração, mantendo populações isoladas. Neste trabalho foi feita a análise dos padrões genéticos de populações de Eulaema nigrita de fragmentos de mata Atlântica de diferentes tamanhos e estágios sucessionais por meio de marcadores moleculares RAPD da região de Viçosa, MG. Pode-se verificar que a área dos fragmentos não apresentou efeito sobre a variabilidade genética em E. nigrita na direção predita pelos modelos de metapopulação. Uma mata de tamanho médio e bem preservada apresentou a menor variabilidade, enquanto matas grandes e pequenas foram estatisticamente iguais. As evidências sustentam que áreas rurais apresentam maior dispersão entre fragmentos, implicando maior similaridade entre as populações de fragmentos localizados em áreas rurais se comparados com fragmentos nas áreas urbanizadas
Critical phenomena of thick branes in warped spacetimes
We have investigated the effects of a generic bulk first-order phase
transition on thick Minkowski branes in warped geometries. As occurs in
Euclidean space, when the system is brought near the phase transition an
interface separating two ordered phases splits into two interfaces with a
disordered phase in between. A remarkable and distinctive feature is that the
critical temperature of the phase transition is lowered due to pure geometrical
effects. We have studied a variety of critical exponents and the evolution of
the transverse-traceless sector of the metric fluctuations.Comment: revtex4, 4 pages, 4 figures, some comments added, typos corrected,
published in PR
Hot and repulsive traffic flow
We study a message passing model, applicable also to traffic problems. The
model is implemented in a discrete lattice, where particles move towards their
destination, with fluctuations around the minimal distance path. A repulsive
interaction between particles is introduced in order to avoid the appearance of
traffic jam. We have studied the parameter space finding regions of fluid
traffic, and saturated ones, being separated by abrupt changes. The improvement
of the system performance is also explored, by the introduction of a
non-constant potential acting on the particles. Finally, we deal with the
behavior of the system when temporary failures in the transmission occurs.Comment: 22 pages, uuencoded gzipped postscript file. 11 figures include
New properties of scalar field dynamics in brane isotropic cosmological models
Several aspects of scalar field dynamics on a brane which differs from
corresponding regimes in the standard cosmology are investigated. We consider
asymptotic solution near a singularity, condition for inflation and bounces and
some detail of chaotic behavior in the brane model. Each results are compared
with those known in the standard cosmology.Comment: 13 pages with 2 eps figures, submitted to Astronomy Letter
Mode decomposition and renormalization in semiclassical gravity
We compute the influence action for a system perturbatively coupled to a
linear scalar field acting as the environment. Subtleties related to
divergences that appear when summing over all the modes are made explicit and
clarified. Being closely connected with models used in the literature, we show
how to completely reconcile the results obtained in the context of stochastic
semiclassical gravity when using mode decomposition with those obtained by
other standard functional techniques.Comment: 4 pages, RevTeX, no figure
Removal of anionic surfactant from aqueous solutions by adsorption onto biochars:characterisation, kinetics, and mechanism
Biochar, a waste biomass-derived adsorbent, holds promise for decentralised wastewater treatment. However, limited research exists on its efficacy in adsorbing anionic surfactants in wastewater. To address this, the adsorption of sodium dodecyl sulphate (SDS), a common anionic surfactant, was studied using various biochar types: rice husk biochar (RH-550 and RH-700), wheat straw biochar (WS-550 and WS-700) produced at 550°C and 700°C, wood-based biochar (OB), and activated carbon (AC) as a control. The study investigated the impact of pH (3–9), adsorbent loading (1–10 g/L), adsorbent size (<0.5–2.5 mm), contact time (5–180 min), and initial concentration (50–200 mg/L) on SDS removal. Under optimised conditions (100 mg/L SDS, 4 g/L adsorbent, 1–2 mm particle size, pH 8.3, and 180 min contact time), maximum SDS removals were RH-550 (78%), RH-700 (82.4%), WS-550 (89.5%), WS-700 (90.4%), AC (97%), and OB (88.4%). Among the tested adsorbent materials, WS-550 exhibited the highest SDS adsorption capacity at 66.23 mg/g compared to AC (80.65 mg/g), followed by RH-550 (49.75 mg/g), OB (45.87 mg/g), RH-700 (43.67 mg/g), and WS-700 (42.74 mg/g). SDS adsorption followed a pseudo-second-order kinetic model, indicating chemisorption on the adsorbent surface. The Freundlich isotherm model exhibited a better fit for the experimental data on SDS adsorption using all tested adsorbents except for RH-550. This study showed that biochars produced from agricultural and forestry residues are effective adsorbents for SDS in aqueous solutions and can be a promising sustainable and low-cost material for the treatment of greywater containing anionic surfactants (e.g. handwashing, laundry, kitchen, and bathroom greywaters)
Acessos de batata-doce do banco ativo de germoplasma da Embrapa Clima Temperado recomendados para mesa e processamento industrial.
bitstream/CPACT-2010/13234/1/documento-289.pd
Biomass burning and urban air pollution over the Central Mexican Plateau
Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City (MC) and the surrounding plains demonstrate that biomass burning (BB) significantly impacted air quality in the region. We find that during the period of our measurements, fires contribute more than half of the organic aerosol mass and submicron aerosol scattering, and one third of the enhancement in benzene, reactive nitrogen, and carbon monoxide in the outflow from the plateau. The combination of biomass burning and anthropogenic emissions will affect ozone chemistry in the MC outflow
Noise Kernel in Stochastic Gravity and Stress Energy Bi-Tensor of Quantum Fields in Curved Spacetimes
The noise kernel is the vacuum expectation value of the (operator-valued)
stress-energy bi-tensor which describes the fluctuations of a quantum field in
curved spacetimes. It plays the role in stochastic semiclassical gravity based
on the Einstein-Langevin equation similar to the expectation value of the
stress-energy tensor in semiclassical gravity based on the semiclassical
Einstein equation. According to the stochastic gravity program, this two point
function (and by extension the higher order correlations in a hierarchy) of the
stress energy tensor possesses precious statistical mechanical information of
quantum fields in curved spacetime and, by the self-consistency required of
Einstein's equation, provides a probe into the coherence properties of the
gravity sector (as measured by the higher order correlation functions of
gravitons) and the quantum nature of spacetime. It reflects the low and medium
energy (referring to Planck energy as high energy) behavior of any viable
theory of quantum gravity, including string theory. It is also useful for
calculating quantum fluctuations of fields in modern theories of structure
formation and for backreaction problems in cosmological and black holes
spacetimes.
We discuss the properties of this bi-tensor with the method of
point-separation, and derive a regularized expression of the noise-kernel for a
scalar field in general curved spacetimes. One collorary of our finding is that
for a massless conformal field the trace of the noise kernel identically
vanishes. We outline how the general framework and results derived here can be
used for the calculation of noise kernels for Robertson-Walker and
Schwarzschild spacetimes.Comment: 22 Pages, RevTeX; version accepted for publication in PR
- …