1,259 research outputs found
The third KV62 radar scan: Searching for hidden chambers adjacent to Tutankhamun's tomb
The existence of hidden chambers and corridors adjacent to Tutankhamun’s tomb (code name KV62) hasbeen long debated. In 2015 it was suggested that these chambers may host the as yet undiscovered burialof Nefertiti. In order to test this hypothesis, two Ground Penetrating Radar (GPR) surveys, conductedin 2015 and 2016 from inside KV62, were carried out, but gave contradictory results. To solve theseuncertainties and obtain a more confident and conclusive response, a third GPR survey was conductedby our team in February 2018. The results of this third radar scan are reported in this article. Three GPRsystems with multiple frequency bands (from 150 MHz to 3000 MHz) and very dense spatial samplingwere adopted. After careful data processing, no evidence of marked discontinuities due to the passagefrom natural rock to artificial blocking walls were found in the radargrams. It is therefore concluded thatthere are no hidden chambers immediately adjacent to the Tomb of Tutankhamun
Reconstruction of source location in a network of gravitational wave interferometric detectors
This paper deals with the reconstruction of the direction of a gravitational
wave source using the detection made by a network of interferometric detectors,
mainly the LIGO and Virgo detectors. We suppose that an event has been seen in
coincidence using a filter applied on the three detector data streams. Using
the arrival time (and its associated error) of the gravitational signal in each
detector, the direction of the source in the sky is computed using a chi^2
minimization technique. For reasonably large signals (SNR>4.5 in all
detectors), the mean angular error between the real location and the
reconstructed one is about 1 degree. We also investigate the effect of the
network geometry assuming the same angular response for all interferometric
detectors. It appears that the reconstruction quality is not uniform over the
sky and is degraded when the source approaches the plane defined by the three
detectors. Adding at least one other detector to the LIGO-Virgo network reduces
the blind regions and in the case of 6 detectors, a precision less than 1
degree on the source direction can be reached for 99% of the sky.Comment: Accepted in Phys. Rev.
Detection in coincidence of gravitational wave bursts with a network of interferometric detectors (I): Geometric acceptance and timing
Detecting gravitational wave bursts (characterised by short durations and
poorly modelled waveforms) requires to have coincidences between several
interferometric detectors in order to reject non-stationary noise events. As
the wave amplitude seen in a detector depends on its location with respect to
the source direction and as the signal to noise ratio of these bursts are
expected to be low, coincidences between antennas may not be so likely. This
paper investigates this question from a statistical point of view by using a
simple model of a network of detectors; it also estimates the timing precision
of a detection in an interferometer which is an important issue for the
reconstruction of the source location, based on time delays.Comment: low resolution figure 1 due to file size problem
A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo
We present a method to search for transient GWs using a network of detectors
with different spectral and directional sensitivities: the interferometer Virgo
and the bar detector AURIGA. The data analysis method is based on the
measurements of the correlated energy in the network by means of a weighted
cross-correlation. To limit the computational load, this coherent analysis step
is performed around time-frequency coincident triggers selected by an excess
power event trigger generator tuned at low thresholds. The final selection of
GW candidates is performed by a combined cut on the correlated energy and on
the significance as measured by the event trigger generator. The method has
been tested on one day of data of AURIGA and Virgo during September 2005. The
outcomes are compared to the results of a stand-alone time-frequency
coincidence search. We discuss the advantages and the limits of this approach,
in view of a possible future joint search between AURIGA and one
interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7
Proceeding
Gravity Wave and Neutrino Bursts from Stellar Collapse: A Sensitive Test of Neutrino Masses
New methods are proposed with the goal to determine absolute neutrino masses
from the simultaneous observation of the bursts of neutrinos and gravitational
waves emitted during a stellar collapse. It is shown that the neutronization
electron neutrino flash and the maximum amplitude of the gravitational wave
signal are tightly synchronized with the bounce occuring at the end of the core
collapse on a timescale better than 1 ms. The existing underground neutrino
detectors (SuperKamiokande, SNO, ...) and the gravity wave antennas soon to
operate (LIGO, Virgo, ...) are well matched in their performance for detecting
galactic supernovae and for making use of the proposed approach. Several
methods are described, which apply to the different scenarios depending on
neutrino mixing. Given the present knowledge on neutrino oscillations, the
methods proposed are sensitive to a mass range where neutrinos would
essentially be mass-degenerate. The 95 % C.L. upper limit which can be achieved
varies from 0.75 eV/c2 for large electron neutrino survival probabilities to
1.1 eV/c2 when in practice all electron neutrinos convert into muon or tau
neutrinos. The sensitivity is nearly independent of the supernova distance.Comment: 17 pages, 4 figure
The variable finesse locking technique
Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way
Calibration and sensitivity of the Virgo detector during its second science run
The Virgo detector is a kilometer-length interferometer for gravitational
wave detection located near Pisa (Italy). During its second science run (VSR2)
in 2009, six months of data were accumulated with a sensitivity close to its
design. In this paper, the methods used to determine the parameters for
sensitivity estimation and gravitational wave reconstruction are described. The
main quantities to be calibrated are the frequency response of the mirror
actuation and the sensing of the output power. Focus is also put on their
absolute timing. The monitoring of the calibration data as well as the
parameter estimation with independent techniques are discussed to provide an
estimation of the calibration uncertainties. Finally, the estimation of the
Virgo sensitivity in the frequency-domain is described and typical
sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum
Gravity (CQG), Corrigendum include
Reconstruction of the gravitational wave signal during the Virgo science runs and independent validation with a photon calibrator
The Virgo detector is a kilometer-scale interferometer for gravitational wave
detection located near Pisa (Italy). About 13 months of data were accumulated
during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and
September 2011, with increasing sensitivity.
In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the
gravitational wave strain time series from the detector signals is
described. The standard consistency checks of the reconstruction are discussed
and used to estimate the systematic uncertainties of the signal as a
function of frequency. Finally, an independent setup, the photon calibrator, is
described and used to validate the reconstructed signal and the
associated uncertainties.
The uncertainties of the time series are estimated to be 8% in
amplitude. The uncertainty of the phase of is 50 mrad at 10 Hz with a
frequency dependence following a delay of 8 s at high frequency. A bias
lower than and depending on the sky direction of the GW is
also present.Comment: 35 pages, 16 figures. Accepted by CQ
Scientific Potential of Einstein Telescope
Einstein gravitational-wave Telescope (ET) is a design study funded by the
European Commission to explore the technological challenges of and scientific
benefits from building a third generation gravitational wave detector. The
three-year study, which concluded earlier this year, has formulated the
conceptual design of an observatory that can support the implementation of new
technology for the next two to three decades. The goal of this talk is to
introduce the audience to the overall aims and objectives of the project and to
enumerate ET's potential to influence our understanding of fundamental physics,
astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte
- …