7,198 research outputs found
Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals
We report on giant circular dichroism (CD) of a molecule inserted into a
plasmonic hot spot. Naturally occurring molecules and biomolecules have
typically CD signals in the UV range, whereas plasmonic nanocrystals exhibit
strong plasmon resonances in the visible spectral interval. Therefore,
excitations of chiral molecules and plasmon resonances are typically
off-resonant. Nevertheless, we demonstrate theoretically that it is possible to
create strongly-enhanced molecular CD utilizing the plasmons. This task is
doubly challenging since it requires both creation and enhancement of the
molecular CD in the visible region. We demonstrate this effect within the model
which incorporates a chiral molecule and a plasmonic dimer. The associated
mechanism of plasmonic CD comes from the Coulomb interaction which is greatly
amplified in a plasmonic hot spot.Comment: Manuscript: 4+pages, 4 figures; Supplemental_Material: 10 pages, 7
  figure
Chiral discrimination in optical binding
The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed “optical binding.” Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported
Sum frequency generation from partially ordered media and interfaces: a polarization analysis
A Quantum Electrodynamical Theory of Differential Scattering Based on a Model with Two Chromophores. I. Differential Rayleigh Scattering of Circularly Polarized Light
Magnetic circular dichroism spectra from resonant and damped coupled cluster response theory
A computational expression for the Faraday A term of magnetic circular
dichroism (MCD) is derived within coupled cluster response theory and
alternative computational expressions for the B term are discussed. Moreover,
an approach to compute the (temperature-independent) MCD ellipticity in the
context of coupled cluster damped response is presented, and its equivalence
with the stick-spectrum approach in the limit of infinite lifetimes is
demonstrated. The damped response approach has advantages for molecular systems
or spectral ranges with a high density of states. Illustrative results are
reported at the coupled cluster singles and doubles level and compared to
time-dependent density functional theory results.Comment: Submitted to J. Chem. Phys. on May 10, 202
Circular dichroism of cholesteric polymers and the orbital angular momentum of light
We explore experimentally if the light's orbital angular momentum (OAM)
interacts with chiral nematic polymer films. Specifically, we measure the
circular dichroism of such a material using light beams with different OAM. We
investigate the case of strongly focussed, non-paraxial light beams, where the
spatial and polarization degrees of freedom are coupled. Within the
experimental accuracy, we cannot find any influence of the OAM on the circular
dichroism of the cholesteric polymer.Comment: 3 pages, 4 figure
On the accuracy of the melting curves drawn from modelling a solid as an elastic medium
An ongoing problem in the study of a classical many-body system is the
characterization of its equilibrium behaviour by theory or numerical
simulation. For purely repulsive particles, locating the melting line in the
pressure-temperature plane can be especially hard if the interparticle
potential has a softened core or contains some adjustable parameters. A method
is hereby presented that yields reliable melting-curve topologies with
negligible computational effort. It is obtained by combining the Lindemann
melting criterion with a description of the solid phase as an elastic
continuum. A number of examples are given in order to illustrate the scope of
the method and possible shortcomings. For a two-body repulsion of Gaussian
shape, the outcome of the present approach compares favourably with the more
accurate but also more computationally demanding self-consistent harmonic
approximation.Comment: 25 pages, 7 figure
Associations Between Positive Body Image, Sexual Liberalism, and Unconventional Sexual Practices in U.S. Adults
While studies have documented robust relationships between body image and sexual health outcomes, few studies have looked beyond sexual functioning in women. Here, we hypothesized that more positive body image would be associated with greater sexual liberalism and more positive attitudes toward unconventional sexual practices. An online sample of 151 women and 164 men from the U.S. completed measures of sexual liberalism, attitudes toward unconventional sexual practices, and indices of positive body image (i.e., body appreciation, body acceptance by others, body image flexibility, and body pride), and provided their demographic details. Regression analyses indicated that, once the effects of sexual orientation, relationship status, age, and body mass index had been accounted for, higher body appreciation was significantly associated with greater sexual liberalism in women and men. Furthermore, higher body appreciation and body image flexibility were significantly associated with more positive attitudes toward unconventional sexual practices in women and men. These results may have implications for scholars working from a sex-positive perspective, particularly in terms of understanding the role body image plays in sexual attitudes and behaviors
Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures
The refractive index sensitivity of plasmonic fields has been exploited for over 20 years in analytical technologies. While this sensitivity can be used to achieve attomole detection levels, they are in essence binary measurements that sense the presence/absence of a predetermined analyte. Using plasmonic fields, not to sense effective refractive indices but to provide more “granular” information about the structural characteristics of a medium, provides a more information rich output, which affords opportunities to create new powerful and flexible sensing technologies not limited by the need to synthesize chemical recognition elements. Here we report a new plasmonic phenomenon that is sensitive to the biomacromolecular structure without relying on measuring effective refractive indices. Chiral biomaterials mediate the hybridization of electric and magnetic modes of a chiral solid-inverse plasmonic structure, resulting in a measurable change in both reflectivity and chiroptical properties. The phenomenon originates from the electric-dipole–magnetic-dipole response of the biomaterial and is hence sensitive to biomacromolecular secondary structure providing unique fingerprints of α-helical, β-sheet, and disordered motifs. The phenomenon can be observed for subchiral plasmonic fields (i.e., fields with a lower chiral asymmetry than circularly polarized light) hence lifting constraints to engineer structures that produce fields with enhanced chirality, thus providing greater flexibility in nanostructure design. To demonstrate the efficacy of the phenomenon, we have detected and characterized picogram quantities of simple model helical biopolymers and more complex real proteins
- …
