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Sum frequency generation from partially ordered media
and interfaces: a polarization analysis
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Abstract. The theory of sum frequency generation (SFG) is treated within a molecular quantum
electrodynamical framework and applied to an ensemble of partially oriented molecules, for
lucid analysis of the SFG intensity dependence on beam polarization and molecular symmetry.
By expanding the orientational distribution function in terms of an infinite set of Legendre
polynomials, it is shown that the observed SFG intensity may be followed in terms of a finite
set of distinct contributions. For a time-dependent distribution, each contribution has unique
temporal characteristics which may be separated experimentally by manipulation of the laser
beam and detection geometry. Specific configurations required for complete separation of the
different terms are given. The theory is further developed for partially oriented molecules, within
thin films or adsorbed onto surfaces. Consideration is also given to the effect of temperature
variation, which should open new avenues for the elucidation of molecular orientation in such
media.

1. Introduction

The technique of sum frequency generation (SFG) in optically nonlinear crystals has long
been used to produce laser radiation at tailor-made frequencies, but has more recently
become an important method of surface analysis. Thus, for example, the mixing of
visible and tunable infrared radiation is developing into a powerful spectroscopic method of
analysing the vibrations of molecules at, or adsorbed onto, surfaces [1–3]. It is often stated
that SFG, like second-harmonic generation (SHG), is surface specific and occurs due to the
lack of inversion symmetry necessarily present near an interface [3]. The latter criterion is,
however, not an absolute requirement, as witnessed by one of the early SFG experiments
in which coherent mixing was achieved within solutions of arabinose [4]. In this paper
we present a quantum electrodynamical treatment of SFG for a medium wherein partial
molecular order may be apparent. The theory is developed in section 2 and is applicable to
molecules oriented in an electric field, and molecules aligned within thin films or adsorbed
upon surfaces. Section 3 shows how the orientational averaging may be accomplished and
section 4 considers the requirements necessary for observation of the SFG signal. In this
section we also discuss some interesting experimental arrangements that could be used to
separate the different temporal terms arising from the time-dependent distribution function
introduced in section 3. This could be used, for example, to separate the relaxation terms
arising due to rotational diffusion. Section 5 looks specifically at ordered molecules within
a thin lamina and shows how the concise and general expressions of section 3 may be
readily applied to surface studies. Finally, in section 6, we consider the net response of the
ensemble to temperature changes and propose experiments for the improved estimation of
molecular orientation in surface-oriented layers.
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2. SFG from oriented molecules

A general expression for the intensityISFG of SFG from a collection ofN molecules
may be derived using the standard techniques of quantum electrodynamics [5, 6]. Using
the convention that a repeated index implies summation over a complete set of Cartesian
coordinates we shall express this intensity in the form:

ISFG= D
∣∣∣∣ē(3)i e(2)j e

(1)
k

N∑
ξ

β
(ξ)

ijk exp(i1k ·Rξ )

∣∣∣∣2, (1)

where1k = k1+k2−k3 is the wavevector mismatch between the input beams (wavevectors
k1 andk2) and the emergent radiation at the sum frequency (wavevectork3 and frequency
ω3 = ω1+ω2). In equation (1),e(1) ande(2) are the polarization vectors of the input beams
ande(3) is the polarization vector for the output (an overbar is used to represent the complex
conjugate);Rξ is the position vector of the moleculeξ andβ(ξ) is its associated molecular
hyperpolarizability tensor defined as:
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where the double sum extends over the complete set of molecular eigenstates andµabl =
〈a|µl|b〉 is the lth component of the molecular transition dipole connecting molecular
eigenstates|a〉 and |b〉. The energy denominators in equation (2) have been written in
the complex formẼso = Es −Eo − i0s to account for the damping associated with0s , the
linewidth of the excited state|s〉.

The other factor to define in (1), the beam parameterD, is given by

D = k4
3Iω1Iω2

32π2cε3
0

, (3)

whereIωi is the mean irradiance of the input beam of frequencyωi (i = 1 or 2):

Iωi =
〈n̂i〉ch̄ωi
V

, (4)

V being the quantization volume and〈n̂i〉 = 〈ψ(ki )|â†(ki )â(ki )|ψ(ki )〉 the expectation
value of the number operator for the general radiation state|ψ(ki )〉.

Equation (1) can be written in the equivalent form

ISFG= D
[
ē
(3)
i e

(2)
j e

(1)
k e
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]
, (5)

whereRξξ ′ = Rξ −Rξ ′ . Thus there are two separable contributions to the SFG:

ISFG= I inc
SFG+ I coh

SFG, (6)

with
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representing the incoherent SFG from individual molecules, and

I coh
SFG= D

[
ē
(3)
i e
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j e
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k e
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β
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ijk β̄
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]
(8)

the coherent SFG associated with interference between signals generated at different
molecular centres. In practical terms it is generally this coherent signal with which one
is concerned—for perfect phase matchingI coh

SFG has a quadratic dependence on molecular
density and hence dominates the much weaker incoherent signal which scales linearly with
density. Assuming that the variables describing the orientation of different molecules are
independent of one another and that those molecules are constitutionally identical, the
orientational average of (8) becomes

ISFG≡ 〈I coh
SFG〉 = D

[
ē
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where angle brackets have been used to represent an orientational average. Since the result
of such an average is necessarily the same for each molecule, the labelξ can be dropped
from the β tensor. For generality, we take a weighted orientational average to account
for a degree of orientational order within the ensemble—furthermore we allow this degree
of ordering to exhibit a time dependence. Incorporating the phase-matching term into the
beam parameter by defining:

B = D
N∑
ξ 6=ξ ′

N∑
ξ ′

exp(i1k ·Rξξ ′), (10)

the expression for the coherent SFG signal is then

ISFG= B|ē(3)i e(2)j e
(1)
k 〈βijk〉|2. (11)

The theory thus presented in principle applies both to the case of SFG and SHG
(ω1 = ω2). However, in the limit where the exact equalitiesk1 = k2 and e(1) = e(2)

simultaneously hold, the theory at this level of detail reveals a discontinuity of behaviour
fundamentally associated with the photon statistics. The problems that this raises, although
interesting, are nonetheless peripheral to our present concerns and are therefore to be
addressed elsewhere [7]. For the sake of completeness and for use in a later section we
shall here simply note that SHG from a single beam can be written in the same form as
(11) with

BSHG= g(2)ω

4
B (12)

and withB as given by equation (10),g(2)ω being the degree of second-order coherence of
the fundamental beam input.

3. Orientational averaging in partially ordered media

To progress further we now need to calculate the orientational average appearing in (11);
and this we shall do for a special case—the case where the medium exhibits some partial
order.
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Let µ̂ be a unit vector in the direction of the molecular alignment axis (normally, though
not necessarily, the same direction as the permanent electric dipole moment) andẐ be a
unit vector along the alignment direction of a set of laboratory-fixed axes(X, Y, Z). We
shall consider the case of an ensemble of molecules whose orientations may be specified at
any timet by a distribution functionf (θ, t), whereθ is the angle between the two reference
directionsµ̂ and Ẑ, such thatf (θ, t)dθ is the fractional number of molecules set at an
angle betweenθ + dθ . In terms of this distribution function the time-dependent weighted
average in equation (11) is given by

〈βijk〉 = 〈βijkf (θ, t)〉�/〈f (θ, t)〉�. (13)

As described in detail in [8], averaging is now accomplished by expanding the distribution
function in terms of Legendre polynomials:f (θ, t) = ∑∞

n=0 an(t)Pn (cosθ) wherePn is
the Legendre polynomial of ordern andan(t) is a set of time-dependent coefficients. Thus
we require

〈βijk〉 =
∞∑
n=0

an(t)〈βijkPn(cosθ)〉�
/ ∞∑

n=0

an(t)〈Pn(cosθ)〉�. (14)

To compute the orientational average over the third rank tensorβ we transform into
molecular axes, introducing direction cosines of the formlirλr , ir being a component referred
to the laboratory fixed frame andλr one referred to the molecular frame. Hence we write

〈βijkPn(cosθ)〉� = βλµνI (3;n)ijk;λµν (15)

where

I
(3;n)
ijk;λµν = 〈liλljµlkνPn(cosθ)〉�. (16)

This gives

〈βijk〉 = βλµν
∞∑
n=0

an(t)I
(3;n)
ijk;λµν

/ ∞∑
n=0

an(t)I
(0;n) (17)

where the orientational average of the scalar〈Pn(cosθ)〉� has been written asI (0;n) for
consistency of notation. Implementation of the requisite orientational averages [9] gives,

〈βijk〉 = βλµν

a0(t)

3∑
n=0

an(t)I
(3;n)
ijk;λµν. (18)

Substitution into (11) then yields

ISFG= B
∣∣∣∣ 1

a0(t)

3∑
n=0

an(t)Bn

∣∣∣∣2 (19)

where the coefficientsBn given by

Bn = I (3;n)ijk;λµν ē
(3)
i e

(2)
j e

(1)
k βλµν (20)

carry information on the detailed response, as mediated by the molecular hyperpolarizability,
to the polarization field. One immediate consequence of this result is that we can discern
a finite number of temporal components contributing to the evolution of SFG from the
partially ordered medium. It should be noted that these components are solely associated
with the orientational averaging of the hyperpolarizability tensor and not the underlying
molecular mechanisms responsible for orientational relaxation. For SHG from molecules
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reorienting via stochastic rotational diffusion this leads to a signal in the form of a multi-
exponential decay as detailed previously [8]. In the general case of SFG, the explicit forms
for the coefficientsBn in (20) are

B0 = 1
6βλµνελµν(ē

(3) × e(2)) · e(1) (21)

B1 = 1

30

[
(ē(3) · e(2))(Ẑ · e(1))
(ē(3) · e(1))(Ẑ · e(2))
(e(2) · e(1))(Ẑ · ē(3))

]T [ 4 −1 −1
−1 4 −1
−1 −1 4

][
βλλµµ̂µ
βλµλµ̂µ
βµλλµ̂µ

]
(22)
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[
(Ẑ · e(1))(ē(3) × e(2)) · Ẑ − 1

3(ē
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(Ẑ · e(2))(ē(3) × e(1)) · Ẑ + 1
3(ē

(3) × e(2)) · e(1)
]T [

2 −1
−1 2

]
×
[
βλµνελµτ µ̂νµ̂τ − 1

3βλµνελµν

βλνµελµτ µ̂νµ̂τ + 1
3βλµνελµν

]
(23)

B3 = 5
14[(Ẑ · ē(3))(Ẑ · e(2))(Ẑ · e(1))− 1

5{(ē(3) · e(2))(Ẑ · e(1))
+(ē(3) · e(1))(Ẑ · e(2))+ (e(2) · e(1))(Ẑ · ē(3))}]
×[βλµνµ̂λµ̂µµ̂ν − 1

5{βλλµûµ + βλµλµ̂µ + βµλλµ̂µ}]. (24)

In equation (19) we have a highly compact form for the SFG. One important aspect of
the results as expressed above is that they facilitate identification of the circumstances in
which individual contributions to the dynamics are manifest. Each of theBn coefficients may
vanish due to experimental configurations, or through constraints on the hyperpolarizability
combinations entailed, as we now discuss.

4. Extraction of orientational information and symmetry considerations

The B0 contribution in equation (19) is necessarily time independent and survives even
in the case where (by whatever mechanism) reorientation restores isotropy to a partially
ordered medium. This term therefore corresponds to SFG from an ensemble exhibiting bulk
isotropy, sustainable only for molecular systems of certain symmetry types (vide infra). In
the limit asω1 approachesω2, the hyperpolarizability tensor becomes symmetric in its last
two indices so thatβλµνελµν = 0; thus SHG is forbidden in isotropic fluid media whereas
SFG is not. Equations (19) and (21)–(24) readily allow the polarization characteristics of
SFG to be determined through a suitably chosen set of polarization studies, although one
must be careful to ensure that any variation in experimental geometry does not introduce
a change in the beam parameterB through a concomitant change in phase mismatch. For
situations where1k is held constant, polarization studies yield information about the order
in the partially oriented medium.

Some interesting and experimentally viable configurations are detailed in figure 1—
which indicates that, phase matching notwithstanding, the different temporal contributions
are in principle separable. Adopting these geometries, one can readily deduce that the
corresponding SFG intensities are given by;

I
(a)

SFG=
B

375

∣∣∣∣a1(t)

a0(t)
(βλλµ + βλµλ + βµλλ)µ̂µ

∣∣∣∣2 , (25a)

I
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B
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∣∣∣∣2 sin2 2β, (25b)

I
(c)

SFG=
25B

1568

∣∣∣∣a3(t)

a0(t)
[βλµνµ̂λµ̂µµ̂ν − 1

5(βλλµ + βλµλ+ βµλλ)µ̂µ]

∣∣∣∣2 , (25c)
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Figure 1. Experimental arrangements for separating the different temporal components
contributing to SFG, withẐ being the direction of preferential alignment. By carefully choosing
the wave propagation directions and polarizations we may isolate, in turn, the components
depending on the following parameter ratios: (a) a1/a0; (b) a2/a0; (c) a3/a0.

where equation (25a) gives the SFG intensity,I (a)SFG, for the arrangement depicted in
figure 1(a), etc. Some remarks are in order at this point. In case (a) the result given above as
equation (25a) relates to the specific configuration whereα = 39◦14′ = cos−1[( 3

5)
1/2]; the

interest here concerns the fact thatB0, B2 andB3 all disappear, leaving a signal governed
by the ratio of thea1 and a0 temporal coefficients. Similar remarks apply to cases (b)
and (c), for which again each result entails the ratio of one other temporal coefficient with
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a0. Thus, monitoring SFG in these situations enables each of the dynamical factors to be
separately identified, maximizing the information on the degree of orientational anisotropy
in systems aligned by, for example, application of an orienting electric field. Nothing
further can be determined, from any form of three-wave mixing, about the other coefficients
appearing in the expansion off (θ, t). However, if a higher-order nonlinear effect was to
be employed then information concerning correspondingly higher-orderan(t) coefficients
would also become available.

Apart from considerations of optical geometry, the coefficientsBn in equations (21)–(24)
may completely disappear due to molecular symmetry constraints. Obviously, for molecules
possessing inversion symmetry,β is identically zero; for point groups not possessing
inversion symmetry the number of independent, non-zero, components may be found using
the standard techniques of group theory [10]. Taking the molecular dipole moment to be
along the molecularz-axis we can formulate the actual combinations that will be non-
zero for the different crystallographic point groups (without the unnecessary assumption
of Kleinman index symmetry) [11]—as shown for convenience in table 1. SFG from an
isotropic sample(B0 6= 0) is thus permitted when the molecules in the sample belong to one
of the chiral symmetry classesC1, C2,D2, C4,D4, C3,D3, C6,D6, T , or O. For partially
ordered media, SFG may also arise from theB1, B2 andB3 terms—oriented molecules of
C2ν, C3ν, C4ν andC6ν symmetry can then be added to the above list of candidates for SFG.

For surface studies, arrangements 1(a) and 1(c) will not be geometrically practicable.
The next section considers the problems of phase matching and focuses on surfaces and thin
films in order to illustrate the applicability of the theory to this experimentally important
case.

5. Application to molecules oriented within thin films and monolayers

The phase-matching double sum

S =
N∑
ξ 6=ξ ′

N∑
ξ ′

exp(i1k ·Rξξ ′) (26)

featured in equation (10) can be expressed by taking the normal integral limit as

S = [N sinc( 1
21kXA) sinc( 1

21kYB) sinc( 1
21kZC)]

2 (27)

where theN molecules are confined to the region bounded by 06 X 6 A, 06 Y 6 B and
0 6 Z 6 C. Clearly, for the partially ordered media to be considered here, theX andY
directions are entirely equivalent. However, we may define a beam geometry whereupon
the beams are confined to the(Y, Z)-plane by setting1kX = 0, and also suppose that
the sample is a thin film or monolayer in the sense thatC is sufficiently small for the
approximation sinc( 1

21kZC) ≈ 1 to be valid. Adopting beam arrangements as depicted in
figure 2, equation (27) reduces to

S = N2 sinc2( 1
21kYB) (28)

with

1kY = k1 sinθ1+ k2 sinθ2− k3 sinθ3. (29)

The phase-matching condition1kY = 0 is thus achieved in reflection (and transmission)
for anglesθ3 such that

sinθ3 = ω1n(ω1) sinθ1+ ω2n(ω2) sinθ2

(ω1+ ω2)n(ω1+ ω2)
. (30)
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Table 1. Non-zero contributions to the hyperpolarizability components in equations (21)–(24).

βλµνελµν βλµzελµz βλzµελµz βλλz βλzλ βzλλ βzzz

C1 βxyz − βxzy + βzxy − βyxz + βyzx − βzyx βxyz − βyxz βxzy − βyzx βxxz + βyyz + βzzz βxzx + βyzy + βzzz βzxx + βzyy + βzzz βzzz
C2 βxyz − βxzy + βzxy − βyxz + βyzx − βzyx βxyz − βyxz βxzy − βyzx βxxz + βyyz + βzzz βxzx + βyzy + βzzz βzxx + βzyy + βzzz βzzz
C2ν 0 0 0 βxxz + βyyz + βzzz βxzx + βyzy + βzzz βzxx + βzyy + βzzz βzzz
D2 βxyz − βxzy + βzxy − βyxz + βyzx − βzyx βxyz − βyxz βxzy − βyzx 0 0 0 0
C4 2(βxyz − βxzy + βzxy) 2βxyz 2βxzy 2βxxz + βzzz 2βxzx + βzzz 2βzxx + βzzz βzzz
C4ν 0 0 0 2βxxz + βzzz 2βxzx + βzzz 2βzxx + βzzz βzzz
D4 2(βxyz − βxzy + βzxy) 2βxyz 2βxzy 0 0 0 0
C3 2(βxyz − βxzy + βzxy) 2βxyz 2βxzy 2βxxz + βzzz 2βxzx + βzzz 2βzxx + βzzz βzzz
C3ν 0 0 0 2βxxz + βzzz 2βxzx + βzzz 2βzxx + βzzz βzzz
D3 2(βxyz − βxzy + βzxy) 2βxyz 2βxzy 0 0 0 0
C6 2(βxyz − βxzy + βzxy) 2βxyz 2βxzy 2βxxz + βzzz 2βxzx + βzzz 2βzxx + βzzz βzzz
C6ν 0 0 0 2βxxz + βzzz 2βxzx + βzzz 2βzxx + βzzz βzzz
D6 2(βxyz − βxzy + βzxy) 2βxyz 2βxzy 0 0 0 0
T 3(βxyz − βxzy) βxyz − βxzy −(βxyz − βxzy) 0 0 0 0
O 6βxyz 2βxyz −βxyz 0 0 0 0
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Figure 2. Wave geometries for surface and thin film studies in reflection (and forθ3 > π/2
transmission). TheX̂-direction is out of the plane towards the reader.

Figure 3. Convention used for light with elliptical
polarization. The beam is travelling outwards from the paper
with wavevectork; the azimuth2 is the angle between the
major axis of the ellipse and the laboratory-fixedX̂ axis in
the sense shown, andη = tan−1(b/a) is the ellipticity, where
a is the length of the major axis andb is that of the minor
axis.

Assuming the SFG signal is detected in the phase-matched direction, we now consider
various possibilities with regards to polarization analysis. As indicated by equation (28),
the phase-matched geometry implies thatS = N2. As the angles of incidence,θ1 andθ2, of
the incoming beams are varied the number of molecules exposed to both beams will vary.
For two input beams of identical circular section centred on the same point on the surface
we find that

S = ρ2
sA

2 sec2 θmin (31)

whereρs is the surface density of molecules in the thin film,A is the cross sectional area
of the incoming beams andθmin = min(θ1, θ2) is the smaller of the two angles of incidence,
which dictates the common area of beam overlap at the surface.

To account for all experimental possibilities we shall allow each of the three beams
under consideration to assume a generalized state of elliptical polarization. This entails
defining two parameters: the ellipticityη and azimuth2, as defined in figure 3 following
the convention of Hecht and Barron [12]. To keep the expressions for SFG intensities
as compact as possible, however, it is better to define the polarizations in terms of three
parameters(σ, φ, ζ ) which in turn relate to the usual definitions. To this end we define:

e(1) = eiφ1 cosσ1X̂ + eiζ1 sinσ1X̂ × k̂1

e(2) = eiφ2 cosσ2X̂ + eiζ2 sinσ2X̂ × k̂2

e(3) = eiφ3 cosσ3X̂ + eiζ3 sinσ3X̂ × k̂3

(32)
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where, for each beam,(σ, φ, ζ ) relate to the azimuth and ellipticity as defined in figure 3
through:

eiσ = (1+ cos 22 cos 2η)1/2+ i(1− cos 22 cos 2η)1/2√
2

(33)

eiφ = 1− i tan2 tanη

(1+ tan22 tan2 η)1/2
(34)

eiζ = tan2+ i tanη

(tan22+ tan2 η)1/2
. (35)

Using these relations we can deduce the required mappings for commonly used experimental
geometries:

(σ, φ, ζ ) 7→


(π/4, 0, π/2) R-circularly polarized light(2 = 0, η = π/4)
(π/4, 0,−π/2) L-circularly polarized light(2 = 0, η = −π/4)
(π/2, 0, 0) p-linearly polarized light(2 = π/2, η = 0)

(0, 0, 0) s-linearly polarized light(2 = 0, η = 0).

(36)

Returning to the SFG intensity, we can now express theBn coefficients in the following
matrix form:

B0 = 1
6B̃0βλµνελµν (37)

B1 = 1
30B̃

T
1

[ 4 −1 −1
−1 4 −1
−1 −1 4

][
βλλµµ̂µ
βλµλµ̂µ
βµλλµ̂µ

]
(38)

B2 = 1
10B̃

T
2

[
2 −1
−1 2

] [
βλµνελµτ µ̂νµ̂τ − 1

3βλµνελµν

βλνµελµτ µ̂νµ̂τ + 1
3βλµνελµν

]
(39)

B3 = 5
14B̃3[βλµνµ̂λµ̂µµ̂ν − 1

5(βλλµ + βλµλ + βµλλ)µ̂µ] (40)

and using (32) gives:

B̃0 = ei(ζ1+ζ2−φ3) sinσ1 sinσ2 cosσ3 sin(θ1− θ2)+ ei(ζ1+φ2−ζ3) sinσ1 cosσ2 sinσ3 sin(θ1+ θ3)

−ei(φ1+ζ2−ζ3) cosσ1 sinσ2 sinσ3 sin(θ2+ θ3) (41)

B̃1 =
[ eiζ1 sinθ1 sinσ1(ei(φ2−φ3) cosσ2 cosσ3− ei(ζ2−ζ3) sinσ2 sinσ3 cos(θ2+ θ3))

eiζ2 sinθ2 sinσ2(ei(φ1−φ3) cosσ1 cosσ3− ei(ζ1−ζ3) sinσ1 sinσ3 cos(θ1+ θ3))

eiζ3 sinθ3 sinσ3(ei(φ1+φ2) cosσ1 cosσ2+ ei(ζ1+ζ2) sinσ1 sinσ2 cos(θ1− θ2))

]
(42)

B̃2 =
[

eiζ1 sinθ1 sinσ1(ei(ζ2−φ3) cosθ2 sinσ2 cosσ3+ ei(φ2−ζ3) cosθ3 cosσ2 sinσ3)− B̃0/3
eiζ2 sinθ2 sinσ2(ei(ζ1−φ3) cosθ1 sinσ1 cosσ3+ ei(φ1−ζ3) cosθ3 cosσ1 sinσ3)+ B̃0/3

]
(43)

B̃3 = ei(ζ1+ζ2−ζ3) sinθ1 sinθ2 sinθ3 sinσ1 sinσ2 sinσ3

− 1
5{eiζ1 sinθ1 sinσ1(e

i(φ2−φ3) cosσ2 cosσ3− ei(ζ2−ζ3) sinσ2 sinσ3 cos(θ2+ θ3))

+eiζ2 sinθ2 sinσ2(e
i(φ1−φ3) cosσ1 cosσ3− ei(ζ1−ζ3) sinσ1 sinσ3 cos(θ1+ θ3))

+eiζ3 sinθ3 sinσ3(e
i(φ1+φ2) cosσ1 cosσ2+ ei(ζ1+ζ2) sinσ1 sinσ2 cos(θ1− θ2))}.

(44)

It is important to check,inter alia, that the expressions thus derived reduce to previously
established results for the case of SHG. Assuming that phase matching occurs at an angle
θ3 = θ1 = θ2 = θ , and setting(σ1, φ1, ζ1) = (σ2, φ2, ζ2) = (σ, φ, ζ ) for the fundamental
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beam withω = ω1 = ω2, and (σ3, φ3, ζ3) = (σ ′, φ′, ζ ′) for the second-harmonic beam at
2ω, equations (41)–(44) reduce to

B̃0 = 0 (45)

B̃1 = sinθ

[ eiζ sinσ(ei(φ−φ′) cosσ cosσ ′ − ei(ζ−ζ ′) sinσ sinσ ′ cos 2θ)
eiζ sinσ(ei(φ−φ′) cosσ cosσ ′ − ei(ζ−ζ ′) sinσ sinσ ′ cos 2θ)

eiζ ′ sinσ ′(e2iφ cos2 σ + e2iζ sin2 σ)

]
(46)

B̃2 = eiζ sinθ cosθ sinσ(ei(ζ−φ′) sinσ cosσ ′ + ei(φ−ζ ′) cosσ sinσ ′)
[

1
1

]
(47)

B̃3 = ei(2ζ−ζ ′) sin3 θ sin2 σ sinσ ′

−sinθ

5
{2eiζ sinσ(ei(φ−φ′) cosσ cosσ ′ − ei(ζ−ζ ′) sinσ sinσ ′ cos 2θ)

+e−iζ ′ sinσ(e2iφ cos2 σ + e2iζ sin2 σ)}. (48)

Two important special cases can now be readily treated.

5.1. SHG with plane polarized input

With linearly polarized input the polarization plane of the reflected harmonic is in general
rotated with respect to the polarization plane of the incoming fundamental. Here we must
setφ = φ′ = ζ = ζ ′ = 0 which, using equations (3), (10), (12), (19), (31), (37)–(40) and
(46)–(48) yields,

ISHG= g(2)ω k
4
2ωI

2
ωρ

2
sA

2

128π2cε3
0

sec2 θ

∣∣∣∣a1

a0
B1+ a2

a0
B2+ a3

a0
B3

∣∣∣∣2 (49)

where

B1 = sinθ

30
{(3βλλµ + 3βλµλ − 2βµλλ) sinσ cosσ cosσ ′ − (βλλµ + βλµλ − 4βµλλ) sinσ ′

−(3βλλµ + 3βλµλ − 2βµλλ) sin2 σ sinσ ′ cos 2θ}µ̂µ (50)

B2 = sinθ cosθ

10
sinσ sin(σ + σ ′)(βλµν + βλνµ)ελµτ µ̂νµ̂τ (51)

B3 = 5 sinθ

14
[sin2 θ sin2 σ sinσ ′ − 1

5{2 sinσ(cosσ cosσ ′ − sinσ sinσ ′ cos 2θ)+ sinσ ′}]
×[βλµνµ̂λµ̂µµ̂ν − 1

5(βλλµ + βλµλ + βµλλ)µ̂µ]. (52)

These expressions are quite general. UsingI
p/s
p/s to denote the second-harmonic intensities

obtained when the fundamental (superscript) and second harmonic (subscript) have p- or
s-polarization we obtain:

I p
p =

g(2)ω k
4
2ωI

2
ωρ

2
sA

2

128π2cε3
0

tan2 θ |C1 sin2 θ + C2 cos2 θ |2 (53)

I p
s =

g(2)ω k
4
2ωI

2
ωρ

2
sA

2

128π2cε3
0

sin2 θ |C3|2 (54)

I s
p =

g(2)ω k
4
2ωI

2
ωρ

2
sA

2

128π2cε3
0

tan2 θ |C4|2 (55)

I s
s = 0 (56)
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with the (complex) constantsC1–C4 given by

C1 = a1

15a0
(βλλµ + βλµλ + βµλλ)µ̂µ + a3

7a0
(βλµνµ̂λµ̂µµ̂ν − 1

5(βλλµ + βλµλ + βµλλ)µ̂µ)
(57)

C2 = −a1

15a0
(2βλλµ + 2βλµλ − 3βµλλ)µ̂µ + a3

14a0
(βλµνµ̂λµ̂µµ̂ν − 1

5(βλλµ + βλµλ + βµλλ)µ̂µ)
(58)

C3 = a2

10a0
(βλµν + βλνµ)ελµτ µ̂νµ̂τ (59)

C4 = a1

30a0
(βλλµ + βλµλ − 4βµλλ)µ̂µ + a3

14a0
(βλµνµ̂λµ̂µµ̂ν − 1

5(βλλµ + βλµλ + βµλλ)µ̂µ).
(60)

The dependence of the second-harmonic intensities on the angle of incidence indicated in
equations (53)–(56) is identical to that derived by Byerset al [13] and Hecht and Barron [12].
Equation (54) indicates, as mentioned in [13], that the occurrence of s-polarized SHG from
a p-polarized fundamental beam is a ready indication of surface chirality—the coefficient
C3, as is apparent from table 1, being non-zero only for chiral species. The treatment
here however additionally gives the explicit dependence on the preferred orientation of the
molecules present in the thin film via the orientational parametersan. One would expect
these parameters to be highly temperature dependent, and so one can confidently predict that
the combination of temperature programming and polarization analysis will yield a wealth
of valuable new information on orientation at surfaces.

5.2. SHG with circularly polarized input

The second important case concerns the circular intensity difference (CID) between the
SHG intensities produced by circularly polarized light of difference handedness. Setting
(σ, φ, ζ ) = (π/4, 0,±π/2), where the upper sign refers to R-polarized light, and
considering linearly polarized output so thatφ′ = ζ ′ = 0, the expression for the second-
harmonic intensity has the form given by (49) with

B1 = sinθ

60
(±i cosσ ′ + sinσ ′ cos 2θ)(3βλλµ + 3βλµλ − 2βµλλ)µ̂µ (61)

B2 = sinθ cosθ

20
(− cosσ ′ ± i sinσ ′)(βλµν + βλνµ)ελµτ µ̂νµ̂τ (62)

B3 = −5 sinθ

14
[ 1

2 sin2 θ sinσ ′ + 1
5(±i cosσ ′ + sinσ ′ cos 2θ)]

×[βλµνµ̂λµ̂µµ̂ν − 1
5(βλλµ + βλµλ + βµλλ)µ̂µ]. (63)

For the detection of p-polarized light we have, using obvious notation:

IR
p =

g(2)ω k
4
2ωI

2
ωρ

2
sA

2

512π2cε3
0

tan2 θ |(C1+ C4) sin2 θ + (C2+ C4) cos2 θ − iC3 cosθ |2 (64)

I L
p =

g(2)ω k
4
2ωI

2
ωρ

2
sA

2

512π2cε3
0

tan2 θ |(C1+ C4) sin2 θ + (C2+ C4) cos2 θ + iC3 cosθ |2 (65)

and for s-polarized SHG:

IR
s =

g(2)ω k
4
2ωI

2
ωρ

2
sA

2

512π2cε3
0

tan2 θ |(C2+ C4)− iC3 cosθ |2 (66)
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I L
s =

g(2)ω k
4
2ωI

2
ωρ

2
sA

2

512π2cε3
0

tan2 θ |(C2+ C4)+ iC3 cosθ |2 (67)

with the Cn coefficients as given by equations (57)–(60). Again, the dependence of
equations (64)–(67) on the angle of incidenceθ is seen to match previous results from
Byers et al [14] and Hecht and Barron [12]. The equations readily show that CIDs
(IR

s 6= I L
s , I

R
p 6= I L

p ) occur only: (i) for chiral substances and (ii) where the molecular
hyperpolarizability contains an appreciable imaginary component. The latter condition, as
is apparent from equation (2), dictates that we are near to resonance.

Although studies of wavelength dependence have been performed [13–16], SHG remains
a purely electronic technique, and we expect that the chiral effects discussed above will
become even more important and useful when combined with visible-tunable IR SFG where
vibrational resonances may be exploited. Expressions (41)–(44), and the SFG expressions
ensuing therefrom, will therefore be of value in deciphering the profusion of information
likely to follow from such experiments.

6. Temperature-dependent SFG studies

As a specific example of the use of the more general SFG expressions given here we
consider the problem of determining the orientation of molecules adsorbed onto surfaces or
interfaces. As already mentioned, this information is embodied within the coefficientsan
appearing in the Legendre polynomial expansion of the orientational distribution function.
Thus we need to find ways to determine as much information as possible about the individual
an terms. In general the SFG and SHG intensity will depend on several of these coefficients
simultaneously. However, SFG has the advantage over SHG that there are a greater number
of independently variable parameters at the disposal of the experimentalist. For the case of
visible-tunable IR SFG experiments there is, of course, the additional benefit that vibrational
resonances may be used to enhance the SFG signal.

Lettingω1 be the visible frequency,ω2 be the IR frequency andω3 be the sum frequency
we can take advantage of the fact that phase matching will occur whenθ3 ≈ θ1, to simplify
the SFG intensity expressions. Two interesting experimental configurations may then be
found from equations (41)–(44).

(i) When θ2 = 0 and a ppp configuration is adopted (where the polarizations are given
in the orderω1ω2ω3 = ωvisωIRωSFG), the SFG intensity,

I
(1)
SFG∝ (a1/a0)

2. (68)

(ii) When θ2 = θ3 = θ1 6= 0 and a pps configuration is adopted, the SFG intensity,

I
(2)
SFG∝ (a2/a0)

2. (69)

If the temperature of the thin film is varied, the SFG intensity will vary and the variation
will be different for the two different arrangements outlined above. The intensities given in
(68) and (69) are moderated by many factors and so the absolute values of the intensities
will not in general be directly useful. However, the variation in SFG with temperature will
be primarily due to the change in molecular orientation and so the gradient of the SFG
intensity versusT plots will contain useful orientational information. Indeed, temperature-
dependent SFG studies of this general kind have only recently been used to study the phase
transition within monolayers of 1-undecanol upon a surface of D2O [17].

Here, as a simple example, consider molecules adsorbed onto a surface such that their
preferred direction of orientation is at an angleθ0 to the surface. Let us further suppose that
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the molecules are distributed normally about their preferred orientation direction so that the
orientational distribution function takes the form

f (θ) = exp{−c(θ − θ0)
2/T }. (70)

In (70), T is the absolute temperature andc is a characteristic orientational temperature,
a constant measuring how firmly the molecules are restrained towards their preferred
orientation. For this distribution we find

a1

a0
= 3S2(c, T )

2S1(c, T )
(71)

and
a2

a0
= 5

8

(
3S3(c, T )

S1(c, T )
− 1

)
(72)

where we have defined the integral function

Sn(c, T ) =
∫ π

0
sinnθ exp{−c(θ − θ0)

2/T } dθ. (73)

We now define two dimensionless ratios related to the fractional changes with temperatures
of the SFG intensity, for the cases considered above:

R1 ≡ T

I
(1)
SFG

∂I
(1)
SFG

∂T
= 2c

T

(
S ′2
S2
− S

′
1

S1

)
(74)

and

R2 ≡ T

I
(2)
SFG

∂I
(2)
SFG

∂T
= 6c

T

(
S ′3
S3
− S

′
1

S1

)(
3− S1

S3

)−1

(75)

where

S ′n(c, T ) =
∫ π

0
(θ − θ0)

2 sinnθ exp{−c(θ − θ0)
2/T } dθ. (76)

It is apparent from (73)–(76) thatR1 andR2 depend only onθ0 and the ratior = T/c.
Figure 4 shows the variation ofR1 andR2, for several values ofθ0, over a wide range ofr
values. Forθ0 = 0, r = 0.01 corresponds to a ‘tight’ distribution of orientations such that
the distribution functionf falls to half of its maximum value after∼ 5◦; r = 0.7 corresponds
to a ‘loose’ distribution wheref drops to its half maximum at∼ 40◦. By performing the
temperature variation experiments described above we can measure the ratiosR1 andR2

at a particular temperature and use the graphs in figure 4 to determine values forr andθ0.
As the temperature is known, we can hence deduce values forc andθ0. Such experiments
will allow critical evaluation of the functions used to model the orientational distribution of
molecules on surfaces and lead to a deeper understanding of adsorption itself.

7. Conclusion

We have shown that a quantum electrodynamical treatment of sum frequency generation
leads to very compact expressions for the SFG intensity. The relations are, furthermore,
easy to interpret for any given configuration of laser beam directions and polarizations.

Although use of SFG as a spectroscopic technique for the identification of vibrational
resonances is well known, we have shown that in several other aspects SFG offers advantages
over SHG as a tool for the study of partially ordered media and surfaces. A simple example
has been given to illustrate that reliable information about orientation and distribution of
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Figure 4. Graphs showing the ratios (a) R1 and (b) R2 for five preferred orientation angles,
θ0 = 0◦, 20◦, 30◦ and 40◦ over a large range of the dimensionless parameterr = T/c.

molecules within thin films or adsorbed onto surfaces may be available by temperature-
programmed SFG studies.

Finally, although SHG occurs only from the surface of fluid media exhibiting bulk
isotropy, the same is not generally true for SFG. Indeed it is surprising that the technique
of SFG is not routinely used to monitor reactions involving the loss or creation of chiral
species—an obvious application of the earliest demonstration of the effect [4]. Based on
the theory presented here, such a method should, perhaps, be considered as a useful tool
for such investigations in future experiments.

Acknowledgments

Funding for this work from the Engineering and Physical Sciences Research Council is
gratefully acknowledged and we also thank Dr S R Meech for helpful comments on the
manuscript.



2824 D L Andrews and I D Hands

References

[1] Eisenthal K B 1996 Chem. Rev.96 1343
[2] Bell G R, Bain C D and Ward R N 1996J. Chem. Soc. Faraday Trans.92 515
[3] Shen Y R 1996Proc. Natl. Acad. Sci., USA93 12 104
[4] Rentzepis P M, Giordmaine J A and Wecht K W 1966Phys. Rev. Lett.16 792
[5] Craig D P and Thirunamachandran T 1984Molecular Quantum Electrodynamics(London: Academic)
[6] Andrews D L 1993Advan. Chem. Phys. (Modern Nonlinear Optics 2)vol 85, ed M Evans and S Kielich

p 545
[7] Andrews D L and Hands I D Work in progress
[8] Andrews D L and Hands I D 1996Chem. Phys.213 277
[9] Andrews D L and Harlow M J 1984Phys. Rev.A 29 2796

[10] Bhagavantam S and Suryanarayana D 1949Acta Cryst.2 21
[11] Barron L D 1982Molecular Light Scattering and Optical Activity(Cambridge: Cambridge University Press)
[12] Hecht L and Barron L D 1996Mol. Phys.89 61
[13] Byers J D, Yee H I and Hicks J M 1994J. Chem. Phys.101 6233
[14] Byers J D, Yee H I, Petralli-Mallow T and Hicks J M 1994Phys. Rev.B 49 14 643
[15] Heinz T F, Chen C K, Ricard D and Shen Y R 1982Phys. Rev. Lett.48 478
[16] Crawford M J, Haslam S, Probert J M, Gruzdkov Y A and Frey J G 1994Chem. Phys. Lett.229 260
[17] Braun R, Casson B D and Bain C D 1995Chem. Phys. Lett.245 326


