745 research outputs found

    Evaluating the Long-Term Metacommunity Dynamics of Tree Hole Mosquitoes

    Get PDF
    Four different conceptual models of metacommunities have been proposed, termed “patch dynamics,” “species sorting,” “mass effect,” and “neutral.” These models simplify thinking about metacommunities and improve our understanding of the role of spatial dynamics both in structuring communities and in determining local and regional diversity. We tested whether mosquito communities inhabiting water-filled tree holes in southeastern Florida, USA, displayed any of the characteristics and dynamics predicted by the four models. The densities of the five most common species in 3–8 tree holes were monitored every two weeks during 1978–2003. We tested relationships between habitat variables and species densities, spatial synchrony, the presence of life history trade-offs, and species turnover. Dynamics showed strong elements of species sorting, but with considerable turnover, as predicted by the patch dynamics model. Consistent with patch dynamics, there was substantial asynchrony in dynamics for different tree holes, substantial species turnover in space and time, and an occupancy/colonization trade-off. Substantial correlations of density and occupancy with tree hole volume were consistent with the species-sorting model, but unlike this model, species did not have permanent refuges. No evidence of mass effects was found, and correlations between habitat variables and dynamics were inconsistent with neutral models. Our results did not match a single model and therefore caution against overly simplifying metacommunity dynamics by using one dynamical characteristic to select a particular metacommunity perspective

    The Importance of Host Plant Limitation for Caterpillars of an Arctiid Moth (Platyprepia Virginalis) Varies Spatially

    Get PDF
    Spatial dynamic theories such as source–sink models frequently describe habitat-specific demographies, yet there are surprisingly few field studies that have examined how and why interacting species vary in their dynamics across multiple habitat types. We studied the spatial pattern of interaction between a chewing herbivore and its primary larval host plant in two habitat types. We found that the interaction between an arctiid caterpillar (Platyprepia virginalis) and its host (Lupinus arboreus) differed in wet vs. upland dry habitats, as did yearly population dynamics for the caterpillar. In upland sites, there was a strong positive relationship between lupine cover and the abundance of caterpillars although this relationship was not apparent in wet sites. Additionally, in wet sites, caterpillar populations were larger and less variable across years. Caterpillars appeared to exhibit source–sink dynamics, with the time-averaged finite growth rate λ \u3e 1 in wet sites (sources), λ \u3c 1 in upland dry sites (sinks), and predominant source-to-sink movement of late-instar caterpillars. Populations in upland dry sites also went locally extinct in years of low regional abundance. Emigration from wet sites could potentially explain the lack of coupling of herbivore and host plant dynamics in these sites. These results indicate that movement and other factors affecting demography are habitat-specific and have important implications for trophic control. Acknowledging such complexity makes simple models of trophic control seem overly general but may allow us to formulate more broadly applicable ecological models

    The effect of cardiopulmonary bypass on blood thiamine concentration and its association with post-operative lactate concentration

    Get PDF
    Objective: Cardiothoracic surgery is a large field in Australia, and evidence suggests post-cardiopulmonary bypass (CPB) hyperlactataemia is associated with higher morbidity and mortality. Low thiamine levels are a potentially common yet treatable cause of hyperlactataemia and may occur in the setting of exposure to CPB non-biological material. We hypothesized that cardiopulmonary bypass would result in decreased whole-blood thiamine levels, which may therefore result in increased whole-blood lactate levels in the post-operative period. Methods: Adult patients undergoing non-emergent CPB were recruited in a single centre, prospective, analytic observational study at Townsville University Hospital, Australia. The primary outcome was a comparison of pre- and post-CPB thiamine diphosphate level, secondarily aiming to assess any relationship between lactate and thiamine levels. Prospective pre- and post-CPB blood samples were taken and analysed at a central reference laboratory. Results: Data was available for analysis on 78 patients. There was a statistically significant increase in thiamine diphosphate level from pre-CPB: 1.36 nmol/g Hb, standard deviation (SD) 0.31, 95% confidence intervals (CI) 1.29–1.43, to post-CPB: 1.77 nmol/g Hb, SD 0.53, 95% CI 1.43–1.88, p value 0.05) trend in rising whole-blood lactate levels with increasing time. Analysis of lactate levels at varying time periods found a significant difference between baseline measurements and increased levels at 13–16 h (p < 0.05). There was no significant relationship observed between whole-blood thiamine levels and post-operative lactate levels. Conclusion: Whole-blood thiamine levels were found to increase immediately post-CPB in those undergoing elective cardiac surgery. There was no correlation between whole-blood thiamine levels and post-operative arterial lactate levels

    Ecohydraulic modelling of anabranching rivers

    Get PDF
    In this paper we provide the first quantitative evidence of the spatial complexity of habitat diversity across the flow regime for locally anabranching channels, and their potential increased biodiversity value in comparison to managed single-thread rivers. Ecohydraulic modelling is used to provide evidence for the potential ecological value of anabranching channels. Hydraulic habitat (biotopes) of an anabranched reach of the River Wear at Wolsingham, UK is compared with an adjacent artificially straightened single-thread reach downstream. 2D hydraulic modelling was undertaken across the flow regime. Simulated depth and velocity data were used to calculate Froude number (Fr) index; known to be closely associated with biotope type, allowing biotope maps to be produced for each flow simulation using published Fr limits. The gross morphology of the anabranched reach appears to be controlling flow hydraulics, creating a complex and diverse biotope distribution at low and intermediate flows. This contrasts markedly with the near uniform biotope pattern modelled for the heavily modified single-thread reach. As discharge increases the pattern of biotopes altered to reflect a generally higher energy system, interestingly, however, a number of low energy biotopes were activated through the anabranched reach as new sub-channels became inundated and this process is creating valuable refugia for macroinvertebrates and fish, during times of flood. In contrast, these low energy areas were not seen in the straightened single thread reach. Model results suggest that anabranched channels have a vital role to play in regulating flood energy on river systems and in creating and maintaining hydraulic habitat diversity

    Characterization of the Prion Protein (PRP) Gene in Ten Breeds of Sheep

    Get PDF
    Transmissible Spongiform Encephalopathies (TSE\u27s) are neurodegenerative disorders characterized by a long generation time, spongy degeneration in the cerebral gray matter, neuronal loss and proliferation and hypertrophy of glial cells. An abnormal form of the prion protein (PrP) plays a major part in TSE pathogenesis and has been hypothesized to be the only component of the infectious agent. Some animals exposed to scrapie, the TSE affecting sheep and goats, seem to be resistant to development of the disease. Alleles encoding amino acid substitutions at codons 136 (A/V) and 171 (Q/R/H) have been associated with scrapie resistance. Other amino acid substitutions at codons 112 (M/T), 137 (M/T), 141 (L/F), 154 (R/H), and 211 (R/Q) have been reported but not associated with scrapie resistance. It may be possible to reduce the incidence of ovine scrapie by increasing the frequency of resistant genotypes (AA-136, RR-171, or QR-171). Thus, an important consideration is the frequency of these genotypes in different breeds of sheep. In this study, the genetic sequence for codons 104-175 was determined for at least ten animals of ten sheep breeds (n=207). Genotypes at codons 112, 136, 154, and 171 were determined. For codon 136, the frequency of the susceptible allele (V) was less than 0.20 in all breeds. In contrast, the frequency of the susceptible allele (Q) at codon 171 ranged from 0.27 (St. Croix) to 0.96 (Hampshire). In addition, a previously unreported substitution was found at codon 143 (H/R), with frequencies as high as 0.40

    Conservation status of a recently described endemic land snail, Candidula coudensis, from the Iberian Peninsula

    Get PDF
    Research ArticleWe assessed the distribution, population size and conservation status of Candidula coudensis, a recently described endemic land snail from Portugal. From March 2013 to April 2014, surveys were carried out in the region where the species was described. We found an extent of occurrence larger than originally described, but still quite small (13.5 km2). The species was found mainly in olive groves, although it occurred in a variety of other habitats with limestone soils, including grasslands, scrublands and stone walls. Minimum population estimate ranged from 110,000–311,000 individuals. The main identified potential threats to the species include wildfires, pesticides and quarrying. Following the application of IUCN criteria, we advise a conservation status of either “Least Concern” or “Near-threatened” under criterion D (restricted population)info:eu-repo/semantics/publishedVersio

    Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    Full text link
    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of "Cosmological Natural Selection" with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated. Keywords: origin of the universe, fine-tuning, physical constants, initial conditions, computational universe, biological universe, role of intelligent life, cosmological natural selection, cosmological artificial selection, artificial cosmogenesis.Comment: 25 pages, Foundations of Science, in pres

    Bayesian generic priors for causal learning.

    Full text link
    • …
    corecore