12 research outputs found

    Natural history notes on worker size, colony size, and nest structure of Azteca muelleri Emery, 1893 (Hymenoptera: Formicidae) in Cecropia glaziovii (Rosales: Urticaceae) from the Atlantic Forest

    Get PDF
    Mutualistic association between Azteca Forel, 1878 ants and Cecropia Loefl. plants are one of the most studied interactions in Neotropics, however, natural history studies of Azteca species still poorly investigated due to the great effort required to conduct detailed descriptive studies. Here, we describe biological aspects of Azteca muelleri Emery, 1893 nesting in Cecropia glaziovii Snethl. in a fragment of Atlantic Forest, addressing (a) colony size; (b) nest distribution on the tree; and (c) worker and queen morphometrics. We collected two C. glaziovii saplings and counted characteristics of the nests and plants. We randomly selected 140 workers to measure and to determine whether intraspecific polymorphism occurs. Workers, immatures, and mealybugs were present in all hollow internodes of plant, and a queen was found. We found isometric morphological variation in A. muelleri. Our study provides new data to understand the biology of A. muelleri nesting in C. glaziovii, one of the most species-rich genera of arboreal ants known for the neotropics

    Data from: Phylogeny of Cecropieae (Urticaceae) and the evolution of an ant-plant mutualism

    No full text
    Ant-plant mutualisms are abundant in the tropics and are popular models for ecological study, but investigating the origin and evolution of such systems requires a phylogenetic framework. A common ant-plant mutualism in the Neotropics involves the genus Cecropia, a group of fast-growing pioneer trees that are important in forest regeneration. Relationships between genera in the tribe Cecropieae (Urticaceae), including Cecropia, Coussapoa, Musanga, Myrianthus, and Pourouma, are unknown and are necessary to investigate the evolutionary history of the Cecropia-ant mutualism. Bayesian phylogenetic analyses of the NADH dehydrogenase (ndhF) chloroplast gene region, the 26S region of nuclear ribosomal DNA, and an exon-primed intron-crossing DNA region support the position of non-myrmecophytic African Musanga within a paraphyletic Cecropia. Neotropical Pourouma and Coussapoa are supported as sister taxa with African Myrianthus as their closest relative. Although it remains uncertain whether myrmecophytism was the ancestral condition of the Cecropia clade, a close relationship between non-myrmecophytic Cecropia sciadophylla and Musanga suggests that the loss of ant associations did not accompany African colonization

    CecropieaeMorphology

    No full text
    Description of morphological characters used in phylogenetic reconstruction of Cecropieae tribe (Urticaceae

    Cecropieae morphological matrix

    No full text
    Matrix used for tree analysis of Cecropieae based on characters outlined in Cecropieae morphology

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Cangas da Amazônia: a vegetação única de Carajás evidenciada pela lista de fanerógamas

    No full text
    corecore