1,186 research outputs found
Many-body interactions and melting of colloidal crystals
We study the melting behavior of charged colloidal crystals, using a
simulation technique that combines a continuous mean-field Poisson-Boltzmann
description for the microscopic electrolyte ions with a Brownian-dynamics
simulation for the mesoscopic colloids. This technique ensures that many-body
interactions between the colloids are fully taken into account, and thus allows
us to investigate how many-body interactions affect the solid-liquid phase
behavior of charged colloids. Using the Lindemann criterion, we determine the
melting line in a phase-diagram spanned by the colloidal charge and the salt
concentration. We compare our results to predictions based on the established
description of colloidal suspensions in terms of pairwise additive Yukawa
potentials, and find good agreement at high-salt, but not at low-salt
concentration. Analyzing the effective pair-interaction between two colloids in
a crystalline environment, we demonstrate that the difference in the melting
behavior observed at low salt is due to many-body interactions
A 1-D modelling of streaming potential dependence on water content during drainage experiment in sand
The understanding of electrokinetics for unsaturated conditions is crucial
for numerous of geophysical data interpretation. Nevertheless, the behaviour of
the streaming potential coefficient C as a function of the water saturation Sw
is still discussed. We propose here to model both the Richards' equation for
hydrodynamics and the Poisson's equation for electrical potential for
unsaturated conditions using 1-D finite element method. The equations are first
presented and the numerical scheme is then detailed for the Poisson's equation.
Then, computed streaming potentials (SPs) are compared to recently published SP
measurements carried out during drainage experiment in a sand column. We show
that the apparent measurement of DV / DP for the dipoles can provide the SP
coefficient in these conditions. Two tests have been performed using existing
models for the SP coefficient and a third one using a new relation. The results
show that existing models of unsaturated SP coefficients C(Sw) provide poor
results in terms of SP magnitude and behaviour. We demonstrate that the
unsaturated SP coefficient can be until one order of magnitude larger than
Csat, its value at saturation. We finally prove that the SP coefficient follows
a non-monotonous behaviour with respect to water saturation. Key words:
Electrical properties; Electromagnetic theory; Hydrogeophysics; Hydrology;
Permeability and porosity; electrokinetic; streaming potential; self-potential;
water content; water saturation; unsaturated condition; finite element modelin
Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline
Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality
The osmotic pressure of charged colloidal suspensions: A unified approach to linearized Poisson-Boltzmann theory
We study theoretically the osmotic pressure of a suspension of charged
objects (e.g., colloids, polyelectrolytes, clay platelets, etc.) dialyzed
against an electrolyte solution using the cell model and linear
Poisson-Boltzmann (PB) theory. From the volume derivative of the grand
potential functional of linear theory we obtain two novel expressions for the
osmotic pressure in terms of the potential- or ion-profiles, neither of which
coincides with the expression known from nonlinear PB theory, namely, the
density of microions at the cell boundary. We show that the range of validity
of linearization depends strongly on the linearization point and proof that
expansion about the selfconsistently determined average potential is optimal in
several respects. For instance, screening inside the suspension is
automatically described by the actual ionic strength, resulting in the correct
asymptotics at high colloid concentration. Together with the analytical
solution of the linear PB equation for cell models of arbitrary dimension and
electrolyte composition explicit and very general formulas for the osmotic
pressure ensue. A comparison with nonlinear PB theory is provided. Our analysis
also shows that whether or not linear theory predicts a phase separation
depends crucially on the precise definition of the pressure, showing that an
improper choice could predict an artificial phase separation in systems as
important as DNA in physiological salt solution.Comment: 16 pages, 5 figures, REVTeX4 styl
Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects
A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study
Validation of FEM models describing moisture transport in heated concrete by Magnetic Resonance Imaging
Fire safety of buildings and structures is an important issue, and has a great impact on human life and economy. One of the processes negatively affecting the strength of a concrete building or structure during fire is spalling. Many examples exists in which spalling of concrete during fire has caused severe damage to structures, such as in the Mont Blanc and Channel Tunnel. Especially newly developed dense types of concrete such as HPC and SCC, have shown to be sensitive to spalling, hampering the application of these new concrete types. To reduce risks and building costs, the processes behind spalling need to be understood. Increasing our knowledge allows us to reliably predict the behaviour and take effective and cost friendly preventive measures. Moisture present in concrete is one of the reasons for spalling. When concrete is heated water will evaporate, which results in a high gas pressure inside the pores of concrete. This high gas pressure can induce spalling. To attain a better understanding of this process, a first step was taken to develop a finite element model (FEM) describing this transport of moisture in heated concrete. However, the validity of all current models (including our own) is unknown because of debatable input parameters and lack of experimental techniques to follow the transport process in situ. In cooperation with the Eindhoven University of Technology moisture transport in heated concrete can now be investigated with a home built dedicated 1D Magnetic Resonance Imaging (MRI) setup. Using the results of the MRI experiments the validity of our FEM models has been assessed for the first time. A general correspondence is observed. The FEM model described in this paper is a simplified FEM model compared to literature models. Already this simplified model shows a good correspondence with the MRI measurements
Correction:The rhizosphere selects for particular groups of <i>Acidobacteria</i> and <i>Verrucomicrobia</i> (PLoS ONE (2013) 8:12 (e82443) DOI: 10.1371/journal.pone. 0082443)
Does affirming children's autonomy and prosocial intentions help? A microtrial into intervention component effects to improve psychosocial behavior
Item does not contain fulltextPrior research has related children's prosocial behavior to overall well-being, and stimulating prosocial behavior is the aim of many social-emotional skills interventions. This study assessed if affirming children's autonomy stimulates their psychosocial behavior. We conducted a three-arm microtrial with four repeated measures to assess if a social-emotional skills intervention with an autonomy affirmation component had an additive effect on children's behavior as compared to a "regular" intervention focused exclusively on teaching social-emotional skills and a no-treatment control condition. Our sample consisted of 779 children in Grades 4-6 (Mage = 10.61, SD = 0.93). Findings from latent change modeling demonstrated that the social-emotional skills intervention with an autonomy affirmation component yielded superior effects as compared to the "regular" intervention and the no-treatment control condition on the improvement of internalizing and externalizing problem behavior in the three-month period after the intervention. The intervention with autonomy affirmation did not yield superior effects on prosociality and social skills, self-efficacy, and self-esteem or self-perceived competence. The absence of these effects may be attributed to the dosage of the interventions implemented - the affirmation of children's autonomy may require more than four sessions to sort observable effects. Overall, however, the findings of this study provide an initial suggestion that it may be beneficial to affirm children's autonomy and prosocial intentions when enhancing children's behavior.22 p
Recommended from our members
Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes - a genome comparison
The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives
found to perform a range of biochemical functions including photosynthesis, induction of root nodules
and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology
and biogeochemical transformations is of agricultural and environmental significance. Some isolates of
Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules.
Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates,
named G22 and BF49, from soils with differing long-term management regimes (grassland and bare
fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are
the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium
isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and
assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect
to size and number of genes; the grassland isolate also contains a plasmid. There are also a number
of functional differences between these isolates and other published genomes, suggesting that this
ubiquitous genus is extremely heterogeneous and has roles within the community not including
symbiotic nitrogen fixation
- …
