1,167 research outputs found
Experimental and theoretical cross sections for positron scattering from the pentane isomers
10 págs.; 8 figs.; 3 tabs.Isomerism is ubiquitous in chemistry, physics, and biology. In atomic and molecular physics, in particular, isomer effects are well known in electron-impact phenomena; however, very little is known for positron collisions. Here we report on a set of experimental and theoretical cross sections for low-energy positron scattering from the three structural isomers of pentane: normal-pentane, isopentane, and neopentane. Total cross sections for positron scattering from normal-pentane and isopentane were measured at the University of Trento at incident energies between 0.1 and 50 eV. Calculations of the total cross sections, integral cross sections for elastic scattering, positronium formation, and electronic excitations plus direct ionization, as well as elastic differential cross sections were computed for all three isomers between 1 and 1000 eV using the independent atom model with screening corrected additivity rule. No definitive evidence of a significant isomer effect in positron scattering from the pentane isomers appears to be present. ©2016 AIP Publishing LLCG.G. and F.B. would like to acknowledge
the Spanish Ministerio de EconomÃa y Productividad
(Project No. FIS2012-31230) and the European Science
Foundation (COST Action Grants Nos. MP1002–Nano-IBCT
and MC1301-CELINA) for financial support. Finally, L.C.
thanks the Japan Society for the Promotion of Science for his
fellowship.Peer Reviewe
The effect on rat thymocytes of the simultaneous invivo exposure to 50-Hz electric and magnetic field and to continuous light.
Thymus plays an important role in the immune system and can be modulated by numerous environmental factors, including electromagnetic fields (EMF). The present study has been undertaken with the aim to investigate the role of long-term exposure to extremely low frequency electric and magnetic fields (ELF-EMF) on thymocytes of rats housed in a regular dark/light cycle or under continuous light. Male Sprague-Dawley rats, 2 months old, were exposed or sham exposed for 8 months to 50-Hz sinusoidal EMF at two levels of field strength (1 kV/m, 5 microT and 5 kV/m, 100 microT, respectively). Thymus from adult animals exhibits signs of gradual atrophy mainly due to collagen deposition and fat substitution. This physiological involution may be accelerated by continuous light exposure that induces a massive death of thymocytes. The concurrent exposure to continuous light and to ELF-EMF did not change significantly the rate of mitoses compared to sham-exposed rats, whereas the amount of cell death was significantly increased, also in comparison with animals exposed to EMF in a 12-h dark-light cycle. In conclusion, long-term exposure to ELF-EMF, in animals housed under continuous light, may reinforce the alterations due to a photic stress, suggesting that, in vivo, stress and ELF-EMF exposure can act in synergy determining a more rapid involution of the thymus and might be responsible for an increased susceptibility to the potentially hazardous effects of ELF-EM
Positron scattering from formic acid
We report on measurements of total cross sections for positron scattering from the fundamental molecule formic acid (HCOOH). In this case, the energy range of our experimental work is 0.3-50.2 eV. Our interpretation of these data was somewhat complicated by the fact that at room temperature, formic acid vapor consists of about 95% monomer and 5% dimer forms, so that the present cross sections represent an average for that ensemble. To assist us in interpreting the data, rigorous Schwinger multichannel level calculations for positron elastic scattering from the formic acid monomer were also undertaken. These calculations, incorporating an accurate model for the target polarization, are found to be in good qualitative agreement with our measured data, particularly when allowance is made for the target beam mixture (monomer versus dimer) in the experiment
PEEK Retainers without CAD-CAM: Simple Solutions for Everyday Challenges
Background: The need to perform occasional or continuous MRI exams and the interference with metal orthodontic appliances might be important and take a primary role during retention since the retention period is significantly longer than orthodontic treatment. Several non-metallic materials were proposed as potential alternatives to perform fixed retainers in orthodontics, but they showed internal limits. Methods: Polyetheretherketone (PEEK) was used in the present clinical report as a fixed orthodontic retainer in the lower arch in order to perform an appliance with mechanical properties comparable to metallic ones but with a higher biocompatibility material and without the need for removal in case of an MRI exam. The retainer wire was handmade in the studio and then shaped to fit the arch. Results: PEEK showed a good capability for constructing a lingual fixed retainer compared to other aesthetic non-metallic and metallic materials. Conclusions: To the best of our knowledge, this study proposes how to easily build a retainer in PEEK and provides a clinical example of how this material can be beneficial
Total cross-sections for positron and electron scattering from α-tetrahydrofurfuryl alcohol
Peer Reviewe
Hall magnetohydrodynamics of partially ionized plasmas
The Hall effect arises in a plasma when electrons are able to drift with the
magnetic field but ions cannot. In a fully-ionized plasma this occurs for
frequencies between the ion and electron cyclotron frequencies because of the
larger ion inertia. Typically this frequency range lies well above the
frequencies of interest (such as the dynamical frequency of the system under
consideration) and can be ignored. In a weakly-ionized medium, however, the
Hall effect arises through a different mechanism -- neutral collisions
preferentially decouple ions from the magnetic field. This typically occurs at
much lower frequencies and the Hall effect may play an important role in the
dynamics of weakly-ionised systems such as the Earth's ionosphere and
protoplanetary discs.
To clarify the relationship between these mechanisms we develop an
approximate single-fluid description of a partially ionized plasma that becomes
exact in the fully-ionized and weakly-ionized limits. Our treatment includes
the effects of ohmic, ambipolar, and Hall diffusion. We show that the Hall
effect is relevant to the dynamics of a partially ionized medium when the
dynamical frequency exceeds the ratio of ion to bulk mass density times the
ion-cyclotron frequency, i.e. the Hall frequency. The corresponding length
scale is inversely proportional to the ion to bulk mass density ratio as well
as to the ion-Hall beta parameter.Comment: 11 page, 1 figure, typos removed, numbers in tables revised; accepted
for publication in MNRA
Step sequence and direction detection of four square step test
Poor balance control and falls are big issues for older adults that due to aging decline have a lower postural balance and directional control in balance performance than younger age groups. The four square step test (FSST) was developed to evaluate rapid stepping that is often required when changing direction and avoiding obstacles while walking. However, previous researchers used only the total time as the assessment in the test. The aim of this letter is to objectively quantify the sequence and direction of the steps in FSST, by using two inertial sensors placed on both feet. An algorithm was developed to automatically segment the steps performed during the test, and calculate the stepping direction from the linear velocity of the foot. Experiments were conducted with 100 Japanese healthy older adults, where sensor data and video of 20 subjects were randomly subtracted for algorithm verification. The results showed that the algorithm succeeded for 71.7% trials in recognizing both the step sequence and step direction in FSST, while 90.2% of the detection failure could be excluded with an auto verification method
Monitoramento do nematóide das galhas (Meloidogyne spp.) em figueira (Ficus carica L.) no Rio Grande do Sul.
bitstream/item/30485/1/boletim-86.pd
Failed Orthodontic PEEK Retainer: A Scanning Electron Microscopy Analysis and a Possible Failure Mechanism in a Case Report
This study presents a scanning electron microscopy analysis of a failed PEEK retainer in an orthodontic patient. After 15 months of use, the patient reported a gap opening between teeth 41 and 42. The PEEK retainer was removed and sent for electron microscope analysis. To investigate the failure, scanning electron microscopy was employed to assess the microstructure and composition of the retainer at various magnifications. These findings suggest that the failure of the PEEK retainer was multifaceted, implicating factors such as material defects, manufacturing flaws, inadequate design, environmental factors, and patient-related factors. In conclusion, this scanning electron microscopy analysis offers valuable insights into the failure mechanisms of PEEK retainers in orthodontic applications. Further research is necessary to explore preventive strategies and optimize the design and fabrication of PEEK retainers, minimizing the occurrence of failures in orthodontic practice
- …