389 research outputs found

    Division-based versus general decomposition-based multiple-level logic synthesis

    Get PDF
    During the last decade, many different approaches have been proposed to solve the multiple-level synthesis problem with different minimum functionally complete systems of primitive logic blocks. The most popular of them is the division-based approach. However, modem microelectronic technology provides a large variety of building blocks which considerably differ from those typically considered. The traditional methods are therefore not suitable for synthesis with many modem building blocks. Furthermore, they often fail to find global optima for complex designs and leave unconsidered some important design aspects. Some of their weaknesses can be eliminated without leaving the paradigm they are based on, other ones are more fundamental. A paradigm which enables efficient exploitation of the opportunities created by the microelectronic technology is the general decomposition paradigm. The aim of this paper is to analyze and compare the general decomposition approach and the division-based approach. The most important advantages of the general decomposition approach are its generality (any network of any building blocks can be considered) and totality (all important design aspects can be considered) as well as handling the incompletely specified functions in a natural way. In many cases, the general decomposition approach gives much better results than the traditional approaches

    Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships

    Get PDF
    Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO2, GeO2, B2O3, anorthite, diopside, xNa2O–(1-x)SiO2, xPbO–(1-x)SiO2, soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found

    A remembrance of things (best) forgotten: The 'allegorical past' and the feminist imagination

    Get PDF
    This is the author's PDF version of an article published in Feminist theology© 2012. The definitive version is available at http://fth.sagepub.com/This article discusses the US TV series Mad Men, which is set in an advertising agency in 1960s New York, in relation to two key elements which seem significant for a consideration of the current state of feminism in church and academy, both of which centre around what it means to remember or (not) to forget

    Topologically disordered systems at the glass transition

    Get PDF
    The thermodynamic approach to the viscosity and fragility of amorphous oxides was used to determine the topological characteristics of the disordered network-forming systems. Instead of the disordered system of atoms we considered the congruent disordered system of interconnecting bonds. The Gibbs free energy of network-breaking defects (configurons) was found based on available viscosity data. Amorphous silica and germania were used as reference disordered systems for which we found an excellent agreement of calculated and measured glass transition temperatures. We reveal that the Hausdorff dimension of the system of bonds changes from Euclidian three-dimensional below to fractal 2.55 ± 0.05-dimensional geometry above the glass transition temperature

    A mosaic of induced and non-induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees

    Get PDF
    Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests

    Prediction of emerging technologies based on analysis of the US patent citation network

    Get PDF
    Abstract The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (1) identifies actual clusters of patents: i.e., technological branches, an

    Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network

    Full text link
    The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (i) identifies actual clusters of patents: i.e. technological branches, and (ii) gives predictions about the temporal changes of the structure of the clusters. A predictor, called the {citation vector}, is defined for characterizing technological development to show how a patent cited by other patents belongs to various industrial fields. The clustering technique adopted is able to detect the new emerging recombinations, and predicts emerging new technology clusters. The predictive ability of our new method is illustrated on the example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which shows significant overlap of the class 442 formed at the beginning of 1997. These new tools of predictive analytics could support policy decision making processes in science and technology, and help formulate recommendations for action
    • 

    corecore