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Abstract

Despite the fact that the automatic hardware synthesis of complex digital circuits and
systems has been an important topic of research during the last two decades, many syn-
thesis problems are still not solved in a satisfactory way. This thesis deals with one of
these problems: the multiple-level synthesis of Boolean functions for implementations
with look-up table based Field-Programmable Gate Arrays (FPGAs).

The topic addressed in this thesis is very important for many reasons. Perhaps, the two
most important reasons are the following. Firstly, FPGAs have a number of important
advantages compared to the other implementation techniques, and therefore the use
of look-up table based FPGAs for the implementation of digital systems has increased
dramatically over the last few years. Secondly, due to the internal structure of FPGAs,
traditional logic synthesis methods cannot be applied to them without extensive modifi-
cations and additions, and even modified they have some fundamental shortcomings.
In this thesis, an original approach to the general (functional) decomposition of Boolean
functions into multiple-level networks of look-up tables is proposed. The approach has
four main characteristic features. The first of them is the use of set systems that provides
a compact maximal functionally complete representation of logic blocks and Boolean
functions, whereas traditional logic synthesis methods use minimal functionally com-
plete representations. Secondly, a compositional bottom-up approach is used for the
synthesis; this is different from all other known functional decomposition methods that
use a top-down reduction approach. Thirdly, the proposed method searches explicitly
for common subfunctions, whereas other methods find subfunctions only implicitly as
the by-product of the synthesis process. Finally, the method does not use two-level
minimization prior to the actual multiple-level synthesis what enables the exploitation
of the whole design freedom during the actual multiple-level synthesis.

Because of the computational complexity of the considered logic synthesis problem,
it was necessary to develop some heuristic algorithms to make the synthesis method
effective and efficient.

For the research of general decompositions a software environment called LUTSYN
(Look-Up Table SYNthesis) has been created. LUTSYN is specially designed to provide
a lot of internal information, so the program can be experimentally used for research
purposes, and especially for analysis and fine-tuning of all heuristic parts of the algo-
rithms.

The primary goal of the synthesis process is to minimize the number of look-up tables
that are used to implement a given Boolean function. Additional goals consist of mini-
mizing the number of levels in the lookup table network (which is the main contribution
to speed of the resulting circuit) and to minimize the number of long wires (what im-
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iv : ABSTRACT

proves both the routability and speed of the FPGA). The implemented algorithm allows
the trade-off between the quality of the synthesis results and the computer resources
used to find an implementation.

Although LUTSYN is not yet a complete automated synthesis tool, it can be used as a
prototype automatic logic synthesis tool. Preliminary results show that the algorithm
performs well compared to other known metheds. A more complete analysis of the
results will be available in the nearest feature.
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Chapter 1

Introduction

The topic of this thesis is the logic synthesis for look-up table field programmable gate arrays. In
this chapter the introduction to the subject and an overview of the thesis is presented.

The first part of this chapter (Section 1.1) will place the topic into context and will explain what
field programmable gate arrays are.

In the second part of this chapter, a closer look will be taken at the topic of the thesis (Section 1.2).
In this section the importance of logic synthesis in the design process is stvessed and if is explained
why a new method for logic synthesis, dedicated to look-up table field programmable gate arrays, is
necessary. This section will also provide an overview of the work that has already been performed
in this area.

In Section 1.3 the work performed in the scope of the reported Ph.D. project will be discussed and
a number of characteristic features of the work will be presented.

The final section of this chapter explains the organization of this thesis.

1.1 Design of digital integrated circuits

Since the introduction of the first semiconductor devices in the early 1960s, enormous
progress in integrated circuit technology has been made. Today it is possible to integrate
several millions transistors on a single integrated circuit ("chip™). More than that, it has
been predicted that the number of transistors on a single chip doubles every 2 or 3 years.
This prediction has been proved to be valid for the past and is still valid in the 1990s
(Figure 1.1)[Mic94]. This means that transistor densities of tens of millions transistors
become available to mankind in the very near feature.

These numbers show immense possibilities, but also cause major problems. Advances
in design theory and design technology have been unable to keep up with the possibil-
ities offered by integrated circuit technology. Designers have to deal with the lack of
general purpose specification methods that can be used to fully automate the synthesis
of the circuit. CAD tool builders face the computational complexity that is inherent
to most synthesis problems and are forced to develop efficient and effective heuristic
algorithms.

Not only from the technical point of view research into new synthesis algorithms is
important; also economical factors (e.g. bringing a product to the market on tirne is vital
for a company to survive the competition with other companies) and the care for the
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Figure 1.1: The number of devices placed on a single integrated circuit
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environment (using as few as possible of the natural resources left on earth and limiting
the environmental pollution) are important reasons to keep this research going.

Throughout the years, many different ways to fabricate integrated circuits have been
developed. One of them, known as prewired programmable integrated circuits (or: pro-
grammable logic devices (PLD}) has become very popular in the last decade. The feature
of these prewired programmable integrated circuits is that they obtain their functionality
by a programming mechanism. Programming can be performed by the end user without
involvement of the manufacturer of the devices. This is a major advantage: fabrication
times are extremely short (programming of a programmable logic devices often takes
only a few minutes) and it has the additional advantage that proprietary information
about the functionality of the device is kept in house. Simple programmable devices
that can implement Boolean two-level sum-of-product or two-level product-of-sum ex-
pressions exist since the mid 1970s (PAL, PLA) [Phi%0]. Unfortunately, these devices
have a rather primitive architecture and are therefore unable to implement large and
complex functions. Broad interest in programmable logic devices came with the recent
introduction of new series of complex programmable logic devices; for examples device
from Xilinx [Xil93], Actel [Act95], Altera [Alt95], [Atm95], Cypress [Cyp94] and AMD
[AMD95].

The term Field Programmable Gate Array (FPGA) is used for a subset of the family of
programmable logic devices. A field programmable gate array is a programmable logic
device that consists of a matrix {array) of fine grain programmable blocks (gates) and
of a programmable mechanism to interconnect these blocks. The Xilinx XC3000 and
XC4000 families [Xil93] are typical examples of FPGAs.

If each programmable block of the FPGA consists of a small memory cell, then such a
block is able to implement any Boolean function that does not exceed the number of
inputs and outputs of the memory cell. FPGAs that consist of this kind of programmable
blocks are called look-up table based FPGAs. For brevity, throughout this thesis, the
abbreviation LUT will be used instead of lock-up table. The blocks of the Xilinx XC4000
family [Xil98] can be programmed to be 4-input, 2-output LUTs or to be 5-input, 1-
output LUT5 [Tri93]. The blocks in the multiplexer architecture of Actel [Act95] can also
be considered 2-input, 1-output LUTs [GHB93]. Aitera FLEX FPGAs [Alt95] have basic
cells that can be programmed as 4-input, 1-output LUTs.

The reader interested in the architectures of different FPGAs is referred to [RGS93] and
[JP95] for good tutorials on this subject.

1.2 Logic synthesis

The design process starts with the recognition of a design problem and continues until
the design problem is solved or it turns out that it is impossible to solve it given the
available resources. It involves problem analysis and requirement specification of the
required solution [J6295c][J6296a][]6296b).

Because of the complexity of the synthesis process, it is a common practice to decompose
the design process into a number of consecutive synthesis steps. One of the synthesis
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steps is called the logic synthesis. The term logic synthesis refers to all transformations
in the design of digital hardware which are related to the implementation of (binary or
symbolic) switching functions and sequential machines. Logic synthesis aims at trans-
forming a (symbolic} description of a digital system modules into a network of (binary)
logic building blocks. Such a network has to realize the behaviour of the module, satisfy
specified constraints and optimize stated objectives [J6295bJ{JP95]. The logic synthesis
considered in this thesis transforms a Boolean function (represented by a function table)
into a network of LUTs. The goal of this section is to provide a sketch of the differ-
ent logic synthesis techniques that have been used in logic synthesis in the past three
decades and to show how the work reported in this thesis fits into this picture.

In this thesis, the term primitive logic block refers to any logic level function representation
that can be mapped one-to-one onto a primitive hardware building block of a certain
technology. A primitive hardware building block is the smallest logic level hardware unit
that is used to implement binary functions in a certain technology. Examples of primi-
tive hardware building blocks are the logic gates in the technology tibrary for cell based
integrated circuits or the LUTs for LUT based FPGA implementations.

Algorithms for logic synthesis of combinational Boolean functions canbe divided in two
groups: two-level logic synthesis algorithms and multiple-level logic synthesis algorithms. The
word two-level refers to the fact that logic networks are constructed for which any path
from input to output passes no more than two gates. Multiple-level networks do not
have this restriction and inputs can pass an arbitrary number of gates before reaching an
output. Typical two-level networks are AND-OR-NOT (or sum-of-product) networks
[Kar53] [JB62] [BHMS84] [DARS6] [MSBS93], NAND-NAND or NOR-NOR networks,
OR-AND-NOT (product-of-sum) networks and AND-EXOR networks [BS93].

The AND-OR-NOT representation is popular because it was used extensively to imple-
ment TTL-logic networks and it can be mapped efficiently on PLA structures. NAND-
NAND and NOR-NOR implementations are equivalent to AND-OR-NOT implementa-
tions, NAND-NAND and NOR-NOT implementations were often used in TTL imple-
mentation styles, because they most naturally represented the basic elements used in
this technology and can be mapped easily on physical hardware blocks. AND-EXOR
representations cause interest because they often result in smaller expressions compared
to AND-OR-NOT networks and they are extensively used in error correcting devices
[BS93]. Two-level Boolean expressions and two-level logic synthesis techniques have
been studied extensively. Although the problem of optimal two-level synthesis is NP-
complete, reasonable exact and efficient heuristic methods exist for solving the two-level
minimization problem [BHMS84]{MSBS93][OCF93][Coud4].

Since 1980, interest in multiple-level logic synthesis has rapidly increased, because the
multiple-level networks often allow a more compact implementation of combinational
logic in comparisen to the two-level networks. They enable the implementation of com-
mon subexpressions that are shared ameng multiple functions or subfunctions. The
introduction of the new generation of FPGAs has recently created a new and very strong
stimulus for research in multiple-level logic synthesis. The internal structure of the
FPGAs is in fact a programmable multiple-level network and therefore these devices
require the use of multiple-level logic synthesis techniques in order to effectively exploit
their abilities. Unfortunately, the synthesis of general multiple-level networks is much



1.2. LOGIC SYNTHESIS 5

more complicated than the synthesis of two-level logic. One of the main reasons for
this is the difficulty in defining the nature of the "optimal solution” in the multiple-
level synthesis problem. For example, in the case of two-level AND-OR-NOT logic, the
commonly considered "optimal solution” was the solution with the minimal number of
product terms, which was a relatively good measure for the complexity of the PLA im-
plementation (at least if the number of inputs could not be minimized). In multiple-level
logic, the structure of the logic is less uniform and can be considerably more complex
than two-level logic. Also, the design decisions have a much more substantial impact
on the many factors that decide the total quality of a muitiple-level logic network: area,
speed, power dissipation, testability etc. Furthermore, these factors are no longer simple
functions of the implementation structure as it was the case for two-level logic. More-
over, there is a trade-off between these factors. Finally, the design space is much larger,
and in fact, includes properly the two-level logic networks as a special case.

During the last decade many different approaches have been proposed to solve special
cases of the multiple-level logic synthesis problem. A good, but currently somewhat out-
dated overview of multiple-level logic synthesis can be found in [BHS90]; an overview
of popular logic synthesis methods for a number of well known field programmable gate
architectures can be found in {SGR93]. The most popular multiple-level logic synthesis
approaches are the following:

* algebraic and Boolean division techniques [BRSW87] [RV92] [SFAS3],

» multiple-level (binary decision diagram) BDD and other decision graph ap-
proaches [Bry86] [Bry92] [Kar90] [MF89] [PCSS95] [LPP96],

e algorithms based on the minimization of the communication complexity between
blocks [HOI92],

» multiple-valued logic based approaches [MLBS92] [CYP89] [YC91],

» methods based on spectral analysis techniques (see [FSP92] for an overview?),

methods based on the iteration of gate transforms and gate reductions, the so called
transduction methods [MKLC89].

In recent years a number of papers have been published which implicitly or explicitly
use a concept of functional decomposition introduced by Ashenhurst [Ash59], Curtis
[Curél], Roth and Karp [RK62] as a synthesis paradigm (e.g. [RS87], [CY92] [JV92]
[WP92], [LSK93], [HOTW94], [ES95], [V]95], [LPP96]). The distinctive feature of these
methods is that they are all based on special cases of the general decomposition theory
formulated by Jézwiak [J6295a] and recalled in Chapter 2.

In the general decomposition approach, a multiple-output Boolean function is decom-
posed into a network of communicating subfunctions (logic blocks) in such a way that
this network realizes the specified behaviour, satisfies specified constraints and op-
timizes given objectives. Decomposition decisions are based on the analysis of the
structure of the information streams in the function and on the relations between this
structure and the specified constraints and objectives. The constraints imposed by hard-
ware building blocks and their possible interconnections are innately taken into account.
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The general decomposition approach has a number of interesting properties. For ex-
ample synthesis methods based on general decomposition integrate the technology
mapping phase into the logic synthesis: they construct a network of logic blocks that
can be mapped one-to-one onto a network of primitive hardware building blocks. Fur-
thermore, the internal structure of Xilinx FPGAs and similar fine granularity FPGAs s in
fact a programmable multiple-level logic block structure which can be innately modeled
using the general decomposition theory presented in Chapter 2. Therefore methods for
the synthesis of these types of fine granularity FPGAs can be relatively easily constructed
using the general decomposition approach.

The logic synthesis approach presented in this thesis is based on the general decompo-
sition theory.

1.3 General decomposition based logic synthesis

In the previous sections logic synthesis has been introduced and the state of the art in
logic synthesis has been sketched. In this section, the problem tackled in this Ph.D. thesis
will be preliminary introduced. Its more precise definition can be found in Chapter 4.
The solution to this problem represents a new method for the synthesis of multiple-level
combinational logic circuits based on the general decomposition theory. This method
has been named LUTSYN; an acronym for Look-Lp Table 5YNthesis.

The aim of the research work reported in this thesis was the construction of an effective
and efficient synthesis method for the multiple-level implementation of multiple-output
combinational Boolean functions using LUT based FPGAs and the development of a soft-
ware environment in which decomposition experiments can be performed. Although
the method is general in the sense that any sort function can be processed with it, the
software environment focuses on controller type functions, i.e. Boolean functions re-
sulting from specifications of combinational and sequential controllers. The original
function tables of such functions can be characterized as having relatively few prod-
uct terms compared to the number of all possible product terms and having relatively
many don’t cares. The input data structure of the method is thus a function table of
an incompletely specified multiple output Boolean function. The term "incompletely
specified” refers to the fact that one or more of the outputs can have don’t care values
for input combinations. This table has to be transformed into a (near) optimal network
of LUTs. Each LUT is able to implement any Boolean function that has no more than
NI inputs and no more than NO outputs, where NI and NO are small positive integers
(typically NI < 5 and NO < 2). All LUTs are assumed to have the same size. The
aim of the transformation is a trade-off between the number of LUTs necessary for the
implementation, the number of long wires of the implementation and minimizing the
number of levels in the network.

Since the problem of optimal logic synthesis is computationally complex, strictly optimal
circuit implementations cannot always be obtained using a realistic amount of resources.
Therefore heuristic algorithms will be used that strive to find a solution being as close as



1.3. GENERAL DECOMPOSITION BASED LOGIC SYNTHESIS 7

possible to the optimal selution. To evaluate the overall method and the effectiveness of
the heuristics used, the software environment contains a framework synthesis tool. This
framework tool is in fact an engine that is able to generate all possible decomposition
structures. It can be used for the exhaustive search of the solution space; but even for
small circuits this is not very practical. The actual use of the framework follows from
the fact that it is that it is easy to add various heuristic search algorithms to it. This way,
it allows to implement, modify and test new heuristic algorithms in a flexible and fast
way. Although the LUTSYN environment is not yet a complete automated synthesis
tool it can be used as a prototype automatic logic synthesis tool. Some benchmark
circuits from well known benchmark sets and some specially constructed benchmarks
have been used to perform decomposition experiments and to test LUTSYN.

LUTSYN has a number of characteristic features that differentiate it from other known
logic synthesis methods:

1. LUTSYN uses the canonical set system representation which is a compact maxi-
mal functionally complete representation of logic blocks and Boolean functions,
whereas traditional methods typically use minimal functionally complete repre-
sentations. Set systems model the LUT functions and information flows between
LUTs very naturally (Section 4.2.2).

2. LUTSYN is based on the general decomposition approach. This means among
others that it implicitly considers all possible loop-free decomposition structures.
The sclution space is not limited in any way a priori, but the most appropriate
solution structures are constructed by the method for each particular problem
instance {Section 4.3.6).

3. LUTSYN searches explicitly for common subfunctions, whereas other methods
find subfunctions only implicitly as the by-product of the synthesis process. Fur-
thermore, only these explicitly found subfunctions will be actually implemented.
This is done to prevent the creation of many very small subfunctions whose values
would need to be distributed all over the FPGA and therefore would cause many
long wires without substantially decreasing the active area (Section 4.3.5).

4. The construction algorithm uses a bottom-up approach. Starting from the inputs,
it constructs a network of LUT5 until all output functions have been implemented.
Also, the algorithm constructs a number of the most potential solutions in parallel.
This is different from all other synthesis algorithms that use a top-down reduction
technique for the network construction and that construct schutions serially or do
not create more than one solution at all (Section 4.3.2).

5. All heuristic decisions of the search algorithms are based on a single heuristic
decision framework that is applied consequently everywhere, thus ensuring that
all decisions work consistently in the same direction (Section 4.3.3).

6. The method does not use two-level minimization prior to the actual multiple-level
synthesis what enables the use of the whole design freedom during the actual
multiple-level synthesis (Section 4.3.4).
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We believe that LUTSYN has many attractive properties and we hope that it will form
an interesting and significant contribution to the logic synthesis field.

1.4 Organization of the thesis

The next chapter will introduce the necessary theory. First some basic definitions as well
as partition and partition pair theory will be presented. Then, the general decomposi-
tion theory is introduced. Based on the general decomposition theory it is possible to
make a classification system of all possible types of decompositions; Chapter 2 will also
introduce a number of popular decomposition classes.

In Chapter 3, the state of the art in logic synthesis for different types of FPGAs will be
presented. It will also contain methods based on the division approach introduced by
Brayton, because this multiple-level approach is most commonly known and many of
these methods have been extended for synthesis on FPGAs.

Chapter 4 and Chapter 5 deal with LUTSYN itself. Chapter 4 discusses the properties
and concepts that good logic synthesis methods for LUT based FPGAs should have. In
Chapter 5 these properties and concepts are transformed into the experimental software
environment. Since the logic synthesis problem is NP complete, this chapter also deals
with the construction of heuristics.

The algorithms described in Chapter 5 have been implemented in the form of a C++
program. Some experimental results obtained with this program can be found in Chap-
ter 6.

The final chapter (Chapter 7) summarizes and evaluates the performed research work
and provides suggestions for improvements of LUTSYN and for further research.



Chapter 2

Decomposition theory

In this chapter a general mathematical framework for the decomposition of logic level represen-
tations is presented. The framework is called a general decomposition. 1t will be shown that
every possible decomposition structure can be derived from this general decomposition. This
framework will be used throughout this thesis to analyze and classify synthesis approaches for
combinational functions.

The first section of the chapter (Section 2.1} recalls briefly some mathematical concepts that are
used throughout this thesis. The reader is assumed to be quite familiar with these concepts.

In the general decomposition, a building block is represented by an algebraic model called a
combinational machine. Combinationnl machines are the subject of Section 2.2,

The subject of Section 2.3 are partitions and partition theory. The partition theory will provide
a general purpose technique for the description of the behaviour of symbolic blocks. These blocks
can be seen as the hardware blocks of a decomposition. Translations of symbolic to binary blocks
and rules for calculating the combined und the decomposed behaviour are also presenied. The par-
tition theory is very well suited for the description of LUT based decompositions of logic function
and provides these descriptions in a very natural way. Partition theory gives the mathematical
modeling background for the general decomposition. The decomposition method presented in this
thesis will not use the classical partition theory, but its generalization called set system theory
(Section 4.2.2).

Based on the partition theory, the general decomposition theory provides the necessary formal-
1zation to prove that a network of blocks implements the behaviour of some other network, i.e. the
general decomposition theory allows correctness by construction (Section 2.4,

Unfortunately, no methods have been published &l now that use the actual general decomposi-
tion paradigm to find near-optimal decompositions. All researches reported consider only some
special cases of the general decomposition. A number of known special decomposition models can
be found in Section 2.5, :

In Chapter 3, the general decomposition concept will be used to classify and analyze a number of
known decomposition approaches,

2.1 Basic definitions

In this section, a number of basic mathematical concepts used in this thesis will be briefly
recalled. This section is not intended for learning these concepts, it has only recollection



10 CHAPTER 2. DECOMPOSITION THEORY

in mind. Readers really not familiar with them are referred to text books on algebra, for
example [LP81]. Familiarity with sets and operations on sets is assumed in the following
definitions.

Definition 2.1 Power sef
The power set of a set ¥ (denoted as 2V} is defined as the set containing all the subsets
of V:

2V ={W | WcCV} (2.1)

O

Definition 2.2 Cartesian product
The Cartesian product S of n non-empty sets S; (1 < ¢ < n) is the set with all n-tuples
(%1, 82, ..., 8, ) such that

S = Sl & Sz & Sn_ = ® S, = {(31,52, .,.,S,l) | s € S,} (22)
1<i<n
3]

Definition 2.3 A binary relation
A binary relation R on set X and Y is a subset of the Cartesian product X ® Y. The
notation zRy is used to denote that (z, y) € R. O

Definition 2.4 Single input/output complete function
Let X and ¥ be non-empty sets. Let 3! be the unique existential qualifier. Binary relation
Fonset X and Y is called a (single input/output) complete function of X into ¥, if and
only if

¥ 3z, y)e F (2.3}

zEX yeY

ie. F assignsto eachelement z € X anelementy € Y. The function will be denoted as:
F:X—Y (2.4)
and the assignment will be written as:
Fla)=y (2.5)
O
Definition 2.5 Single input/output partial function

Let X and Y be non-empty sets. Binary relation # on set X and Y is called a (single
input/output) partial function of X into Y, if and only if

v o o {e=a)=(y=1y) (2.6)
(2, 9)(& ¥ IEF

ie. F assigns to each element z € X af most one element y € Y. The partial function
will be denoted the same way as complete functions:

F:X—Y (2.7)
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and the assignment will be written as:
Flry=y (28)

O

Usually, the word complete is skipped and the term function is used to refer to complete
function. The word partial is never left out.

Sometimes it is useful to have explicitly a (complete or partial) function with more than
one input and/or with more than one output, for example, if the inputs and outputs
have well defined practical meaning. In such a case the following definition can be used.

Definition 2.6 Muitiple input/output (complete or partial) function
Let ni be the number of inputs of the function, let no be the number of outputs of the
function. Let X;(1 < ¢ < ni) and ¥;(1 <7 < no) be non-empty sets. Let

X= ® X
1<i<ni
and let
Y= ® Y,
1<j5ne

Binary relation F onsets X and ¥ is an nz-input, no-output (complete or partial) function,
written as:

F:X -V (2.9)
ie., F assigns to each ni-tuple from X a no-tuple from Y. The assignment will be written
as:

Fzi, @, 0 Z) = (410 %2 00y Yno) (2.10)
]

From this definition it can be seen that a multiple output function is in fact a collection
of single output functions. These single output functions are referred to as component
functions. It is evident that a multiple input/output function is equivalent to a single
output function defined on the Cartesian product of the inputs and the Cartesian prod-
uct of the outputs and that further distinguishing between these two types of functions
is not necessary from the theoretical view point.

Definition 2.7 An Onto (or surjective) function
A complete function £ : X — Y is called onto (or surjective) if and only if

vV 3 Flz)=y (2.11}

yEY r€X

Definition 2.8 Equivalence relation
= is called an equivalence relation on § @ S if and only if forall z,y, z € §

r = z reflexive property (2.12)
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—» M 00—

Figure 2.1: Graphical representation of a combinational machine

r =y =y =z symmeitic property (2.13)
r=yAy=z=g=z transitive property (2.14)
O

Definition 2.9 Equivalence class
If = is an equivalence relation on § then all elements in § are divided into a number of
equivalence classes Bz(s) as follows: B=(s) = {i | s = t} ]

Equivalence relations and equivalence classes play an important role in the partition
theory presented in Section 2.3.

2.2 Combinational machines

In the general decomposition theory combinational logic functions are represented by a
mathematical model called a combinational machine [J6295a][V]S95].

Definition 2.10 Completely specified combinational machine
A completely specified combinational machine M is an algebraic system defined by:

M={1,0X (2.15)
where:
I - a finite non-empty set of inputs
O - a finite nor-empty set of outputs
A - the (single) output function A: [ — O

]

The graphical representation of a combinational machine can be found in Figure 2.1;
a box with an input, an output and a functional specification of its behaviour, but no
information on the internals of the box.

In this definition the combinational machine is seen from a purely symbolic view pomnt.
It takes a symbolic input and has a symbolic output. In specification of hardware it can
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be useful to allow more inputs and outputs, if each of the inputs and outputs has a well
defined "real world” meaning. In such a case, the following (mathematical equivalent)
model can be used.

Definition 2.11 Completely specified combinational machine with multiple inputs and outputs
A completely specified combinational machine M with s inputs and ne outputs is an
algebraic system defined by:

M* = (I*, 0", \") (2.16)

where:

= ®

1< <ni
I; - a non empty set of inputs symbols for input j

o= & G

1<k<no
O - a non empty set of output symbols for input k
A" - the multiple input/output function A* : [* — O*

(]

The design requirements do not always completely specify a machine. It is possible that
for certain input combination one or more of the outputs of the machine are not defined
because these input combinations will never occur in practice. From the behavioural
viewpoint, the designer does not care what will be the output value for such an input
value. In all such situations one talks about so called "don’t care” conditions. “Don‘t
cares” are commonly denoted by "-". In order to account for them, the combinational
machine definition should be slightly modified by changing the definition of the ma-
chine function.

Definition 2.12 Incompletely specified multiple input/foutput combinational machine
An incompletely specified combinational machine M with ni inputs and no outputs is
an algebraic system defined by:

Mdc . (Idc’ Odc,AdC) (217)

where:

= @ I

Igj<ni
I; - a non empty set of inputs symbols for input j

O = ® OkLJ{—}

1<k <ne

Ok - a non empty set of output symbols for input k
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Figure 2.2: Realization of combinational machine M by combinational machine '

X% - the multiple input/output function A* : /% — Q%
O

A combinational machine without "don’t cares” will be referred to as completely spec-
ified and a combinational machine with "don’t cares” will be said to be incompletely
specified. In many cases it is useful to express that two machines have the same be-
haviour, except for the don’t care output values. This is called a realization. Before a
realization can be introduced it is first necessary to define a covering,.

Definition 2.13 Symbol covering
Given a non empty symbol set A and the set 4% = 4 U {-}. Symbol b &€ A* is said to
cover symbol a € A% {denoted as ¢ < b) if and only if {a = b) V(b = —) m

Informally, b covers a means that a is more specific than b is. Similarly, a vector defined
on a Cartesian product is said to cover another vector defined on that Cartesian product
if and only if each element of the first vector covers the corresponding element of the
second vector.

Definition 2.14 Realization of a machine

Incompletely specified machine M’ = (I’, 0', ') is a realization of incompletely specified
machine M = (I, 0, )} (Figure 2.2) if and only if the relations ¥ : ] — I’ (a function} and
© : 0’ — O (a surjective partial function) exist, so that

v ON(¥(x))) < Mz) (2.18)
ze!

0

The machine composed as a structure consisting of ¥, M’ and © and being the realiza-
tion structure for M defined by M’ will be denoted by str(M'). From this definition it
follows that that if M’ is a realization of M then for all possible inputs of M (i.e. 2 € [),
the outputs A'(¥(z)) € O’ produced by the realization machine M" are covered (after
decoding by ©()'(¥(z}))) by the corresponding output Mz} € © of the specification
machine M.
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EECTY T

af 000 --
b 001 || 00
clf 010 | 11
dy 011 11
el 100 || 10
f| 101 oo
gl 110 { 1-
hi 111 1] 11

Table 2.1: Boolean function F for the realization example

Example 2.1 Realization of a combinational machine

In Table 2.1, the function table of an incompletely specified Boolean function F is given.
The function has 3 input variables (z;, 1, 13) and two output variables (y;, 7). In this
example the inputs will be modeled as a single symbolic variable, while the separate
variable values will be used for the outputs. Each input combination has been labeled
with a unique symbolic name (g, b, ¢, d, ¢, f: g and k). The output value is a tuple
consisting of two components being the values of y; and y, respectively. This functions
can be represented as the following incompletely specified combinational machine with
l-input and 2-outputs:

M={I,0,)
such that

I={abcdef,gh}

0= 01 ® 02 = {(*a _)= (an): (1’1)5 (1;0), (1, ")}
with 01 - {0}1, —} and 02 - {0, ].7 —} and
Al =0

as specified in Table 2.1.
Machine

M=(I0X)
such that

I'={a, 8,76}

0" = {1,111}
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and
No=A{(e, 1); (B, 11} (v, 1D); (6, 111)}
is a realization of machine M, since the mappings

v:I—r

B = {{a,0) (b,a); (¢, 8); (d,8); {e.v); (. a); (g,8); (B, 0)}
and

8:0 =0

© = {(£,(0,0)); (II,(1, 1)), (I, (1,0)}}
satisfy the relation
Yz e l: 00 (¥(z) < Az)

For example, take z = ¢: Me) = (1,0) (see Table 2.1) and O(X'(¥(e)) = B{N{7)) =
Q1) = (1,0) and (1,0} € (1,0). Similarly, A(g) = (1, —) and O(X (T(g)} = ON(8)) =
O = (1,0) and {1,0) < (1, —). In this realization the don’t care in the second cutput
variable has been filled in with a 0. Verification of this relation for other combinations
can be performed in a strictly analogous way. .

The definition of realization of a combinational machine is used to guarantee that the
combinational digital circuit that supposedly is an implementation of the combinational
machine that was the starting point of the synthesis process, actually preserves the
behaviour of the specified combinational machine.

2.3 Partitions

Partitions and partition pairs, originally introduced by Hartmanis to model informa-
tion in sequential machines [HS66] are useful for modeling information and informa-
tion flows inside and between combinational machines. Together with the concept of
combinational machines, partition theory forms the mathematical base of the general
decomposition theory described in the next section.

Definition 2.15 Partition
Let § be a non empty set of elements. Partition 7 on § is defined as a collection of
disjoint non-empty subsets of S whose set union is 5. More formally, if

rs = (B} (2.19)
then g is called a partition if and only if the following conditions are satisfied:

vV B;NB, =9 (2.20)
17
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VB # @ (2.21)
UB:=S5 (2.22)
‘ o

If it is unambiguously determined on which set a partition is defined, the notation
without the set name index is simply used. Any partition = on § can be interpreted as
an equivalence relation defined on S with the equivalence classes being the blocks of 7.
Using this interpretation, the partition 7 gives information about the elements of § with
precision to the equivalence class. With this information, it is possible to distinguish
elements from different classes although it is impossible to distinguish elements that are
in the same class.

For example, if § = {1,2,3,4} then = = {T.Z; 3,4} is a partition defined on set . This
is the way that partitions are denoted: the blocks of the set are overlined instead of
using an extra set of brackets. If symbols are used for which an ordering exists in the
real world then the blocks of the partition are sorted with respect to the lowest ordered
element in that block. It is important to realize that this is only a notational convention
and it has nothing to do with the ordering relations defined on partitions.

For a given s&S, the block of « partition « containing s is denoted as [sjr while [s|m = {f]r
denotes that s and ¢ are in the same block of . Similarly, the block of a partition 7 containing
5, where §' C S, is denoted by [$]x.

The partition containing each element of 5 in a separate block is called a zero partition
and denoted by x¢(0). The partition containing all the elements of § in one block is
called an identity partition and is denoted by #5(1).

Definition 2.16 Partition product
Let m; and m; be two partitions on S. The partition product 7, - 1, is the partition on §
such that [s]m - 72 = [t]my - 7y if and only if [s]r; = [t|m and [s]w; = [¢]7». O

Definition 2,17 Partition sum

Let m; and m; be two partitions on 3. The partition sum 7 + 7 is the partition on S such
that [s]m; + 2 = [t}m + m; if and only if a sequence: s = s, 8,...,8, = 1, ; € S for i=1..n,
exists for which either [s;}m = [5;,1]7; either [s:]me = [sia]mafor0< i < n—1. O

From the above definitions, it follows that the blocks of 71 -7 are obtained by intersecting
the blocks of ry and =, while the blocks of 7, + 7, are obtained by uniting all the blocks
of 7, and m; which contain common elements.

Definition 2.18 Partial ordering < of partitions
; is greater than or equal to m : m < my if and only if each block of m is included in a
block of 7. Thus m; < m if and only if 7y - m = my if and only if my 4 75 = 7. m]
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The partial ordering relation < denotes the fact that if 7; < 72 then m (and so the asso-
ciated equivalence relation) provides information about elements of 5, that is at least as
precise as information given by 7, (and its associated equivalence relation). After all, m
is able to make all the distinctions between the elements of S that 7; can make.

A zero partition provides complete information about the elements of § and an identity
partition gives no information at all. The partition product can be interpreted as a prod-
uct of the appropriate equivalence relations introduced by these partitions; it represents
the combined information about the elements of S provided by both relations together.
The partition sum can be interpreted as a sum of the appropriate equivalence relations
introduced by these partitions and it represents the combined abstraction of both rela-
tions; where the abstraction of two elements from S is defined as they are in the same
block.

Remark: In spoken language the definition of < is often a source of confusion: the smaller
partition is the partition that provides more information about elements of §. Similarly,
the larger partition expressed with < possesses less information about the elements of

Example 2.2 Partitions and operations on partitions

In this example the set § = {2, b, ¢, d, e, f, g, h} isused. 7s(0) = {@ & & & & [, 3 &}
is the zero input partition and 7s{(I) = {a, b, ¢, d, ¢, f, g, h} is the input identity partition.
The zero partition provides complete information (each symbol of § is in a separated
class (block) and all symbols can be distinguished from each othet). The identity parti-
tion does not express useful information: no symbol can be distinguished from another
symbol.

Letm = {a, b; ¢, d; ¢,f,9, hyand 72 = {a,b; &, & d,f, g, h} be partitions on set §. The
product m - 73 = {0, 8; & d; & f,g,h} denotes the combined information of m and
m, for example in 7, the symbols ¢ and d are equivalent and hence partition 7, cannot
distinguish between these two symbols. 7, can make the distinction between ¢ and d
{(because they are in different blocks of ;). The product m; - 7, represents the partition
that makes the union of the distinctions of 7; and 7, and combines in one block only
those elements which are equivalent (not distinguished) in both partitions. Similarly,
m +7 = {a,b; ¢, d,e,f,g,h} represents the combined abstraction of the two partitions.
For example, 7 cannot distinguish between symbol ¢ and d, 7, does not express the
difference between ¢ and e, so the combined abstraction does not distinguish between
these 3 symbols (and hence they are placed in one block).

Finally, for the partitions 73 = {a.b; ¢,d; e f,g.h} and m = {a,b; ¢, d,e,f,9,h},
73 < T4, because 73 makes all distinctions that my makes. This can also be checked by the
definition of <: m3 < g & M3 -7y =mand ms -y = {¢, b; ¢, 4; e.f, g, A} =73

< is a partial ordering relation: therefore it needs not be defined for all pairs of parti-
tions: w5 = {a,b; ¢, d; e.f.g.h} and 7 = {@, ¢, € b,[; d, g, h} are not related by <,
since s - g = {0, b; ¢ d; e.f, 9, k- {@ee b, f: d,g.hy = {@ b, e d &, 7.k} = #(0).
This can also seen from the following reasoning: =5 makes the distinction of ¢« and ¢ (and
7 does not) and 7, makes the distinction of ¢ and b (but 15 cannot make this distinction).
Hence 75 does not implement a subset of the behaviour of 74 nor does s implement all
the partial equivalences of w5. So, 75 and ng are not related by <. O
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Definition 2.19 I-O partition pair
Given M = (I, 0, A), let 7; be a partition on [ and let 7, be a partition on 0. (7, 75) is
an I-O partition pair if and only if

v 3 MA)CC (2.23)
Acmy Ceng
where:
X&) = {\#) |z € 4} (2.24)
O

Informally, (%, 7¢) is an I-O partition pair if and only if each block of 7; unambiguously
determines the block of 7 in which the output is contained. If (7;, 7o) is a partition
pair then n; is called the first partition of the pair and 7 is called the second partition
of that pair.

Definition 2.20 M and m partitions of a partition pair

Given M = (1, 0, ). Let 7; be a partition on / and let 7, be a partition on 0. The
minimal second partition which forms an I-O partition pair with #; as a first partition will
be denoted m;_o(m). The maximal first partition which forms an 1-O partition pair with
To as a second partition will be denoted Mj_o(7o). It can be proved [HS66] that:

my_o(n) = [[{n; | (x;,7;) is a IFO partition pair} (2.25)
Mi_o(mo) =3 {m, | (m;, 7o) is a I-O partition pair} (2.26)
O

For a given w;, m(n;) describes the largest amount of information which can be com-
puted about the output of M knowing the block of r; that contains the input. M(rg)
describes the least amount of information which must be known about the input of M,
in order to be able to compute the information about the output with precision to 7.

Definition 2.21 Mm partition pair

Let M = (I, 0, \) be a combinational machine. Let 7; be a partition on I and let zo
be a partition on O. (7;,70) is a Mim I-O partition pair if and only if 7; = M(7,) and
1o = m{a;) O

Mm partition pairs play an important role in the characterization of a combinational
machine M. They form in fact the skeleton of all partition pairs of the machine, because
all other partition pairs can be derived from the Mm partiticn pairs of a machine M by
increasing the information in the first partition of a Mm pair and/or by decreasing the
amount of information in the second partition of that pair.
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LI aze [nn] 0]
al 000 01 | x
bi 001 11 | z
c| 01000 |w
dl o011 |10y
e 100 | 10|y
fi 101 11 | =z
g || 110 | 00 [w
hi 111 00 tw

Table 2.2: Function table for partition pair example

Definition 2.22 Input partition induced by an output partition

Let M = (I, O, \) be a combinational machine. Let 7, be a partition on [ and let 7o be
a partition on 0. 7, is an input partition induced by an output partition 7o (notation:
7y € ind(7p)) if and only if:

Vo M)me = Myl = [z]m = [y)nr (2.27)

Tye/

0

In other words, if 7; is an input partition induced by an output partition 7, and, if it is
known that the present output y of M is contained in a block C € g, then it is known
that current input 7 of M is contained ina block B € 77, where block B is unambiguously
indicated by block C. It is possible to prove that 7; is an input partition induced by
an output partition 7o if and only #f m; > M,_p(7o), i.e. the smallest input partition
induced by a certain o is M;_o(70).

Example 2.3 Partition pairs and operations on partition pairs
In this example the function from Table 2.2 is used. The table can be transformed to the

following symbolic combinational machine M (7, G, A):

I= {a'a b,C,d,E,f,g,h}

O=A{wzyz}
and
A={(a,2); {b,2); {c,w); (d,y); (e,v); (,2); (g, w); (hyw)}
is used. Given the partition m; = {W,’ b1 d e 97} on set { and partition

To = {W,T; 777} on set 0. (7;,7p) is a IO partition pair and this can be easily
checked by checking all blocks of «; following definition (2.23) (e.g. M{a,¢}) = {z, w}
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which is a subset of a block of 7o etc). m;_o{x;) = {W,7; 7; 7} represents the max-
imal information about the output of M that can be calculated using 7;. Similar
Mi_olng) = {a, ¢, g, b, d, e,f} represents the minimal input information that is nec-
essary as an input to calculate no. From these calculations it also follows that (r;, 7o) is
not a Mm partition pair.

The partitions 7} = {a,c,g,h; b,d,e,f} and 7, = {wT; 7; 7} do form an Mm I-O
partition pair. This can be easily Venfled by calculating the M and m partitions of =}
and h,.

Let 75 = {w,z; ¥; 2} then {a,c,g,h,‘ b,d,e,f} and {a,c,g,h; b, f; ﬁ} are both in-
duced input partitions of #;. o

For the purpose of a bit decomposition (in which the input/output bits are distributed
instead of the input/output symbols), the concept of bit partitions has been introduced
[J6289].

Let B = {b;, b3, ... b5} be a set of binary (input or output) variables (bits). Let
T = {ti.tz, .47} be a set of (input or output) symbols (bit value patterns). Each in-
put/output bit b, € B, introduces a two-block partition 7{#;) on the set of symbols T:
one block of w7(by) contains the symbols for which bit b, has the value 0 and the other
block contains the symbols for which b; has the value 1. The product of the partitions
7r(by) for all the bits b, : b € B will unambiguously define the set of all input/output
symbols, i.e. it will be a zero partition on 7.

For incompletely specified machines, the partition 7 ¢(&) is defined on the subsets of T
for which a value for this bit is specified. Therefore these partitions cannot be simply
multiplied. In [HS66] set system theory has been introduced to overcome this problem.
Set systems are an attempt to extend partition theory with don’t care symbols. In Sec-
tion 4.2.2 set systems will be introduced.

Definition 2.23 Bit partition

A partition 7z on the set of bits B mg = {by; b2 ...; B, (bar1, .., by5))} is called a bit-
partition. In a bit-partition the important bits (for distinguishing between certain sym-
bols) &y, .., by are kept in separate blocks and the don’t care bits b4, .., bp| are kept in a
single block called a don’t care block (denoted by deb(mg)). o

The product () and sum (+) operations as well as the ordering relations (<) for bit
partitions are defined in the same way as for "normal” partitions with the following
supplement: the product of a block (impoertant or don’t care) with important blocks is
an important block in the product partition; whereas the sum of a block (important or
don’t care) with a don’t care block is a don’t care block in the sum partition. The zero
bit-partition is defined as a bit partition with an empty don’t care block. The identity
bit-partition is defined as a bit-partition with all elements in the don’t care block.
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Definition 2.24 Symbol partition induced by a bit partition
7r i a symbol partition induced by a bit partition 75 (77 € ind(7p}) if and only if

nr > H T bi) (2.28)
b (B debln )
O

Definition 2.25 The smallest symbol partition induced by a bit partition
wp is the smallest symbol partition induced by a bit partition 75 (7 = ind* (7)) if and
only if
Ap = 11 wr{by) (2.29)
bp€(B—deb(np))
0

From the above definitions it follows that any partition mr > ind*(n5) is an induced
partition of 7.

Definition 2.26 Bit partition induced by a symbol partition
75 is a bit partition induced by a symbol partition 77 (7 € ind(7r7)) if and only if
v saplby) = {2.30)
br€(B—dcb{n5})
o

If iy € ind(ng) then, having 7 5 the blocks of 77 can be computed. If 7 € ind(7r) then,
having the block of 77 the values of all the important bits from =z can be computed.

Example 2.4 Bit partitions

In this example the function from Table 2.2 will be considered as a binary instead of a
symbolic combinational machine. Bit-partitions on the input bits can be made. The set
with of input bits is denoted with X, i.e. X = {1, 7, 3}. In this case the input symbols
are labeled with lowercase letters from the alphabet, i.e. the set I of the input symbols is
defined as [ = {a, b, ¢, d, e, f, g, h}. Often, no new symbols for the inputs will be intro-
duced, but simply the bit value vectors will be used as the input symbols. In that case,
the set of input symbols can be defined as I' = {000,001, 010, 011, 100, 101, 110, 111}
An input bit represents a symbolic partition which contains in the first block all sym-
bols for which this bit is ¢ and in the second block all symbols for which this bit is 1:
wi(2) = {a, byc, d; e,f,g,h}, T{m) = {a, be.fi ¢ d,g,h} etc.

A bit partition on X is for example the partiton 7x = {%; Z5; (z1)}. Given any partition
7,7 is a symbol partition induced by wx if and only if:

T2 I 7y (bs)
bpe(X—deb{mx))

which can be calculated as follows:

T > wr{m) () =
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r>{aef; ed g b} {Tmewg bdfh) =

T2 {a,e,' bi T ﬂ}

Similarly, an example of a bit partition induced by the symbel partition
{m,_e; bod, foh; ?} is the partition 7x = {75 (Ir%)}. In this case 7x is the only
possible bit partition. 0

2.4 General decomposition

The topic of this section is the general decomposition theory. This theory will be an aid
in the analyzes and the classification of decomposition structures. A number of special
decomposition types can be derived from the general decomposition model. Further-
more, a theorem is formulated that provides the necessary and sufficient conditions in
order to create a general decomposition or one of its special cases.

The theory of general decomposition of sequential machines has been formulated by
Jézwiak [J6295a]. This thesis is concerned with the synthesis of combinational logic.
However, since a combinational machine is merely a special case of a sequential ma-
chine with one state and a trivial next-state function, the general decomposition theory
¢an also be applied to combinational machines. A special case of the general decompo-
sition theory [J6295a] related to combinational machines is presented below.

In a general decomposition of a combinational machine M = (7, 0, }) a composition of
n cooperating partial machines M; = (I;, 0;, A;) as welt as the mappings

Q’Z[H@Ig
and
&R0, -0

have to be found in such a way that the composition of M, together with the mappings
¥ and © realize machine M.

The implementation of such a general decomposition model requires three components:
the input coder (preprocessor) ¥, the simultaneously working communicating compo-
nent machines (main processors} M; and the output decoder (postprocessor) ©. The
component machines, input coder and the output decoder are implemented as combi-
national circuits. The model is general and it contains all elements necessary for the
construction of circuit networks which implement combinational circuits: parallel pro-
cessing elements with possibilities for information exchange between them; divergent
preprocessing elements for abstracting and splitting information and representing it in
the appropriate form; and convergent postprocessing elements for joining and combin-
ing information from parallel processors and representing it in the appropriate form.
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The decomposition can be characterized by the type of connections between the com-
ponent machines and by the type of input/output encoding/decoding. In a general
composition, each partial machine can use (partial) output information from another in
order to compute its own output. Twowell-known special cases of a general composition
are the parallel and the serial composition. In a parallel composition, no connections ex-
ist between the partial machines. Each partial machine is able to compute its own output
independently. In a serial composition, machines are ordered and only the component
machines M;, i > j, can use information from the machines M in order to compute their
own output. The formal definition for a general composition is given below.

Definition 2.27 General composition
A general composition of n combinational machines M; : GC{{M;}, { Con,}}, consists of
the following objects:

LM, = (1}, 0,),), 1 =L ® I],1 < i< n}, aset of machines referred to as compo-
nent machines, and

2. {C’on,; r® 0, - 1<i< 'n,} a set of surjective functions referred to as connec-
15j<n
tion rules of the component machines.

0

Theoretically it is possible to use the output of a combinational machine as the input
of this machine. This is called a local connection. The use of local connections in a
decomposition can be dangerous, utmost care must be taken to prevent loops in the
implementation that would transform the time independent combinational circuit to
a time dependent sequential circuit or worse to an unstable circuit. To overcome this
problem in practical situations local connections and loops are usually prohibited. This
is done by creating an ordering on the component machines in the general composition:
machine M; can only use the output of component machines M;{1 < j < ). A (small)
price to pay, is the fact that disallowing loops the composition looses its true general
character.

Definition 2.28 "General” composition without loops
A general composition of n combinational machines without loops M, : GC({M;},
{Con;}), consists of the following objects:

LM, = (Ir, 0, A), I} = E® I],1 <1 < n}, a set of machines referred to as compo-
nent machines, and

2. {Coni P ® 0 I 1<iL n} a set of surjective functions referred to as connec-
1<i<i

tion rules of the component machines.
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Figure 2.3: General decomposition using two component machines

Definition 2.29 General composition machine
A general composition GC of n combinational machines defines the general composition
machine Mge(GC) = (Iee, Oce, Age) = Mee ({M;}, { Con,}) with

¢ loc =@,
¢ Oce =@ 0,
T
¢ Ao g — Oge,
e Ao = ® A (m, Cony(n, ..., yn)), where y; represents the output of component ma-
chine 1,
a

No distinction between the general composition and the composition machine it defines
will be made, unless this can lead to misunderstanding. In the original theory [J6z95a]
the output can be looped back to the input of amachine. Insuchacase, ) ,,, is recursively
defined. The physical implementation of the machine can be problematic if it contains

loops; therefore in the scope of this thesis a general composition without loops will be
used in practice.
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Definition 2.30 General decomposition

The combinational machine sir(Mgc) is a general decomposition of machine M if and
only if the general composition machine Mg (with or without loops) realizes M (see
Figure 2.3 for the case of two partial machines). a

In [J6£95a] the following theorem has been proved.

Theorem 2.1 Existence of general decomposition

A combinational machine M (J, 0, A) has a general decomposition inte n component
machines if and only if n partition doubles (7, 7}%) exist and they satisfy the following
conditions:

1.
wyowf <7y {2.31)
where:
> II =7 (2.32)
i=1l.n
2.
7 < 7y {2.33)
i=l.n
3.
( IT =, 7(0(0)) is an I-O partition pair (2.34)
i=l.n
O

The above theorem does not exclude trivial decompositions (like decompositions con-
sisting of empty or duplicated component machines). A general decomposition is said
to be non trivial if each of the component machines is necessary for obtaining the output
of the machine.

The theorem will be discussed using a special case of the above theorem which has only
two combinational machines. The theorem for this case is presented below (see also
Figure 2.3).

Theorem 2.2 Existence of general decomposition using two component machines

A combinational machine M(I, 0, ) has a general decomposition with two partial
machines and without local connections if and only if two partition doubles {7, 77} and
(71, 77) exist that satisfy the following conditions:

1.
7y-m <77 and wy-7p < 7Y (2.35)

where:
> w; and 1) > 7] (2.36)
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2.
W{‘T]S?T; and ‘IT]'T[ST; (237)
3.
{r7 « 77, 70(0)) is an I-O partition pair {(2.38)
Od

In Figure 2.3 the theorem is visualized. The combinational machine M) has as its inputs
7 and 7). 7, represents the information obtained from the primary inputs of the circuit.
7; represents information obtained from the other compenent machine . Since M, is
a combinational machine it has no memory and the output 77 of M; has to be calculated
from only the inputs 7; and } of M. This condition is expressed by the first half of
Equation (2.35) that states that the partition product of r; and 7} (that represents the
combined information of these two inputs) should be sufficient to calculate 7;. The sec-
ond part of (2.35} expresses the same condition for machine M,.

Equation (2.36) expresses the information processing capacity of the connection rules
Comp and Conp,): the connection rules can transmit a part of the output information of
a certain component machine to the other machine.

To make sure that it is possible to construct the general composition of M; and M, as a
legal decomposition Equation (2.37) is used. It states that the exchanged information can
be computed (directly or indirectly) from the primary input information of the partial
machines.

The last condition (Equation (2.38)) assures that the information computed by the com-
ponent machines is sufficient to calculate the output of machine M. This is expressed
by the I-O partition pair: the combined output information of the component machines
(w7 - 77) should form a partition pair with the zero output partition, i.e. it should be able
to distinguish between all cutput symbols.

In this way, the general decomposition model and thecrem define the solution space of
general decompositions, by providing a generator of this space.

By repeated use of the general decomposition medel or its special cases, all functionally
correct combinational circuit structures can be constructed. The general decomposition
theorem defines the systems of partitions that result in correct general decompasitions;
however it does not provide details how to find the systems of partitions that will result
in the optimal decomposition.

The remaining of this section provides a larger example that once again illustrates the
concepts introduced.

Example 2.5 General decomposition

In Table 2.3, the specification of a completely specified function 7 is given. In this exam-
ple it will be shown how this function can be decomposed into two-input, one-output
cells. It will be assumed that cells for all possible two-input, one-output functions will
be available in the cell library or that a two-input, one-output LUT is available. A gen-
eral decomposition theory based synthesis tool might find an implementation 7’ with 4
LUTs as presented in Figure 2.4. This implementation would most likely be obtained in
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ERETTTES

0 0000 |1
110001 |0
2] 0010 || O
3010011 |0
4 0100 § 0
510101 |1
610110 1
7o111 |1
8 1000 |1
9 1001 0
10 1010 | O
111 1011 | O
12 1100 § O
13| 1101 | O
141 1110 |1
15 1111 | O

Table 2.3: Boolean function F for general decomposition example

I F

Figure 2.4: Implementation of Boolean function /" obtained using general decomposition
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X3 X4 X2 ‘ xl | X4
Figure 2.5: Step 1 of a general decompo- Figure 2.6: Step 2 of a general decompo-
sition algorithm sition algorithm

the following 2 steps.

In a first step a parallel decomposition into two blocks € and E is performed (see
Figure 2.5). Since the input symbols are already binary encoded, an input coder is not
required and a subset of the input bits can be directly distributed to each machine ¢
and £. Because one-output gates are used, the output partitions 7}, and 7% can only
have two blocks. The following two partition doubles satisfy the general decomposition
theorem for two component machines: (7, 7e) and (7 g, 73) where:

w, ={0.1,2345,6,7,§10,12,1% 9, 11,13, 15}

ry ={056,7,8,13,14 15 1,%,3,4,9,10, 11, iz}
7 is the smallest input symbol partition induced by the inputs z; and a, i.e.

7o =ind"({Ty; T; (T m\)}) =

{0,2, 4,6; 1,3,5,7; 8 10,12,14; 9,11, 13, 15}
Similarly:

g =nd* ({77 T; T (T))) =

Verifying that (w¢, 77;) and (7, 73) satisfy the conditions of the general decomposition
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theorem is easy. Since the decomposition in Figure 2.5 is a parallel decomposition, there
is no information flow from one component machine to the other and hence 77 and 7;
are identity partitions. Equation (2.35) therefore reduces to v > % and 7z > 13 which
can be easily verified.

To verify condition (2.37) the partition product 7 - 7z has to be calculated. This turns
out to be the zero partition #;(0) so Equation (2.37) is trivially satisfied.

Finally it has to be shown that the partition doubles satisfy Equation {2.38). This is
relatively easy:

nt -y = 1{0.5,6,7.8,14; 1,2,3,4,10,12 13,15; 3,11}

Inspection of Table 2.3 for the blocks of this product partition, shows that the product
indeed forms an I-O partition pair with 75(0).

In a second iteration of the algorithm, block E is then further serially decomposed into
two blocks (Figure 2.6). The partition doubles (7,4, 7} and (75, 7;) where,

74 =ind* (3; T (T 8))) =

{0,4,8, 12; 1,5,9,13; 2.6,10, 14; 3, 7,11,15}

w3 = {6,4,8,1% 1,2,3,5,6,7,9,10, 11, 13, 14,15}

g = ind* (33 (T1; B, ;) =

{0,1,238,9,10,11,14; 45,67, 12,13, 14, 15}

=75 = {0,5.6,7,8,13,14,15, 1,2,3,4,9,10, 11, 12}

realize the behaviour of block E.

Since machine B uses output information from machine 4, but machine A does not use
any output information from machine B, the general decemposition theorem can be
slightly simplified:

1. mp € 7% and 7p -7, £ w5, where 7 > 7}
2. 71—A'7TB§7T:1 and ’)TA'WBS’FT‘*B

- * -
3.7y Mg <7

It should be noted that condition (3) is slightly modified, this is due to the fact that the
partitions 7%, 7% and 7% are all partitions on I {there is no output decoder) and the
partition pair property is reduced to the < property.

It must be shown that the partition doubles satisfy all these conditions. As a result of
the fact that each block of 7,4 is included in a block of 77 it follows 74 < 7%. Since all
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[z [A] (4% [B(E) |

00| 0 00 0
01 (1 01 1
10411 10 1
11 |1 11 Q0
Table 2.4: Boolean function for block A Table 2.5: Boolean function for block B
|2z [C] [ B¢ [D(F7]
0011 00 0
01 11 01 1
101 10 0
1110 11 0
Table 2.6: Boolean function for block € Table 2.7: Boolean function for block D

output information of machine 4 is used as input information for machine B, it can be
assumed that 7y = 7 and condition (1) is then satisfied whenever condition (2) is also
satisfied. For condition (2) the product

is calculated. Using this product, it is easy to see that condition(2) is satisfied. Finally,
for condition (3) it is necessary to calculate

™y -7y = {08 12 1,2,3,9,10,11; 5,6,7, 13, 14, 15}

With this product partition, it is obvious that condition (3) is satisfied and hence the
decomposition is correct. The functions for block A, B (=£), C and D (=F") can be found
in Tables 24, 2.5, 2.6 and 2.7 respectively. It is interesting to note that this realization
uses different gates: OR, NAND, EXOR and the gate @ - b. All these gates are innately
and directly obtained from decomposition without the use of technology mapping. O

2.5 Special cases of general decomposition

To the best of the author’s knowledge, none of the published methods have been able
to produce near-optimal solutions for a true general decomposition of combinational
machines. All published results are based on some special cases of the general decom-
position model. These special cases can be classified in many ways. In this thesis a
classification based on the type of the connections of the components machines, the type
of the input encoder and the type of the output decoder will be used. This classification
was originally introduced in [J6295a].
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Three types of connections between the component machines are being distinguished:
general, parallel and serial. In parallel connections (see Figure 2.7 for a two compo-
nent paralle] decomposition), the component machines do not use information on the
output of other component machines, In serial connections (see Figure 2.8 for a serial
decomposition with two component machines), component machines use the output of
other machines, but in such a way, that the information is used in only one direction,
i.e. an ordering of the component machines exists and component machine ¢ uses only
information about the outputs of the combinational machines 7 : j < i. A decomposition
with general, parallel or serial connections will be called general decomposition, parallel
decomposition and serial decomposition, respectively.

For the input encoder only two types are recognized: the presence of the encoder and
the absence of the encoder. In the latter case, the input bits are directly distributed to the
component machines. Of course, only those bits are distributed that are necessary for the
computations of the component machines. I a decomposition uses direct distribution
of the input bits then it is called an input-bit decomposition (Figure 2.9), if the encoder
is present, then no special prefix is added to the name.

For the output decoder the naming convention is similar to that of the input encoder: a
decomposition is called an output-bit decomposition (Figure 2.10) when the decoder is
absent (i.e. the output bits of all component machines together form the cutputs of the
original combinational machine). If a decomposition is both an input-bit decomposition
and an output-bit decomposition then it is simply called a bit decomposition.

In Section 3.3 a number of special cases of the general decomposition reported in liter-
ature will be discussed. These decompositions will be classified using the terminology
presented in this section.
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Figure 2.8: Serial decomposition into two component machines
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Chapter 3

State of the art in logic synthesis

This chapter overviews the state of the art in logic synthesis. For each of the considered methods
its concepts and algorithms are briefly explained and discussed. In Chapters 4 and 5, conclusions
of these discussions will be used for development of a new method for logic synthesis. If it is
relevant, the partition theory will be used to show the difference between traditional methods and
methods based on the concepts of general decomposition and partition theory. To keep related
methods together, this chapter has been divided in four parts.

The first part of the chapter (Section 3.1) will contain methods originally developed for random
logic synthesis based on the division approach introduced by Brayton. The division approach
is the first and by far the most popular multiple-level logic synthesis paradigm. Although it is
not primary intended for decomposition based logic synthesis, many of these methods have been
extended for synthesis using FPGAs and some requirements for LUTSYN have been derived
from a careful analysis of this approach, therefore division based synthesis methods have been
presented in this thesis.

In the second part of this chapter methods for logic synthesis that use graph based representations
of Boolean functions are briefly reviewed (Section 3.2},

In Section 3.3, the state of the art in logic synthesis primarily targeted on fine granularity FPGAs
is presented. The methods considered in this part are the closest related to the method tackled in
this thesis and therefore their careful analysis was necessary. LUTSYN's experimental results
will be compared to the results obtained from these methods.

The last part of this chapter (Section 3.4) a few interesting synthesis methods that use multiple-
valued encoding techniques will be discussed.

3.1 Division based logic synthesis

3.1.1 Factorization algorithm

The fundamentals for division based multiple-level logic synthesis were established by
Robert K. Brayton in 1982 [BM82] [BCH*82] [BRSW87]. In this section, Brayton’s origi-
nal method and a number of extensions to that method will be reviewed. The algorithm
of Brayton will be called standard factorization glgorithm, because, all other factorization
algorithms are based on it. This section is a summary of a more elaborate discussion
published in [V]S95].

35
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The reader is assumed to be familiar with the following basic definitions used commonly
in logic synthesis: a Boolean variable, a literal, a cube and a Boolean expression. The
support sup(f) of a Boolean expression f is the set of Boolean variables which appear
either complemented or uncomplemented in the cubes of expression f.

In division based logic synthesis parenthesized Boolean expressions are used to define
the structures of Boolean function implementations. Such a parenthesized expression is
called a factored form and the process of obtaining a factored form of a Boolean expression
is called factorization.

An incompletely specified function I is represented by a triple of completely specified
Boolean functions: F{f, d, r}, where f represents the on-cover, i.e. all input space points
(values) for which F evaluates to 1. Similarly, d and r are representations of the don’t
care-cover and the off-cover, respectively. Every possible input vector belongs to pre-
cisely one of these covers. If d = 0 then the function F is called completely specified.

1t is possible to calculate the product of two Boolean expressions f and g by simply
applying the AND operator. If f and g have disjoint input suppotts, then f - ¢ is called
the algebraic product, otherwise f - g is called the Boolean product.

Definition 3.1 Boolean divisor
A completely specified function g is a Boclean divisor of an incompletely specified
function F = {f, d, r), if two completely specified functions h and ¢ exist so that

g-hZd (3.1)

and
fCg-h+iCf+d (3.2)
where g - A represents the Boolean product. a

k is called the quotient and z is called the remainder of the division, similar to the names
used in number calculus. However, in a Boolean algebra h and ¢ are not necessarily
unique.

Example 3.1 Boolean division
The Boolean function

Fla,b,e,dye)=a-c+aT-b+b-c+d+e

where the underlined cube is a cube from the don’t care set, has a Boolean divisor
{a + b), with a quotient (@ + ¢) and a rest expression d, because (a + b) - (F+¢) +d =
a-c+a-+b-c+d C F. Because (a + b) and (e + T) have intersecting input supports,
the product is a Boolean product. 0

The goal of division based synthesis is to find Boclean divisors to factorize the Boolean
function. The disadvantage of this approach is that the set of Boolean divisors is usually
very large and therefore good divisors cannot be found easily. Consequently, an alter-
native approach has been proposed which considers only a special case of division. Itis
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based on the fact that in the sum-of-product term representation of a Boolean function
efficient commeon algebraic factors can be identified as being common factors of the
product terms. The idea is motivated by the fact that manipulations of sum-of-product
terms are in most cases quickly performed (many algebraic operations have linear time
complexity). The disadvantage of this idea is that it does not guarantee optimal solu-
tions, because it limits the considered solution space a priori to solutions that can be
obtained with only algebraic division.

Brayton introduced an alternative approach based on this idea [BRSWS87][BHS90]. In
this approach, the incompletely specified function F is minimized to obtain a two-level
minimal representation of the on-set f of ¥ (using the two-level minimizer Espresso
[BHMS84]} and algebraic division is used to manipulate f.

Definition 3.2 Algebraic divisor
A completely specified function p is an algebraic divisor of a completely specified
function f if g and r exist, such that p # 0, ¢ # 0 and

f=p-q+r (33)

where g - ¢ is the algebraic product. m]

7 is once again called the quotient; the quotient will be denoted as ¢ = f /p; 7 is called
the remainder of the division; g and r need not be unique. However, if q is defined as the
largest set for which f = p - g + 7 then ¢ and r are unique. This special type of algebraic
division is called weak division. Note thatin f = p - g + r, the names of the divisor and
the quotient are arbitrary, if p is a divisor and ¢ is the associated quotient, then ¢ can
also be called the divisor and p can be called the quotient.

Example 3.2 Algebraic division

(a+ &) is an aigebraic divisor of the function f = (a +b)-(c+d+ )+ ¢, Both ¢ = ¢ + d,
r=a-e+b-et+gandg=c+d+e r=ygarevalid quotient/remainder pairs for f
divided by (a + ). If the calculations are restricted to weak division then the second
pair is the unique quotient/remainder pair. o

An expression is said to be cube free if there exists no cube that is part of all the cubes in
the expression (e.g. a - b + cis cube free, but a - b + a - ¢ is not cube free, since cube ¢ is
partofbotha-band a-c.

Definition 3.3 Primary divisors
The primary divisors of a Boolean function f are the elements of the set D(f) defined as:

D(f)={f/c| cisacube} (3.4)

0

Definition 3.4 Kernels
The set of kernels of a Boolean function f is the set:
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K(fy={g] g€ D(f) A gis cube free} (3.5)

]

In other words, the kernels of an expression f are the cube-free, primary divisors of f.
The cube ¢ used to obtain kernel k(k = f/¢) is called the co-kernel of k, and C(f) is used
to denote the set of co-kernels of f.

Example 3.3 Kernels
For the function f = a - (b + ¢) + d the set of divisors is

Dify={a; b+c; a-(b+c)+d; 1}
The set kernels for this function is:

K(fy={b+¢ a-(b+c)+d}

a
Theorem 3.1 Existence of multiple cube divisor
Functions f and g have a common multiple cube divisor d if and only if
303 d=knk
kEK(f) kg€ K (g}
[m|

This theorem (proved in [BM82]) states that two functions only have a multiple cube
divisor if an intersection of a kernel of f and a kernel of g has more than one cube. Itis
the fundamental theorem used in the standard factorization algorithm of Brayton.

The optimization goal of the standard factorization algorithm is to minimize the number
of literals in the factorized function. This is a quite accurate measure for the implementa-
tion complexity of small AND-OR-NOT based Boolean expressions in CMOS, because in
CMOS technology, each literal corresponds to 2 transistors (one PMOS and one NMQOS)
[BRSW87]. Although this measure is reasonably accurate for the active area of a physical
implementation, it is not adequate encugh for the routing area of the circuit. Since the
routing area of complex multiple-level logic circuit can be much larger than the active
area and heavy parenthesized expressions increase the delay, the number of literals can
be a weak selection criterion for large logic circuits. If more complex gates are possible
(like the AND-NOR-21 gate: f = a - b+ ¢) then a non-trivial technology mapping is
required as this will transform a set of Boolean expressions with minimum literal count
into a gate network using the minimum amount of area. This problem is known to be
NP-hard. The same problem can occur when the Boolean expression uses operators with
too many inputs: for example, the expression f = a-b-c¢-d-e- k-1 -j probably requires
technology mapping, because not so many technology libraries support 8 inputs AND
gates.
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The standard factorization algorithm can be summarized as follows: each kernel/co-
kernel pair obtained using the multiple cube divisor theorem is applied to all functions
and the gain in the number of literals obtained by this pair is calculated. The kernet/co-
kernel pair with the highest literal gain is selected and applied to all functions. The
algorithm continues to select the kernel/co-kernel with the highest gain in the number
of literals, until the gain is smaller than a threshold value X. Then, all single-cube
divisors which have a literal gain larger than X are extracted. If no more multiple-cube
or single-cube divisors can be found then the threshold value X is decreased and the
extraction process is continued.

The standard factorization algorithm has a few drawbacks:

1. The input to the algorithm is the two-level, minimized on-set f' of an incompletely
specified function F(f,d,r) obtained using the two-level minimizer Espresso
[BHMS84]. This makes the minimization result much easier to handle than the
original incompletely specified multiple output functions, but the loss of design
freedom expressed by the don’t cares of the original specification before the di-
vision algorithm actually starts will almost certainly lead to a less satisfactory
implementation.

2. The method is based on finding kernel/co-kernel pairs. Kernels form however
only a very small subset of all algebraic divisors of a function. Algebraic divisors
are a special subset of another group of divisors: the Boolean divisors. Therefore,
the set of kernels of a Boolean expression is a very small subset of all possible
divisors and can be too restrictive to find near-optimal solutions,

3. The kernel/co-kernels of Brayton are not algebraically compatible. This means that
after choosing and applying a certain kernel, other kernel/co-kernel pairs may
no longer be valid or their quality may have been changed. Therefore, after
each kernel selection, the kernel/co-kernel set needs to be recalculated. This is
a rather expensive operation and therefore the standard factorization algorithm
selects a few kernels/co-kernels before rebuilding the kernel/co-kernel set, which
means that the algorithm works with somewhat inaccurate quality estimations and
furthermore some extra checks are required to assess whether a kernel/co-kernel
pair is still feasible.

4. The algorithm for selection of kernels is a greedy algorithm and it is based on the
momentary (local) gain of the number of literals of a kernel. It does not predict the
total gain in the number of literals that can be expected by choosing this kernel.
This is unfortunate because the choice of a kernel can block some other possible
valuable kernel/co-kernel pairs and, after choosing the currently best kernel, no
good kemnel/co-kernel pairs may remain, whereas after selecting, for example, the
second good kernel some other good pairs could remain.

To overcome some of these drawbacks a lot of extensions have been proposed by other
researchers. Perhaps, the two most useful extensions are the following:
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1. Lexicographical factorization

The goal of lexicegraphical factorization [ASSP90] [ABS+91] [ASP91] [SFA93] is
to improve the routing factor of the multiple-level implementation. In the lexico-
graphical factorization, the variables of each output function are factored out in
order of their appearance in a certain variable ordering. For example, for the func-
tionf =a-b-c+a-b-d+a-e+b-T+b-e+¢ -dandaninputorder{a, b, ¢, d, ¢}, the
factorized form of f withrespect to thisorderis f = a-(b-(c+d)+e)-+b-(C+e)+T-d.
The result is that inputs no longer need to be distributed globally over the circuit
tree; variables in the beginning of the variable order are needed at the base of the
function tree, whereas the last variables are used near the roots.

Part of the input order can be imposed externally to account for external factors
(e.g. late arrival times of some input). If this enforced input ordering is not com-
plete then the kernel/co-kernel pair with the largest gain in the number of literals
that does not violate the input order is selected and the input order is updated. Se-
lecting kernel/co-kernel pairs is then repeated until the input order is completed.
Since the variable ordering is known, factorization is very simple. Negated vari-
ables are factored out immediately after the non-negated variables. Because of the
input order, the search for common subexpressions is very efficient.

One of the main advantages of lexicographical factorization over standard factor-
ization is the fact that lexicographical compatible kernel/co-kernel pairs are also
algebraically compatible. Therefore, lexicographical factorization does not require
the recalculation of the set of kernel/co-kernel pairs after selection of each pair
from the set. The result is that lexicographical factorization is much faster com-~
pared to standard factorization.

Experimental results {[SFA93]) show that the lexicographical factorization results
in implementations which have much smaller routing areas compared to the stan-
dard factorization algorithm of Brayton, however they use larger active area be-
cause respecting the variable ordering prevents some good kernels from being
selected.

. Concurrent decompositien algorithm

The characteristic feature of the concurrent decomposition [RVI0}[VRI0][RV92]
method is that it limits itself to the use of double cube divisors (i.e. kernels with
only two cubes), single cube divisors with only two literals and the complements
of these single and double cube divisors. It has been found that these divisors (in
spite of their simplicity) can be used to synthesize circuits with small area and short
delay times. Furthermore, by restricting the calculations to double cube divisors
and single cube divisors with two literals, the calculations of these divisors are
now polynomial time operations (whereas the calculation of the set of kernels can
require an exponential amount of time).

The divisor selection algorithm is a greedy algorithm selecting the (single or dou-
ble cube) divisor (and possibly its complement divisor) with the largest gain in the
number of literals. The set of double cube divisors is not algebraically compati-
ble. However, because the complexity of the double cube generation algorithm is
quadratic, this algorithm is much faster when compared to the standard factoriza-
tion (which occasionally can have exponential time complexity).
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Originally, concurrent decomposition has been developed with design for testabil-
ity in mind. Concurrent decomposition is based on testability preserving transfor-
mations and the factorized multiple-level network is fully testable by a complete
test set derived from the original two-level circuit. In order to preserve testability
the algorithm has to be used on single output functions and not on multiple output
functions. This means that good subexpressions cannot be shared among different
output functions. Furthermore, the transformation of a multiple output function
to a set of single output functions can increase the number of product terms by at
most a factor equal to the number of outputs in the multiple output function. It
seems reasonable to expect further gain in the number of literals if the testability
condition will be dropped and comumon subfunctions and common double cube
divisors will be allowed.

3.1.2 Example of division based synthesis

In this section the discussed division based algorithms are illustrated with an example.
The function w(a, b, ¢, d, ¢, f, ¢) defined as

w(a.b,c,d e f.gl=a-b-c-eta-b-d+G ¢ f+b-e-f+e-f-g

will be used in this example. w is a single output completely specified function and is
minimal with respect to the number and the size of the terms.

The standard factorization aigorithm presented in Section 3.1.1 applied to w results in
the function z{a, b, ¢, d, e, f, g):

(e, b,e,doe,fog)=a-b-(c-etd)+e-F - (T+b+g)

{see also Figure 3.1); it is a solution that uses 10 literals.

The lexicographical factorization algorithm cannot find this solution because the used
kernel/co-kernel pairs are incompatible: the pair (¢- e+ d, a - b) requires (among others)
the precedence relation a precedes e, whereas the second kernel/co-kernel pair of z
(E +b+g,e-f ) requires the precedence relation e precedes a, which is incompatible
with the first relation. The lexicographical factorization finds the following factorization
and respects the variable ordering {d, e, ¢, f, ¢, b, g):

y(a»bacidve)f:g):d'y1+e'(c'y1+f‘(ﬁ+g))
with
ylza-b

(see Figure 3.2). The function also requires 10 literals. In this case, a subfunction ¥
has been introduced. Because the lexicographical factorization algorithm uses NAND
functions as an internal representation, it was able to identify a - b and Z + b as common
subexpressions.

If the realization obtained by lexicographical factorization is compared with standard
factorization then it shows the properties of lexicographical factorization: each input is
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Figure 3.1: Function z found by standard factorization
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Figure 3.2: Function y found by lexicographical and concurrent factorization
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only once connected to a gate and therefore the routing complexity for the inputs is re-
duced. In most cases, the lexicographical factorization algorithm needs more gates than
standard factorization (increase of active area). The real power of the lexicographical
factorization algorithm can only be shown on large examples, where the gain in active
area and the exira routing area for subfunctions is compensated by a large reduction in
the routing area for the inputs. The benchmark results in [SFA93] illustrate the effective-
ness of the lexicographical factorization for large circuits.

The concurrent factorization algorithm searches explicitly for the complement of the
kernel @ + b, whereas in lexicographical factorization this equivalence was implicitly
found. The function z found by the concurrent factorization is the same factorization
as lexicographical factorization {function z = y) (see Figure 3.2). As it can be seen only
double cube divisors and cubes with two literals have been used.

3.1.3 Technology mapping

The previous sections have dealt with techniques for the minimization of Boolean ex-
pressions. The Boolean expressions used are a technology independent description and
hence must be translated into a network of blocks that are available in the library of
the implementation technology. The blocks from the implementation library are called
the basic building blocks. In case of FPGAs, the implementation library consists of all
possible configurations of the programmable block used in a given FPGA.

The translation process from a Boolean expression {technology independent logic net-
work) to a network of basic building blocks of a certain technology is called technology
mapping. In this section a number of techniques for technology mapping will be dis-
cussed.

The technology independent logic synthesis is only useful if the work done by it is
preserved by the technology mapping. This means that the structure obtained from the
logic synthesis process should not be destroyed by the technology mapping; i.e. the
implementation library should offer at least those basic building blocks that can imple-
ment the logic operators used in the synthesized structure. E.g. for the logic synthesis of
random multiple-level logic based on the factorization of Boolean expressions the imple-
mentation library should at least include AND gates, OR gates (with all input sizes used
in the Boolean expressions) and an INVERTER. Technology mapping is generally harder
and less effective if the distance between the available blocks and the used operators is
larger.

A number of approaches for technology mapping exist. Essentially these methods are
all derivations from a technique called pattern matching. In this technique the Boolean
expression is represented by a graph. The vertices of the graph represent the Boolean
operators and the edges are the interconnections between these operators. Likewise, the
blocks of the technology library are represented by a graph of their Boolean functions.
The pattern matching technique then consists in covering (i.e. "matching") all vertices
and edges of the graph of the Boolean expression with the graphs from the technology
library. If a node cannot be matched in any way the node is called infessible and logic
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Figure 3.3: Chortle initial network : Two-level sum-of-product expression

synthesis must be used to find a network of feasible nodes that provides the same func-
tionality.

The most typical goal of technology mapping is to find a mapping that uses as few as
possible basic building blocks and minimizes the number of edges (interconnections)
between these blocks. Sometimes, other optimization criteria should be fulfilled as well,
for example the minimization of the sum of the active area size used by the blocks. The
technology mapping problem is known to be NP-complete.

In [CS591] pattern matching based on perfect and semi-perfect matching has been intro-
duced. A perfect matching is a pattern that matches exactly to a subtree of the Boolean
expression tree. A semi-perfect matching, is a perfect matching that is obtained after
splitting of a node into a tree of nodes. The algorithm is applied to lexicographical
factorized expressions. In [MBS92] a similar method is used for the mapping on Xilinx
configurable logic blocks for sequential machines. The internal structure of a Xilinx
logic block can be programmed (configured in a large number of ways. In this paper 18
different configurations for the Xilinx configurable logic block have been distinguished.
This approach shows the complexity of using pattern matching (and technology map-
ping in general) for complex FPGAs.

Chortle-crf [FRV91a] is the successor of the Chortle algorithm [FRC90]. Both approaches
represent a Boolean expression as a tree and try to determine an optimal mapping of
this tree. The results of Chortle-crf are much better than those of Chortle and it is much
faster. Therefore, Chortle is not discussed here any further. The starting point of the
Chortle-crf algorithm are the two-level Boolean expressions (Figure 3.3). The first step
of this algorithm is to create a two-level decomposition consisting of a set of LUTs as
the first level and single OR that conmnects the outputs of the LUT as the second level
(Figure 3.4). A constructive bin packing algorithm is used to find two-level decomposi-
tions, where the bins are the LUTs and the AND terms from the sum-of-product table
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Figure 3.4: Chortle step 1 : Two-level decomposition

are packed in them. The second step of the algorithm, a multiple-level decomposition
is created by using the unused inputs of the LUTs to implement part of the second level
logic (Figure 3.5). The algorithm is also able to use reconvergent paths and replication
of gates to find better solutions; however these last two techniques are local instead of
global optimizations. In [FRV91b] the authors of Chortle present a version of Chortle
called Chortle-d that reduces the depth in the final circuit. It produces fast circuits, but
uses more LUTs than Chortle-crf.

In [MSBS91a] the successor of an algorithm called mis_pga [MNS*90] is presented. This
successor is simply called new mis_pgn. Both algorithms perform technology mapping
on LUTs. Mis pga is based on Boolean expressions obtained using the standard fac-
torization algorithm of Brayton. If an infeasible node has been created, Roth-Karp
decomposition (see Section 3.3.1) or partitioning based on kernel extraction is used to
make the node feasible. The algorithm then tries to collapse nodes into a single new
feasible node. The results of mis-pga have been improved by Chortle-crf. A derivation
of mis-pga targeted for minimizing the delay has been describe in [MSBS91b]. The delay
is calculated using a k by k grid (representing the topological structure of a Xilinx FPGA)
and a simulated annealing algorithm that tries to minimize the delay by swapping nodes
in the grid. The critical path delay of this algorithm is better than those produced by
Chortle-d.

New mis.pga uses a technique very similar to Chortle-crf: cube packing. In this ap-
proach the cubes of the functions are considered as items and the Xilinx configurable
logic blocks are the bins. New mis_pga can also use Shannon decompasition, AND-OR
decomposition (each node is either a 2-input AND, 2-input OR or an INVERTER node
and the disjoint decomposition techniques used by mis_pga. It is however unclear in
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Figure 3.5: Chortle step 2 : Multiple-level decomposition
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which order and in which situations these algorithms are used.

Technology mapping is necessary if logic synthesis is performed without taking into ac-
count the hardware implementation style that is going to be used. Technology mapping
is a difficult problem, nevertheless a number of good algorithms have been constructed
for it. Unfortunately, a number of fundamental drawbacks still exist that argue for the
integration of logic synthesis and technology mapping into a single phase synthesis
process. These drawbacks are listed below:

1. Separated logic synthesis and technology mapping are only useful if the operators
used in the synthesized Boolean function representation correspond to those of-
fered by the technology library. Optimal mapping results can only be obtained if
the logic synthesis process uses the full set of hardware building blocks provided
by the implementation technology.

2. By not taking into account the basic building blocks of the technology library, the
logic minimization may produce infeasible nodes. Technology mapping can only
remove these infeasible nodes by (locally) redoing the work of the logic synthesis
algorithm.

3. Merging of nodes and bin packing is generally bad for the routing complexity
of FPGAs because these techniques do not take into account the positions of the
nodes to merge in the layout. These algorithms should take into account positions
of the nodes to merge, to prevent long and expensive wires in the final layout.

4. Library based technology mapping is infeasible for modern LUT based FPGAs
[JP95].

3.2 Graph based logic synthesis

3.2.1 Introduction

Besides division based multiple-level logic synthesis another important trend in
multiple-level logic synthesis exists. It consists of algorithms based on graphical rep-
resentations of the logic synthesis problem. Most work in this area is based on the
concept of binary decision diagrams (BDDs) introduced by Bryant [Bry86]. To this basic
concept many extensions have been published in the past ([Bry92]). BDDs and the most
important extensions on them are the subject of this section.

3.2.2 Classical binary decision diagrams

Binary decision diagrams are not new, they have been introduced in the past by Lee
[Lee59] and Akers [Ake78]. However, their current popularity can be attributed to Ran-
dal Bryant. In his fundamental paper [Bry86] the use of the mathematical concept of a
binary decision diagram for the representation and manipulation of Boolean functions
has been introduced. The following definitions of binary decision diagrams have been
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introduced in [Bry86).

Definition 3.5 Binary Decision Diagram (BDD)

A binary decision diagram (BDD) is a directed acyclic graph (DAG). The graph has two
sink nodes labeled 0 and 1 representing the Boolean functions 0 and 1. Each non sink
node is labeled with a Boolean variable v and has two outgoing edges labeled 1 (also
called then or right) and 0 (or else or left). u|

The Boolean function corresponding to a non sink node labeled with variable v is defined
as the Boolean function corresponding to the node’s "then” child in case the Boolean
variable v = 1. If the variable v equals to 0, then the Boolean function corresponding to
the node, is the Boolean function corresponding to the node’s "else” child.

An example of the graphical representation of a BDD can be found in Figure 3.6. A node
is represented by a circle labeled with the Boolean variable that is tested in this node.
Sinks are represented by squares. Each node has two outgoing edges, the edge on the
left is the else edge, the edge on the right is the then edge.

A special, but very important type of BDDs are the ordered binary decision diagrams
(OBDDs).

Definition 3.6 Ordered Binary Decision Diagram (OBDD)

An ordered binary decision diagram is an ordinary BDD extended with an ordering on
all input variables. In every path from source to sink in the OBDD the inputs of the
visited nodes respect this ordering. o

For example, the BDD in Figure 3.6 is an OBDD that respects the input ordering
(21, 22, 73, 24, 5, ).

Definition 3.7 Reduced Ordered Binary Decision Diagram (ROBDD)

A reduced ordered binary decision diagram {(ROBDD) is an OBDD with the minimal
number of nodes. It can be obtained from a OBDD by applying the following steps to
the OBDD:

1. Merge all 0 sink nodes to a single 0 sink node.
2. Merge all 1 sink nodes to a single 1 sink node.

3. Merge all nodes that represent the same Boolean subfunction.

a

ROBDDs are the fundamental concept in BDD based Boolean function representation
and logic verification, because it has been proved in [Bry86] that all ROBDD representa-
tions of a certain Boolean function f (with the same input ordering) are isormorphic, and
hence a ROBDD representation for a certain input ordering (%, 3, ..., z,) is canonical.
The canonicity of ROBDDs has an important consequence: it is trivial to check for equiv-
alence of two Boolean functions, because this test consists in determining whether the
ROBDDs of the two functions (with respect to the same input ordering) are isomorphic.
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Figure 3.6: BDD representation of function f = - 22 -+ 23 - 73 + &5 - % using input ordering
(-Th T, X3, Ty, ¥s, mﬁ)
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Figure 3.7: BDD representation of function f = =y -z + 13- 74 + 25 - 2 using input ordering
(71, 23, 75, 22, 7, T5)
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The main advantage of ROBDD representations is the efficiency of the operations that
can be performed on them. An important operation is the reduce operation which trans-
forms an OBDD to a cancnical ROBDD. The complexity of reduce is O{| G | -log{| G [})
where | G | is the number of nodes in the graph. Another important operator is the
apply operation. It can be used to perform a Boolean operation on two ROBDDs. The
complexity of apply is comparable to the product of the sizes of the two ROBDDs. Un-
fortunately after the use of the procedure apply a reduction step is required. Details of
these and other operations can be found in [Bry86]. The operations have an important
property: they preserve the input ordering.

The main difficulty in ROBDDs synthesis is the determination of a good input ordering
for a certain (set of) functions. A classical example [Bry86] can be found in Figure 3.6
and Figure 3.7. Both graphs in this figure represent the function

f=m -mt+a-1a+as5 5

but the ROBDD in Figure 3.6 uses input ordering (2, #, 3, 21, 5, 1) whereas, the ROBDD
presented in Figure 3.7 uses the ordering {z1, 73, 15, 72, %, 7). It can be seen very easily
that the representation in Figure 3.6 is much more compact (and therefore much easier
to work with) compared to the BDD in Figure 3.7.

There is no general rule for finding a good (suboptimal) input ordering. A number of
heuristic solutions exist (see Section 3.2.3). Moreover, some classes of Boolean functions
(like multipliers) cannot be represented efficiently with ROBDDs regardless of the cho-
sen input ordering. Therefore ROBDDs are not suitable for manipulating this type of
Boolean functions and alternative representations are required for them.

In general, ROBDDs are a useful way to represent Boolean functions, apart from the
following drawbacks:

1. The size of a ROBDD and the time to construct the ROBDD can be large for
certain functions and it is difficult to predict which functions will require a large
ROBDD. Even worse, it has been proved that some classes of Boolean functions
can never be represented using the ROBDD representation regardless the input
ordering that is used. For example in [Bry86, Appendix], it has been proved that
functions describing the outputs of an integer multiplier have graphs that grow
exponentially in the word size regardless of the input ordering.

2. The influence of the variable ordering on the size of the ROBDD is large, which
makes the choice of a good variable ordering essential. Unfortunately, there exists
no methed that would always find a good variable ordering.

3. Operations on two ROBDDs require that these two ROBDDs use the same input
ordering; it has been proved that performing an operation on two BDDs with
different input orderings is NP hard [GM93]. This means that an input ordering
has to been found that is good for both ROBDDs, even then, the input ordering
may not be a good choice for the resulting ROBDD.
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4.

Don't cares cannot be handled using ROBDDs (there is no don’t care sink). Thisisa
very important shortcoming since, especially in multiple-level logic synthesis, the
smart use of don’t cares is of vital importance to construct optimal multiple-level
Boolean networks. In the section a number of extensions to ROBDDs that will be
able to model don't cares will be discussed.

3.2.3 Extensions to BDDs

Despite the disadvantages mentioned in the previous section, ROBDDs are useful repre-
sentations. In this section a number of extensions of the classical BDDs will be presented.
The extensions attempt to overcome the drawbacks mentioned above. An elaborate dis-
cussion of many of these extensions can be found in [Bry92].

¢ In [MWBS88] an ordering heuristic for the input variables is described. It is

based on an observation that the network representation of a Boolean function is
correlated with the BDD of this Boolean function. The correlation suggests that the
network topology can be used to guide the variable ordering, and inputs should to
be ordered by their level in the multiple output network. This agrees with results
obtained by Saucier e.a. [BBCS92] where the variable ordering for lexicographical
factorization is also a good ordering for BDDs.

In [BRB90] a new implementation of a BDD package is introduced. By using a
number of programming tricks (hash tables, caches) a faster package compared to
Bryant’s implementation has been obtained. Also a number of ROBDD extensions
are considered, the most important among them are the complemented edges: a
complement edge is an ordinary edge with a extra bit set to indicate that the
corresponding formula is to be interpreted as the complement of the ordinary
formula. If the rule "the then edge of every node must be a regular edge” is
observed then the canonical form is preserved. Experiments show reduction in
the size of the ROBDD and a factor 2 reduction in the construction time of the
ROBDD.

In [CJZT91] MBDs (modified BDDs) are introduced. The major new aspect of this
BDD type is the addition of an additional sink for don’t cares. This sink makes it
possible to construct BDDs for incompletely specified output functions. As a result
of this addition the equivalence of two BDDs is so much easier checked, because
this test requires the operation £,, + fa.. In traditional BDDs this is the OR of two
BDDs, with MBDs this is much easier accomplished by making the don’t care sink
a l-sink.

Another interesting new feature of MBDs is an algorithm which allows to swap
two adjacent inputs in the input ordering. A feature of this algorithm is that only
two levels of the MBD need to be reconstructed not the entire MBD. In a follow up
article [CZJ*92] a simulated annealing like algorithm (called stochastic evaluation)
is used to find pairs of inputs in the ordering to swap to obtain a good ordering.
This algorithm finds very good input orderings but is very slow.

In [J6297b] term trees (or don’t care BDDs) have been introduced. A term tree is
a BDD in which each decision node has an extra outgoing edge, located between
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the "then” and the "else” edge, that is called the "don’t care” edge. A term tree can
be used to compactly represent a set of product terms. In the article a heuristic
algorithm is presented that is able to find term trees with the minimal number of
nodes. Experimental results show that this algorithin is very effective and efficient:
(near)-optimal results have been obtained for a set of 20 small, medium and large
benchmarks.

Term trees have been used for the automatic test pattern generation (ATPG). In
the same article [J6297b] it is shown how two types of faults (stuck-at-zero and
stuck-at-one) can be identified in the term tree. Based on this identification a
heuristic algorithm is proposed that it is able to find a minimal test pattern set that
guarantees 100% coverage of all non-redundant faults. Experimental results show
that the ATPG algorithm is very effective and efficient.

It has been known for a long time that for some types of Boolean functions (notably
arithmetic functions) EXOR based representations can be considerable smaller
compared to purely AND-OR representations. This is the reason for the interest
in Reed-Muller and AND-EXOR representations of Boolean functions. Recently, a
number of authors have recognized that this fact can also be applied to BDDs.

In [SDGY5] another attempt to minimize the size of ROBDD:s is presented. In this
paper Free Boolean Diagrams (FBDs) are introduced. The Boolean function of a
node of a FBD can be: an input variable (like in ordinary BDDs), the product of
the left and the right branch, or the exclusive-or of both branches. This approach
allows the efficient representation of exclusive-or based Boolean functions, a class
of Boolean functions that cannot be efficiently implemented using ordinary BDDs.
The results show that the FBDs can reduce the graph size by about 20% on average.
However, a few large benchmmarks had a factor 6 reduction in their graph size.
The FBD package requires on average 1.4 times more CPU time compared to the
standard ROBDD package.

The Free Boolean Diagram mentioned above show one way how these EXORs can
be applied. Another interesting approach has been taken in [DST*94|[PCSS95] by
the introduction of Kronecker Functional Decision Diagrams (KFDD). A KFDD is a
decision diagram where the nodes can represent three different types of functions:

1. Shannon expansion : f = 7; - f,-ﬂ + ;- f,-1
2. Positive Davio expansion: f = f? ® (x.- (e f,»l))

3. Negative Davio expansion: f = f! ® (:C_. (o f,1))

where fij = f(®s -y Tiots J1 Tig1s -, Tn) and where n represents the number of input
variables. This way KFDDs can mix AND-OR nodes (the Shannon expansion)
with EXOR based Davio expanded nodes [KSR92]. The construction process for
KFDDs can use a number of different heuristic algorithms to determine the best
expansion type for each nodes. Many derivations and generalizations of KFDDs
have been proposed. An overview is presented in [PCS5595].
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+ Karplus [Kar92} [Kar88b] has generalized the BDD concept, to that of if-then-

else direct acyclic graphs (ITE DAGs). The function of a node in a ITE DAG is
represented by the three tuple (g, b, ¢) that expresses the function: a- b +@- ¢ i.e,
"if a then b eise c"). The only difference between a BDD and a ITE DAG is that a
BDD uses a single variable in the if-part whereas the if-part of an ITE DAG may
be formed by any Boolean expression.
Karplus has determined the necessary conditions on the sub-DAGs allowed as the
if, then and else part of a ITE node to make canonical representations using DAGs
[Kar92] and he has studied the ways Boolean functions can be best represented
using ITE DAGs [Kar88a]. These two factors show the potential usefulness of these
DAGs. ITE DAGs are also used for the logic synthesis of multiple-level Boolean
functions; see the next section for more details.

3.24 Logic synthesis using BDDs

In the previous sections BDDs have been considered as a representation for the values
of Boolean functions. Some attempts have alsc been made to use ROBDDs for repre-
senting the structure of a Boolean function, ie. to use ROBDDs for the logic synthesis
of combinational circuits.

Since the function corresponding to a node of a ROBDD is in fact a multiplexer, ROB-
DDs are feasible structures for modeling multiple-level multiplexer networks. ROBDDs
have the restriction that the selection function of a multiplexer has to be a primary input
variable, hence ROBDDs do not provide a general model for multiplexer networks. ITE
DAGs allow any Boolean function to be the selection function, and hence they form a
general representation for multiple cutput multiplexer networks.

In this section a number of logic synthesis algorithms based on ROBDD variants will be
discussed.

Most graph based logic synthesis methods, use ACTEL FPGAs [Act95] as the imple-
mentation technology for the function. The basic combinational cell used in the ACT-1
series FPGAs can be found in Figure 3.8, the basic cell for the ACT-2 and ACT-3 series
is represented in Figure 3.9. The difference between these two types of cells is that the
SA and SB lines from ACT-1 cells are and-ed together in the ACT-2 and ACT-3 families.
Both types of cells can be seen as a 4-input multiplexers; BDD networks can be mapped
quite efficiently on the multiplexer networks,

Karplus as one of the first used direct acyclic graphs for the logic synthesis of Boolean
functions. In [Kar90] [Kar91a] an algorithm for mapping on ACT-1 cells is presented.
The algorithm takes a ITE-DAG as its input and transforms it to an ACT-1 cell network.
The approach consists of a recursive algorithm that starts at the roots of the tree, creates
an ACT cell for this node and then invokes itself for its unfinished children. The algo-
rithm attempts to use as much as possible of the ACT-1 cell, and uses a number different
heuristics to find the best use of a cell.

In [Kar90] [Kar91b] a similar method targeted to Xilinx FPGAs is presented. The al-
gorithm consists of a three phase approach: in the first phase nodes will be marked
that will be the output of a Xilinx logic block, then the polarity of each of these nodes
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Figure 3.9: Basic logic block used in the ACT-2 and ACT-3 series FPGA
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is determined and finally a merging algorithm is used that tries if it can merge two
partially filled Xilinx blocks into one block.

All Karplus’ heuristic algorithms are based on intuition and not really on the structure of
the circuit. Besides the results obtained for Actel and Xilinx have been improved consid-
erably (e.g. [L595]), therefore this approach can be considered rather useless nowadays.

In {BBCS592], a ROBDD is constructed for a function, using lexicographical factorization
to determine a good overall input ordering. The ROBDD netwark is then mapped on an
ACT-1 network. The technology mapping algorithm is performed by a pattern matching
algorithm (see Section 3.1.3): for all configurations of an ACTEL cell the corresponding
ROBDD is constructed and the pattern matching algorithm tries to cover the ROBDD of
the Boolean function with as few as possible cells. The matching algorithm uses only
two different ROBDDs (ACT-1 cell configurations) for which it is claimed that they cover
90% of all nodes in an ROBDD. The algorithm works from the leaves te the roots and
tries to match one of two patterns. If it succeeds, the corresponding nodes are marked,
The nodes that are not matched at ali are covered using a single ROBDD cell (which is
expensive since only a single multiplexer from the ACT-1 cell is used). Experimental
results show that the algorithm performs better compared to several other algorithms,
for example, it produces better results than the Amap algorithm [Kar91a] mentioned
above.

Kronecker Functional Decision Diagrams (KFDDs) have been successfully used for the
synthesis of Atmel 6000 FPGAs [Atm95] [HP94][PCSS95]. Because Atmel’s basic com-
binational cells [Atm95] cannot only implement a multiplexer but can also implement
F-input AND/EXOR cells, KDDs can be directly mapped on a network of Atmel build-
ing blocks. The benchmark results presented in [HP94] are compared to an older version
of the proposed KDD algorithm. They show a significant improvement in the number
of nodes in the KFDD compared to the predecessor of the proposed algorithm.

Recently, a very interesting approach has been introduced in [LPP96]. The method repre-
sents Boolean functions using OBDDs and is then able to find a disjoint and non-disjoint
functional decomposition similar to the Ashenhurst-Curtis method (Section 3.3.1). The
algorithm is able to find subfunctions in OBDDs and replaces such a subfunction by a
single node. A nice feature is that the method can find subfunctions that are shared by
any number of functions. The method is extended with a technology mapper so that
Xilinx XC3000 and XC4000 devices can be used for the implementation. The technology
mapper is able to use 9 different configurations of a XC4000 FPGA, thus making good
use of the possibilities offered by the architecture of these FPGAs. Results show that
this method is very effective, the method produces the best synthesis results currently
available.
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Figure 3.10: Input-bit parallel decomposition on two component machines

3.3 Special cases of general decomposition

In this section a number of special cases of the general decomposition will be discussed.

3.3.1 Input-bit parallel decomposition

In parallel decomposition, no information flows between the partial machines, and
therefore the partitions 74 and 7} of the general decomposition theorem are reduced to
the identity partition. In input-bit decomposition, the input decoder ¥ is reduced to
the distribution of the input bit lines and this results in the replacement of the input
partitions 7; and 7; by the bit-partitions 7,z and 7;5. In this way, the following theorem
was obtained from the general decomposition theorem.

Theorem 3.2 Input-bit paralle! decomposition with two component machines

A combinational machine M has a non-trivial input-bit parallel decomposition with two
component machines {see Figure 3,10) if and if only two partition doubles {r;z, 7}) and
(715, 77) exist that satisfy the conditions:

1.
7y <y and 7 £ 7 (3.6)
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where
Ty = ’ﬁﬂd(‘fl'[g) and Tr = ind(‘rm) (37)
2.
{77 - 77, 70(0)) is an I-O partition pair (3.8)
O

Of course this theorem can be easily extended to any number of component machines.

Two weli-known special cases of input-bit parallel decomposition have been studied
extensively in the past: functional decomposition and the use of input-encoders for PLA
based synthesis. Both approaches will be discussed here in more detail.

The term functional decomposition is used to refer to techniques that split a Boolean func-
tion with many input variables into several Boolean functions each with fewer input
variables. These new functions can be designed independently and if necessary recur-
sively decomposed, thus reducing the complexity of the synthesis.

A number of classical functional decomposition algorithms have been developed in
the 1960s [Ash59] [Curé1] [RK62] [Kar63]; recently these methods have gained interest,
because they can be modified to be used for the logic synthesis targeted to field pro-
grammable gate arrays.

In [Ash59] a simple functional decomposition is presented, an n-input single-output
Boolean function f can be decomposed as follows:

Fl21, %2, o s Tog 1 ooy Ta) = g(A{T1, T2, o, T3), Lhat, oo Tn) (3.9)

The set B = {z1,,..,%} is called the bound set and F = {231, T, } 15 called the
free set. Curtis [Cur61] has generalized the results obtained by Ashenhurst; in Curtis’
decomposition algorithm s subfunctions can be used:

Fo, @2y ooy Ty, Tran, 0 ) =

Pz, oy o )y 2 (21, 32, o0, 28), o B (20, T, 1oy T8), Tty -es Tn) (3.10)

Normally, the above functional decomposition is referred to as the Ashenhurst-Curtis
decomposition. In this methed the functional decomposition is determined from the
number of distinct columns in the Karnaugh map representation of the function. The
Roth-Karp decomposition [RK62] is similar to that of Ashenhurst-Curtis, but uses a cube
representation to find the decomposition and hence does not require the (potentially
large) Karnaugh diagrams to be build.

The disadvantage of these approaches are three-fold:

L. The choice of the bound set is difficult. This is because no good relation between a
bound set and the size of the decomposed has been found; that is, it is very hard to
determine which bound set is a good set without the construction of the function.

2. The bound set is the same for all subfunctions; i.e. functional decomposition is
able to find only special cases of the general decomposition model.



60 CHAPTER 3. STATE OF THE ART IN LOGIC SYNTHESIS

3. The structure of the function is not analyzed; for example the method does not
attempt to find common subfunctions.

A special case of functional decomposition has been considered by W. Wan etal. [WP92].
Given a certain incompletely specified multiple output function f(z1, ..., #.), the method
presented in [WP92] searches for two disjoint subsets A and B of all inputs of f (i.e.
A, B C {n,... 7}, AN B = &), a multiple output function ¥ and £ single output func-
tions ¢, ..., r in order that the function F (g1(A), g2(4), ... g:(4), B) realizes the "care”
behaviour of f. The decomposition is targeted towards Xilinx FPGAs. The input set
4 is limited to 4 elements hence the functions g, have no more than 4 inputs. Because
g can implement any function of 4 variables with the same cost, the goal of the de-
composition is to implement as much functionality as possible into the function g and
make the function F as simple as possible. If the number of inputs of F" is too large, the
decomposition algorithm can be iteratively applied to . Benchmark results presented
in [WP92] show that the method performs well compared to previous methods that have
been presented for synthesis on Xilinx logic blocks.

In the mis-pga algorithm [MNS*90] [MSBS91a] a number of different decomposition
strategies have been implemented and Roth-Karp decomposition is one of them. The
Roth-Karp decomposition however performs rather poor. This is due to the fact that the
first feasible bound set that is found by the algorithm is selected; no attempt to find the
best bound set is made; therefore this strategy has been abandoned in newer versions
of mis-pga. More information on mis-pga can be found in Section 3.1.3.

Another well-known and extensively studied special case of the input-bit parallel decom-
position is the inpuf-encoder problem. In this case, the output decoder © is implemented
as a PLA and the component machines M; (referred to as input encoders) have multiple
exclusive sets of input bits. The problem is often modeled using multiple-valued logic
[Rud86] [RS87] [Sas84]. The general function of two-bit encoders is to replace the inputs
a,7, b and D of the PLA with the signals e + 5, s + b, 2+ band @ + b. It can be proved
[Sas81] that the size of the new PLA {without the size of the two-bit encoders which
generate these signals from a and b) cannot be larger than the size of the original PLA.
However, the overall size (the size of the new PLA and the encoders) can be larger.
Fortunately, in many practical cases, considerable gain in the total area can be obtained.
The major problem with this method is the choice of pairs of inputs. In [Rud86] [SasB4]
a heuristic algorithm is presented which tries to find suboptimal pairs of inputs. The
drawback of this method is that it ignores interactions between pairs of inputs.

A similar, but more sophisticated and general way to solve the input-encoder problem
was presented by Ciesielski et al. [CY92] [YC89]. They implement the input encoders
using PLAs. The encoders can have any number of input signals and some of the in-
put bits may be directly fed to the output decoder. In the first step, a set of inputs is
partitioned into a number of disjoint subsets. Two heuristic approaches are presented
for these: the first is based on integer programming whereas the second is based on a
modified mincut algorithm. A classical multiple-valued minimization is then used to
find the best implementation of the PLA ©. The results that have been presented (in the
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Figure 3.11: Input bit parallel decomposition as used by Luba

form of benchmarks) are very promising, the only drawback of this approach is that the
input sets are disjoint; the results show that the integer programming approach is better,
but the graph-partitioning approach is faster.

Luba et al. introduced yet another special case (see Figure 3.11) [EKJK91], where one of
the component machines () is replaced by an identity function. The first step of this
algorithm is to find the inputs /B, which have to be fed directly to output decoder .
The search algorithm tries to find the best set of inputs, such that the number of inputs
of output decoder © does not exceed a user specified bound (for Xilinx CLBs this bound
is set to 4). The algorithm then tries to find an implementation for machine M; using
a minimum number of possible inputs (i.e. 1B, U IB; contains a minimum number of
elements). First a disjoint decompeosition is used (i.e /B; has no elements). If this fails,
inputs from IB, are added to /B; until machine M, can be constructed.

Unfortunately, no heuristics are described and no results on large benchmark sets are
presented, therefore it is impossible to estimate the efficiency of this method for large
circuits. However, the results that are presented are very promising. Using this special
case, it is still possible to obtain the input bit parallel decompaosition as shown in Figure
3.10, by recursively applying this special case to the output decoder ©.

A number of methods for the more general input-bit parallel decomposition problem
have been presented. In [HOI90], [HOI92] and [HOIW94] the set of input bits is parti-
tioned in two disjoint subsets. A number of good heuristic procedures for partitioning
exist. The goal of this method is to minimize the number of bits needed for communica-
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Figure 3.12: Bit parallel decomposition with two component machines

tion between M, and M, and output decoder ©. Although this method does not explicitly
use the partition theory it can be easily formulated with this theory. The strength of this
method is that it allows the estimation of communication complexity without having to
construct the machines M; and M, and the output decoder ©. This algorithm can have
a linear complexity for circuits with low communication complexities.

3.3.2 Bit-parallel decomposition

In the bit-parallel decomposition, both the input decoder and the output decoder are
reduced to the appropriate distribution of the input/output bit lines (see Figure 3.12).
The theorem for this type of decomposition can be obtained from the input-bit parallel
decomposition theorem by replacing the output partitions 7o and 7, with bit partitions
Toe and 7, OB

Theorem 3.3 Bit parallel decomposition

A combinational machine has a non-trivial bit parallel decomposition with two compo-
nent machines (see Figure 3.12), if two partition doubles (75, 7o5) and (775, Top) exist
that satisfy the conditions:
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1.
v (77, wo(ob)} are I-O partition pairs (3.11)
ob OB —deb(mng)
where
= ind(ﬂ'jg) (312)
2.
Y (71, 70(0b:)) are I-O partition pairs (3.13)
ob, €OB—dcb(rag)
where
71 = ind(riz) (3.14)
3.
Tog * Tos = og(0) (3.15)
a

A number of solutions have been proposed for the bit-parallel decomposition. In [JV92]
the problem is called the output decomposition problem. An output decomposition
consists of partitioning the set of Boolean functions (outputs) into a number of disjoint
subsets, each implemented by a separate component machine. The output decompo-
sition in [JV92] aims at partitioning a multiple-output function into a minimal number
of limited programmable logic building blocks (such as PLAs, PALs, etc.) and in min-
imizing the number of interconnections between the blocks. The problem is modeled
as a multi-dimensional constrained optimization problem with constraints imposed on
the number of inputs, outputs and terms. It is solved by a special multi-dimensional
packing algorithm.

In the first step of the output decomposition algorithm, the information processing
structure of the original combinational machine and its relation to the characteristics of
building blocks are analyzed. From information about the correlations between the in-
put, term and output variables as well as information about the constraints, the expected
minimum number of building blocks and the expected number of input bits, output bits
and terms per building block are computed. The expected values show how difficult
it is to satisfy each of the constraints with a given number of blocks and indicate the
amount of attention that must be paid to each of the constraints during the partitioning
process. The active input bits and terms for each single-output function are aiso com-
puted. Based on this information, affinities (from the viewpoint of a certain partitioning
problem) between each two (single or multiple-output) functions can be computed.
With the above information, a limited number of near-optimal solutions are constructed
in parallel by performing a multi-dimensional packing while using a beam-search algo-
rithm. Since the decision making during the search is based on uncertain information,
the search is guided by the heuristic elaborations of the rule of minimizing the uncer-
tainty of choices. Ateach step, the decisions are taken which ensure the highest certainty
of achieving the optimal solutions and, under this condition, the decisions that minimize
the uncertainty of information for the future choices. Information that is used directly
for decision making consists of relations between the characteristics of single-output
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functions and constraints imposed by {partially constructed) building blocks and, cor-
relations between the single-output functions and functions in (partially constructed)
blocks.

Published experimental results show that the method is very effective and efficient; in
almost all cases it was able to find the global optimum in reasonable time even for very
complex functions (e.g. a functions with 131 inputs, 253 terms and 91 outputs (gpio) or
a function with 45 inputs, 428 terms and 43 cutputs (apex1)). The search algorithm has
a number of parameters which enable a trade-off between the quality of solutions and
the required computation time.

A similar method was published few months later in [HHC92]. It uses less information
about the original multiple-output function than the method presented in [JV92] what
can result in lower quality. An interesting concept not present in the method published
in [JV92] is that of relaxing the term constraints and dynamically processing the terms.

Another approach to bit parallel decomposition is presented in [EKJ91]. In this paper the
problem is referred to as parallel decomposition. The actual parallel decomposition is
preceded by argument reduction. Argument reduction is a technique which minimizes
the number of inputs of a Boolean function, as opposed to the classical minimization
which aims at finding a minimum number of product terms. It is used to find function
representations which use minimum number of input variables. This process is similar
to term reduction which finds the minimum number of product terms.

The parallel decomposition algorithm uses the results of the argument reduction and
constructs two-block parallel decompositions. Unfortunately in {LKJ91], only the idea
of parallel decomposition is presented with no algorithms and heuristics. Only few
results of experiments are shown however, these are very promising.

In two later papers [ESK93] [£595], the decomposition methed described in [EKJK91]
(discussed in Section 3.3.1) is combined with the input-bit parallel decomposition
method mentioned in the previous paragraph. This combination allows for the con-
struction of complex networks of blocks. A heuristic is presented which shows how
these two different decomposition approaches should be combined and which param-
eters should be used to tune these algorithms. Results presented for a large number of
circuits show that this algorithm works well for ACTEL cells and very well for Xilinx
cells. This algorithm has the potential to become one of the most useful and powerful
synthesis algorithms for FPGAs.

3.4 Multiple valued logic and symbolic encoding

The concepts used in the symbolic design paradigm are in fact very similar to those
used in the partition theory based general decomposition paradigm. This technique can
be used if the inputs and /or the outputs of the combinational logic are represented by
symbolic values, i.e. the binary representation of the inputs or outputs can be freely
chosen. This approach is similar to the state encoding problem of sequential machines;
in fact one of the first publications in this area [Mic86] has been derived from a state
assignment algorithm introduced by the same authors [MBS84] [MBS85].
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Table 3.1: Multiple-valued input binary valued output function F

Symbol || assignment 1 {| assignment 2
(71, %) (71, 22)
1 (0,0) (0,0)
2 (1,0) (0,1)
3 (1,1) (1,0)
4 (0,1) (L1

Table 3.2: Two different assignments for multiple valued variable X

In symbolic design, logic minimization is performed before the code assignment of the
inputs and output symbols. That is, the Boolean function is represented as some kind
of multiple-valued Boolean function and is then minimized using a multiple-valued
minimizer. In a second phase, the input and output symbols are replaced with binary
vectors that are compatible with the symbolic cover of the minimized multiple-value
function. The symbolic design will be illustrated using the following example.

Example 3.4 Symbolic design

In this example, the multiple-valued input single-valued output function F (Table 3.1 is
being considered. The function has one 4-valued input variable X and a 3-valued input
variable Y. An expression for the on-cover of function F is

F=X@ vyl x0 yla) . x ). ylehg

XW .oy x .yl 4 oy, yie
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Symbol || assignment 1 | assignment 2
(v, ) (v1, 1)
a (0,0) (0,1)
b (1,0) (0,0)
¢ (1,1) (1,1)

Table 3.3: Two different assignments for multiple valued variable ¥

where the notation Z 7 stands for

ZT =1ifandonlyif Z e T

Z7T = 0 otherwise

Using a multiple valued Boolean minimizer the function F can be minimized to:
Fr=Xx2%. vyl 4 x4,y 4 x4 yig)

and by factoring out the X {14
Fr= x23} . yle} 4 x{14}, yibe}

is obtained. The function F” is the minimized multiple valued Boolean function. Now,
the encoding of the symbols 1,2,3,4 and «, b, ¢ need fo be found. In the Tables 3.2 and
3.3 two bit assignments for X and for ¥ are presented. Taken the first assignment for
both X and Y and using the don’t care in Y, the function becomes

H=n-wn+3n
while using the second assignment for both X and Y the function becomes
F=(n T+T n) W p+t@ H+n o) 5 B+e n
Thus, selecting the right input assignment is very important. O

For the two-level minimization of multiple-valued Boolean expressions, any ordinary
two-level minimizer can be used, by using an input for each symbolic value [BHMS84,
chapter 5]. However, also a number of dedicated multiple-valued minimizers have been
introduced [RS87] [CYP89]. In [RS87] two minimizers are presented: Espresso-exact and
Espresso-MYV; Espresso-exact finds the solution with the fewest possible number of prod-
uct terms (although it does not minimize the total number of literals). Espresso-MV is a
heuristic minimizer dedicated to multiple valued functions. Results show that Espresso-
MYV finds the same results for multiple-valued functions as ordinary Boolean functions,
but requires only half the processing time. In [CYP89] a graph coloring approach is used
to determine the minimal cover; the results (both in quality and time) are comparable to
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Espresso-MV.

From the example above it can be concluded that a bad choice of the encoding will
produce too much logic; it can even produce erroneous results (if the chosen encodings
intersect). In [MBS85] this problem has been formulated as an constrained encoding
problem: the encoding of the inputs and the outputs so that they are compatible with
the symbolic cover. Satisfying the encoding constraints is trivial (by encoding each
symbol on a separate bit, all constraints are per definition satisfied); however finding an
encoding that uses the minimal number of bits is intractable [SVBS94].

In [YC90] {YC91] the input encoding is considered. In this article the problem is for-
mulated using dichotomies. A dichotomy is a two-block partition and it is used to
determine which bit vectors are compatible (i.e. which bit vectors can be encoded using
the same symbol). The proposed algorithm consists of a covering algorithm based on
these dichotomies; it tries to find prime and essential prime dichotomies and uses a
graph coloring algorithm to find a near-optimal cover of dichotomies. An interactive
improvement algorithm with hill climbing and splitting of dichotomies is also used to
improve the results. Results (measured in the number of bits used to encode the sym-
bols) are better than those presented by [Mic86]. Unfortunately, comparisons based on
more physical parameters (like chip area, number of look-up tables, delay times) have
not been made. In [CSD91] the above method has been extended to simultaneous input
and output encoding for sequential machines.

Devadas e.a [DN91] have addressed the problem of output decompesition. In their
approach they use algorithms that find the optimal encoding. These algorithms are
much faster than exhaustive search. They have applied these algorithms for the logic
synthesis on PLAs; in this approach a subset of PLA inputs is selected and this subset is
re-encoded using the approach mentioned above. This leads to a serial decomposition
consisting of two PLAs: an input processor that processes part of the inputs and a main
PLA that uses the output of the input processor and the other input bits to calculate the
output function.

Because of the wide range of applications that use constrained encoding, a number of
papers have been devoted to the theory and algorithms for this problem; the interested
reader is referred to [SB93] [SVBS94].

Summarizing, the symbolic design approach is a very interesting contribution to logic
synthesis, although it has some disadvantages. Disadvantages of this approach com-
pared to the general decomposition paradigm are the following:

1. The symbolic design approach assumes that the optimal symbolic minimization
followed by an optimal symbol encoding produces near-optimal overall results.
This is not always true because these two steps are executed independently.

2. The search for the best input or output encoding is not based on the estimation
of their influence on physical parameters (like area, speed, wires}, but purely on
desired compatibility of the patterns.

3. The general decomposition theory uses a more general and a more elaborate math-
ematical framework (partition product, M and m operators) than symbolic design
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does, Therefore, algorithms based on decomposition theory have a better founda-
tion.



Chapter 4
LUTSYN - Framework and Concepts

In the previous chapters the topic of this thesis has been introduced and placed in the context,
basic definitions and concepts related to the topic have been presented and the state of the art in
logic synthesis has been analyzed. This chapter and the next will focus on a new logic synthesis
method for LUT based FPGAs. This new method has been named LUTSYN (Look-Up Table
SYNthesis).

This chapter is subdivided into three parts. In the first part (Section 4.1) the logic synthesis
problem being the topic of this thesis will be analyzed and defined more precisely. Also its
computational complexity will be discussed. Using the results of this part and of the previous
chapters, in the second part (Section 4.2), the mathematical framework that forms the basis of the
problem solution will be introduced. In the last part of this chapter, an overview of the propesed
synthesis method is provided (Section 4.3) and a number of concepts that are required for the
near-optimal synthesis with this method are investigated.

The next chapters show how these concepts have been translated into algorithms and programs,
discuss the results of some decomposition experiments performed with the developed prototype
tool, and present some conclusions on the tool’s and the method’s performance.

4.1 Problem definition

4.1.1 Choice of an FPGA architecture

The LUTSYN algorithm is dedicated to LUT based FPGAs. This choice is not accidental.
FPGAs in general have a number of important advantages compared to full custom,
standard cell and mask programmable technologies. First of all, FPGAs are standard
components. They are produced in large quantities, and therefore, are much cheaper (it
is not necessary to create new masks for each FPGA implementation, as it is with the
other implementation techniques). This fact enables the use of integrated circuits (in the
form of FPGAs) in small series of products.

Another very important aspect of FPGAs is that they can be programmed by the user
without involvement of the manufacturer. For this reason, production times of the de-
sign are significantly lower compared to the other technelogies (hours instead of weeks).
Also, it is no longer necessary to give the design to the integrated circuit manufacturer,
and the valuable design can be kept in-house, safely secured from the eager eye of the
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competitors. The fact that FPGAs can be programmed by users offers also 2 number of
other advantages: fast prototyping, easy modifications of the functionality and reuse by
simple reprogramming of the FPGA. In general, FPGAs offer complex functionality at a
low cost. However, ASICs are generally faster than FPGAs and have a higher functional
density.

Unfortunately, the traditional logic synthesis and technology mapping algorithms for
the logic synthesis of Boolean functions cannot be applied effectively to FPGA archi-
tectures. This is due to the fact that FPGAs have a different architecture compared to
the full custom, standard cell and mask programmable technologies and are completely
prefabricated. An FPGA consists of a fixed number of blocks. Each of these blocks has
a fixed number of inputs and outputs and it can implement a certain set of Boolean
functions. The blocks can be connected by a programmable wiring mechanism, but
once again this mechanism is restrictive and can implement only a small subset of all
possible wiring schemes. In other words, FPGAs provide an architecture with very hard
physical constraints, whereas the traditional logic synthesis methods do not consider
any physical constraints. Moreover, technelogy mapping methods for other implemen-
tation techniques assume a much less constrained architecture (limited to only the cell
library that is used and the overall chip area that is available).

For LUT based FPGA architectures the difference with the traditional ASIC architectures
is even larger. A LUT block can implement any Boolean function, but with limited num-
ber of input variables (typically 4 variables). Thus the constraints are not imposed on the
function type as it was by traditional synthesis, but on the physical dimensions. Also,
LUT blocks are very small. This means, that decomposition is essential for the synthesis
of almost every Boolean function. Furthermore, traditional synthesis is always based
on a limited set of functions. In many cases the used operators are AND, OR and NOT
[BRSW87], in other cases the EXOR and AND operators are used [BS93], but never the
full scope of all possible Boolean functions with the number of inputs not larger than 4
is used in this synthesis. Even worse, traditional synthesis methods use this limited set
of operators for CMOS circuit synthesis, even if the technology cell library consists of
many more complex cells. This results in very complex technology mapping algorithms
and bad synthesis results. For LUT based FPGAs it is extremely important to consider
all available Boolean functions during the logic synthesis; because any function with a
number of inputs and outputs not higher than the LUT input/output count limit can be
implemented in a LUT, regardless the sort and complexity of the function’s expression.
This means, that the traditional logic synthesis, and in particular logic synthesis tech-
niques based on literal counts cannet produce good results for LUT based FPGAs.
Based on these observations, it can be concluded that it is very useful to develop new
logic synthesis methods dedicated to FPGA implementations.

A lot of different FPGAs with many different architectures are offered nowadays to the
user. However, no logic synthesis method exists that is able to produce near-optimal
implementations for all these different FPGA architectures. This is caused by the fact
that many of the FPGA architectures differ vastly in the functionality of the logic blocks
and in the flexibility of the interconnection mechanism. So, instead of trying to perform
the logic synthesis for all existing FPGA architectures with a single synthesis method,
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in this work, a synthesis method will be developed that is able to find near-optimal
implementations for a subset of all FPGA architectures (LUT based FPGAs). However,
care will be taken that this synthesis method is flexible, so it will hopefully be easy to
extend the method to some other FPGA architectures, and to other synthesis targets that
have a strong analogy with LUT based FPGAs,

Animportant aspect of an FPGA architecture is the physical topology (or layout) of that
FPGA. The physical topology of an FPGA consists of a number of blocks and wires with
fixed positions and certain properties. The topology is different for each class of FPGAs
and may even differ between different types of FPGAs of a single class. Many synthesis
methods do not work on the actual FPGA physical topology buton a simplified model of
the topology. Such a model is called a topology model. There are two reasons for making
such a model. First of all, the physical topology can be too detailed and too complex for
using it efficiently in synthesis algorithms. The second reason is that by using a model
as the abstraction of a FPGA topology the synthesis can be performed for a larger class
of FPGA topologies with the same method or algorithm, provided that the topology
model is a good abstraction for each of these FPGA topologies.

The design step that translates the synthesis results obtained with the topology model to
the actual physical FPGA topology is called placement and routing. The model is naturally
inaccurate (if the topology model would provide the same information as the physical
topology then the topology can be used directly and there would be no need for the
model). Therefore, placement and routing can be a difficult problem to solve. It may
even turn out that placement and/or routing is impossible. Therefore, it is important to
find the break-even point so that the topology model is detailed and accurate enough
for placement and routing but still can be used efficiently in higher level synthesis algo-
rithms,

Often, in synthesis methods another level of abstraction is used: based on the topology
model a, logic model is created that has nice mathematical properties so that the logic
minimization can be mathematically formulated and solved. Methods that use only the
logic model for synthesis, are called technology independent synthesis methods (e.g.
division based methods). The transformation of designs synthesized with a logic model
into the designs that account for a certain topological model is called technology mapping.

For this Ph.D. research project it has been decided to develop a synthesis method that
uses a base lookup table FPGA architecture consisting of a set of identical small LUTs
with programmable interconnections. The topology mode! used with this base architec-
ture is a network of LUTs. To account for the limits in wiring resource, the method will
minimize the number of long wires of the LUT network. There will be no separate logic
model. That means that the logic and topological model are the same and technology
mapping is not necessary.

There are at least two widely used FPGA architectures that correspond to this base
architecture: Xilinx FPGAs [Xil93] and ALTERA’s FLEX series [Alt95]. Both FPGA
architectures consist of a programmable network of LUTs. The choice of this base archi-
tecture also seems to make sense in respect to other fine granularity FPGA architectures:
the basic building blocks of all other architectures can be seen as some special cases of a
LUT. After all, a LUT is able to implement any function of NI inputs and NO outputs,
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so all other basic building blocks must be a special case of such a LUT. For example,
the Actel architecture consists of network of programmable multiplexers. A multiplexer
can be seen as a special limited "LUT", that is able to implement only a subset of all
functions implementable by an actual LUT of the same input and output size. Similarly,
Atmel FPGAs [Atm95] consist of a fine granularity block structure, where each block is
able to implement a (large} subset of LUT functions.

Furthermore, the base logic synthesis method will also be able to produce standard cell
implementations. If the standard cell library is complete {it implements all non-trivial
Boolean functions of a certain number of input and output variables), the synthesis
method can be used unmodified. Otherwise the synthesis method must be changed so
that the missing functions are suppressed. The approach of extending the base architec-
ture to other architectures can only be used if the logic blocks of the other architectures
are largely similar to LUTs. If the difference between them becomes too large, then the
model becomes inaccurate and the synthesis algorithm can no longer be guaranteed to
produce near-optimal results. Small discrepancies between the logic blocks of an archi-
tecture and the LUT blocks used in the base architecture can be resolved by taking care
that the synthesis algorithm will never construct or will remove blocks that implement
one of the missing functions. Another approach would be that the missing functions
will be build using two or more building blocks that are available in the architecture.
For example, in [LSK93] it has been described how LUTs can be build by combining a
number of Actel multiplexers. This way missing functions can be created as compound
building blocks. However, if this approach is taken the synthesis method must be ex-
tended to utilize the fact that these compound cells are more expensive to use then the
single cells (because they occupy more than one physical building block).

The synthesis method for the base architecture is aimed at small LUTs only. The typically
maximal size of such a LUT is 4 inputs and 2 outputs or 5 inputs and 1 output. These
values correspond to the size of Xilinx logic blocks; they have not been chosen arbitrary.
In [FS94] it has been proved that the technology mapping of a Boolean network (where
the vertices of the network correspond to any K-input 1-output Boolean function) onto
a network of K-input LUTs is NP-complete for any £ > 5. Furthermore, research per-
formed by FPGA manufacturers has determined that for larger LUTs the unused logic
in a LUT becomes too large [BFRV92, chapter 4].

41.2 Optimization criteria

Since the problem of optimal logic synthesis for LUT networks is computationally com-
plex (see Section 4.1.4 for details), strictly optimal implementations cannot always be
obtained using a realistic amount of computing resources. Therefore heuristic algo-
rithms will be used that strive to find a solution as near as possible to the optimal in a
reasonable time and using a reasonable amount of resources. The proposed heuristic
algorithm will construct one or more circuit realizations that solve the synthesis problem
in parallel. At one or more points in the construction process decisions have to be made
which determine whether and how to continue the construction of the partial solutions.
The heuristic algorithms will evaluate each partial solution by computing values for one
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of more evaluation parameters that predict the amount of resources that the best final
solution reachable from a given partial solution will use. This computation is naturally
inaccurate. The optimal solution is the solution that uses the fewest resources. Un-
fortunately, for large problems, it is virtually impossible to know whether the heuristic
algorithm has found the optimal solution. In fact, it will be proved in Section 4.1.4 that
it is impossible to make a precise quantitative statement about the distance (expressed
as the difference in the resource usage) between the constructed solution and the opti-
mal solution. However, it is possible to compare the partial solutions and make some
comparative predictions on how much it will cost to develop these partial solution to
final solutions.

The optimal solution of a synthesis problem is defined in terms of optimization goals. The
optimization goals are the objectives of the synthesis and are part of the total design
specification. Many different optimization goals can be thought of.

The most classical optimization goals of logic synthesis are area optimization and delay
optimization. In area optimization, the goal is minimize the chip area occupied by the
implementation. The area can be occupied by active elements and by wires. For LUT
based FPGAs, area optimization is not interesting because the FPGAs are completely
prefabricated and thus have a fixed area. It is however very interesting to minimize the
numbser of cells that are used for the implementation and to minimize wiring (especially
the number of long wires), since this allows to place more complex functions into an
FPGA and helps the placement and routing phase to do a better job.

The goal of delay optimization is to minimize the critical path delay or maximize the
operational frequency of the circuit. Delay optimization is very important for LUT
based implementations, because the configurable switches used in LUT based FPGAs
can contribute up to 60% of the overall design delay [XK96]. Delay optimization for
FPGAs requires a topological model, because not all wires have the same characteristics
and the delay of the wiring switches have a significant influence on the overall delay of
the circuit. In [XK96] a method for the timing estimation for Xilinx FPGAs s proposed.
Design for low power has become a very important issue recently for a number of
reasons. First of all, the demand of consumers for hi-tech portable products forces the
designer to use as little power as possible. Secondly, to protect the environment, it is
necessary to use as few as possible resources and finally, to further increase the density
of integrated circuits, it is necessary to lower the power consumption to overcome heat-
ing problems and to reduce capacitances. Therefore potwer consumption optimization has
become an important optimization goal. Minimizing the power consumption used by
an FPGA, requires a model that models the power flows in an FPGA and a power esti-
mation algorithm that calculates the amount of power consumed by the circuit. A very
interesting approach to the synthesis for low power FPGAs can be found in [SSA94].
Another example of an optimization goal is synthesis for testability. The optimization goal
here is to find an implementation that can be easily tested or includes self diagnostics.
Since the internals of an FPGA cannot be reached, synthesis for testability just adds extra
test functionality to the circuit to perform the testing (for example unused registers in
the FPGA can be used to create a scan path). An overview of techniques for synthesis
for testability techniques can be found in [KIN96].
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Unfortunately, optimization goals cannot always be directly expressed or their achieve-
ment directly measured. Often, they need to be translated into some estimators, i.e.
(mathematical) statements related to the logical or topological model that is used for
the synthesis. These estimators are called the optimization criterig: criteria that should be
met as precisely as possible by the synthesis algorithms, because they express in a way
the required circuit properties.

A number of optimization criteria for networks of LUTs are:

e The number of LUTs
The number of LUTs is the primary optimization criterion for the amount of active
area used in the implementation of the circuit, and the only useful estimation
function for the active area of small granularity FPGAs. Values for this criterion
can be computed easily from the LUT network by counting the number of LUTs.

¢ The amount and the length of the interconnection nets

The amount of nets necessary to interconnect the LUTs and the length of each of
these nets are two optimization criteria that measure the complexity of a circuit
{together with the number of LUTs). The amount of nets provides the measure for
the input and output capacity of the LUTs that are used. It is also an indication for
the average number of times a LUT output is used as an input for another LUT. A
small number of routing nets results in an easier placement and routing problem
for the FPGA and has a positive effect on the number of look up tables used. The
number of routing nets can be obtained easily from the LUT network by counting
the interconnections.

The length of the nets is a good measure for the (routing) complexity of a circuit
because circuits with many long wires are generally more difficult to place and
route. Short wires have a positive effect on the placement and routing of the circuit.
Finding the length of the nets in the network of LUTs model is not straightforward,
since this network does not take into account the position of the LUTs. One can
analyze, however, which mechanisms create long nets, and which ones prevent
the creation of many long nets.

¢ Number of levels in the circuit

Since the delay characteristics for the LUTs may not be available at the logic
synthesis level (because it is not a part of the used logic or topology model) the
number of levels can be used as a measure for the speed of the circuit. This
is especially true if the LUTs have the same delay time for each function they
can implement. Minimizing the number of levels in a LUT network does not
only minimize the critical path delay, but also makes the circuit faster in general.
Unfortunately it has a negative impact on the number of LUTs in the network,
since minimizing the network depth decreases the chance of reusing an output of
a LUT.

o Critical path delay
This optimization criterion is used to make the circuit as fast as possible. It
cannot be computed accurately without making a topological model of the FPGA
synthesis, because of the influence of delays in the wires. Furthermore, it requires
accurate characteristics of the delay of the LUTs and the routing switches.
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Of course it is also possible to create a trade-off between two or more of these opti-
mization criteria. Such a trade-off can be static (specified by the user as a configuration
parameter of the algorithm) or dynamically adapted by the algorithm based on the par-
tial solution.

In the algorithm presented in this thesis the trade-off between the following optimization
criteria will be used:

1. Minimize the number of LUTs in the circuit,
2. Minimize the number of levels in the circuit.

The trade-off algorithm will allow the construction of networks that have as few as
possible LUTs. However it allows LUTs to be sacrificed to improve the speed of the
circuit, if this is desirable or necessary.

4.1.3 Problem formulation

Based on the discussion in the previous section, it is now possible to formulate the exact
problem statement for which a solution has been proposed in the scope of the reported
research.

The goal of the research was to construct an effective and efficient logic synthesis method
for the multiple-level implementation of multiple-output combinational Baolean func-
tions using LUT based FPGAs. The method will construct the LUT network by perform-
ing a general decomposition (without loops), such that all possible loop-free network
structures can be constructed. The following assumptions and decisions have been
made;

1. The FPGA architecture will be modeled as a network of LUTs, so that technology
mapping will not be necessary. Each LUT is able to implement any Boolean
function that has no more than N7 inputs and no more than NO outputs, where
NI and NO are small positive integers {typically NT < 5and NO < 2). Al LUTs
are assumed to have the same size.

2. The Boolean function to synthesize is specified as an incompletely specified multi-
ple output Boolean function and represented as a function table. The method will
be focused on functions for controller type circuits. The function tables of con-
trollers can roughly be characterized as having many primary inputs and outputs,
relatively few product terms compared to the number of all possible min terms,
and many don’t cares. The original function will not be preprocessed using two-
level minimization techniques, so the total design freedom, including the complete
don’t care set is available to the actual muitiple-level logic synthesis process.

3. The primary optimization criterion consists of minimization of the number of LUTs.
However, a trade-off will be possible with the criterion "minimize the number of
levels in the tree”. Furthermore, the algorithm will try to minimize the number of
long wires. So, the active area minimization will not be preferred at all costs.
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The method will try to make the life of the "placement and router” process easy
by limiting the number of long wires. The number of long wires is minimized
using the following rationale: long wires are typical to larger circuits and they
are primarily the result of the creation of common subfunctions or the use of the
primary input signals or signals created in the circuit levels close to the primary
inputs as inputs to the logic blocks located that are located close to the primary
outputs. Namely, when creating common subfunctions all the fan-outs (except
for one) cannot be processed further locally and their related signals have to be
transported to another parts of the circuit. The reduction of long wires is therefore
accomplished by limiting the creation of common subfunctions to those cases
where the saving in the usage of LUT is considerable. Thus creation of small
subfunctions being common subfunctions of many functions will be prohibited.
This can be implemented easily by creating a threshold on the subfunction size:
only subfunctions larger than the threshold will be created.

There are some problems that cannot be accounted for by the proposed synthesis method:

1. The model does not incorporate the topology of the FPGA; that means that it does
not find a layout for the FPGA. So, floor planning, placement and routing of the
LUT network into the FPGA need to be done independently as a postprocessing
step of the method presented here. Adding topology to the proposed method is
not straightforward.

2. The method assumes that each LUT has the same properties, regardless of the
function it implements. Therefore, counting the number of LUTs is considered an
accurate measure for these properties. This assumption is true for the area of a
LUT (the area does not depend on the function the LUTs implements), but this
is not necessarily true for electrical characteristics of the LUT, like the delay of
the look-up cell or the power dissipated by that cell. If these characteristics are
available, then extending the model with them and making it more accurate will
be quite easy. Adapting the decision algorithms so that smart use of the extra
information is made, is however a bit more difficult.

3. The synthesis method assumes LUTs with a fixed input and output size. Some
FPGA architectures however have a number of different blocks available or have
different modi operandi for these blocks (Xilinx XC3000 logic blocks can be pro-
grammed as 4-input, 2-output LUT, or as 5-input, 1-output LUTs and these types
can be mixed freely, Xilinx XC4000 series allow even more complex combinations}).
Extension of the method to cover such cases is however straightforward and con-
sists just in considering in the place of a single set of maximal physical block
dimensions a few such sets of maximal physical block dimensions in the same
manner as the single set.

In the next sections a concept for solving the problem formulated above will be presented.
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414 Complexity considerations

In this section the complexity of the logic synthesis problem stated in the previous sec-
tions will be discussed. There are two fundamental problems that need to be addressed:

1. Find an optimal realization r for a certain function f.

2. Find the distance between a realization r' of a function f and a best realization
r for this function. The distance is expressed in terms of some quantity that is
calculated by the quality function used to evaluate the realizations.

The first question simply solves the logic synthesis problem that has been formulated.
Its complexity is important, because it shows if it is in practical sense possible to find the
best solution for large instances of the problem with a reasonable time or if a heuristic
solution for large problem instances is desirable. The second probiem is also of some
importance because it shows how far a realization lies from an optimal solution, hence it
gives a measure for the quality of the solutions generated by a heuristic algorithm. It will
be shown that both these problems are NP-hard [G]79]. A problem is called NP-hard if
a NP-complete problem can be transformed to it in polynomial time. This means that
solving a NP-hard problem is at least as difficult as solving a NP-complete problem.
Practically, this means that heuristic algorithms are acceptable and even essential for the
synthesis of large functions and that determining the exact quality of a solution is as
difficult as finding the optimal solution itself.

To prove the NP-hardness of these two problems the notion of realization space is
necessary. The realization space R consists of all possible implementations of Boolean
functions expressed in terms of a suitable description language. The realization space
is extremely large, but it is finite because of economical, practical or physical limitations
imposed by the implementation technology or the considered application.

On the realization space a quality function ) : R — NU{oo} is defined, where N represents
the set of natural numbers (including 0). Quality function ; creates an ordering on the
realizations of function f. A realization r € R is an optimal realization of f if there exists
no realization r’ € R such that

Qlr') < @y(r)

Note that in general more than one optimal realization can exist. If a realization r does
not implement the behaviour of function f then it is given an infinite quality, i.e. then
Qi(r) = co. For all other realizations it calculates a value representing the cost of the
realization expressed in terms that the designer finds the most important {e.g. area,
speed, trade-off between area and speed).

Proving the NP-hardness of a problem is done by showing that a well-known NP-
complete problem is transformable to this problein in polynomial time [G]79]. Here, it
will be shown that the satisfiability problem (which is a well-known NP-complete prob-
lem [G]79]) can be transformed in polynomial time to each of the fundamental problems
described above.
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Theorem 4.1 Satisfiability problem

Given a Boolean function f : B™ — B, the problem of answering the question "does an
input vector z = {1, 72, ..., 7,) € B™ exist such that f(z) = 17" is NP-complete; in other
words determining the existence of a truth assignment for f is NP-complete. The proof
can be found in [G]79]. o

The proofs here will be restricted to single output functions. This is no severe restriction,
because multiple output functions are more complex than single outputs. Therefore, if
NP-hardness for single output functions is proved, then the problem for multiple output
functions must also be NP-hard. Before the NP-hardness can be proved, it is necessary
to make the following assumption: for each n-input null function f* : B* — B

e v flz)=0

zE B

there exists precisely one optimal realization. This is by no way an unreasonable as-
sumption: the n-input null function f* is zero for all possible input values and hence
can be realized by connecting the output to the low voltage pin of the power source.
Any other implementation of that null function will cost more than this single wire and
is thus less optimal. If this unique optimal realization of the null function is called rg,,,
then this assumption can be formulated as follows:

1. Yn € N: v, is the best realization of /3.
2. For each optimal realization r of f : Qy(r) = Q¢(rfiy.) implies that r = 77,,..

Theorem 4.2 Finding an optimal realization r for f is NP-hard

Suppose that an algorithm X exists that is able to find r for each Boolean function
f:B® — B. Then X can be used to calculate r and r can be compared to r7.,,,. If they
are equal then f is the null function and hence f is not satisfiable. If r is not equal to
e then f cannot be the null function (rf,,, is the unique best realization of the null
function) thus at least one input vector z exists such that the f(z) = 1. This means
that the algorithm X could be used to solve the satisfiability problem for a function f
by simply using algorithm X to find an optimal realization r for it and comparing it to
Tfuse- The transformation of the satisfiability problem into this problem only involves the
comparison of r and 7., which can be performed in time linear to the size of description
of r7;,.. This completes the proof of the NP-hardness of finding the optimal realization
of a Boolean function. 0

Theorem 4.3 For a given realization r', finding the distance Qs (r') — Qf(r), where v is some
optimal realization of f, is NP-hard

Suppose an algorithm that can calculate Qs(r') — Q;(r) exists. Then it can be used to
calculate p = Qy(rf;,,) — Qp(r). If p = O then v = %, and f is the null function j;* (this
follows from the assumption made above). On the other hand, if p # 0 then an input
vector z must exist such that r(z) = 1. But since r is one of the optimal realizations of f,
there must also be at least one input vector z such that f(z) = 1. Therefore, the distance
algorithm can be used to solve the satisfiability problem. Because the transformation
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Figure 4.1: A 4-input, 1-output LUT

consists in comparing p with 0 (which costs constant time) it can be concluded that
finding the distance is NP hard. |

Theorem 4.4 Checking whether r is an optimal realization of some f is NP-hard
The proof is analogous to the proof for finding an optimal realization for function f. 0

Theorem 4.5 For a given realization r' and natural number n € N, checking whether Q:(r') —
Qe(r) < n, where r is some optimal vealization of f is NP-hard

Itis an NP-hard problem to determine if the distance between the realization of a certain
Boolean function and the best realization for that function is within a certain bound
value n. The proof is analogous to the proof of finding the distance of realization r* and
some optimal realization. o

The theorems in this section show that the use of heuristic algorithms is indispensable
for the near-optimal logic synthesis of large Boolean functions, implemented as LUT
networks. Also, the theorems state that it is impossible to decide in a reasonable time
whether the synthesis algorithm has found the best possible realization.

4.2 Mathematical framework

4.2.1 Network representation using set systems

In the previous sections it has been discussed that a network of LUTs would be a good
logic and topological model for the synthesis problem. The goal of this section is to
develop a suitable mathematical framework for this model.

The mathematical framework consists of 2 parts. First, there is a definition of the net-
work structure. The second part of the framework consists of an algebra that can be
used to define the logic function of the blocks and defines operators on the graphs and
the blocks. Defining the network structure is not really a problem: this will be a simple
graph representation consisting of vertices (the LUTs) and edges (the interconnections).
However, choosing a useful algebra is not-trivial at all. This will be a subject of this and
the next sections.

When creating a mathematical model there are two important aspects to consider: the
representation of information and the way this information can be processed. In the LUT
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case, the representation is the functional description of a single LUT and of networks of
LUTs. The synthesis process of a LUT network uses that information to form a network
that implements the desired functionality, so the operators defined in the mathematical
model should facilitate the synthesis process. In general a mathematical model should
have the following properties:

1. It must be an algebra with nice mathematical properties and the algebra should
have useful and powerful operators defined in it.

2. The necessary information should be compactly represented. If this is not the case,
then the model will not be satisfactory for large circuits.

3. It should model exactly the information necessary for the synthesis. Of course all
the necessary information should be present in the model, but it should also not
model too much information since this makes the model unnecessary complex and
the superfluous information can distract or even mislead the synthesis process.

4. There should be a strong relation between the theory and practice; all the elements
of the mathematical model must have a straightforward relation and interpretation
with respect to the circuit that is being build.

A LUT s in fact a black box that can implement any Boolean function with no more than
NI inputs and no more than NO outputs. Take for example the LUT in Figure 4.1, this
LUT is able to implement any Boolean function of 4 or less inputs, e.g.:

y=n-+u
or

Y= HrtH B Lt T
but also

Y= BB LH+h T B L+l B B - ut+nh T T &t

Mo Otn DL hO+tn G- O+0 -0 T3 %

Although the above three functions suggest to be of a different complexity, from the
LUT point of view their complexity is identical: they all fit into a single LUT. In fact the
structure of the function implemented by a LUT is of no interest, because this does not
give any useful information. This is exactly what the third property mentioned above,
is all about: the sum-of-product representation is not a good representation for LUT
blocks, because it contains too much information (about the structure of the function)
and badly interpreting this information can give a false sense of complexity. Another
example of the third property is that the phase of the input and output signals is not
important, since inverters can be implemented at the inputs and outputs of every LUT
at no extra cost.

The partition theory [HS66] (see Section 2.3) essentially implements what is just needed:
input symbols are divided into a number of logic blocks. Each blocks represents the
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Table 4.1: Boolean function F for the realization example

symbols that need to be encoded with the same bit pattern and the operators defined on
partitions can be used to build and verify networks of LUTs. Unfortunately, partitions
have one fundamental drawback: they cannot handle don’t care symbols correctly. In
the above example, using partitions there is no way to say that the response on input
pattern « is a don't care. Don’t care processing is however essential for the construction
of optimal and near-optimal Boolean networks.

There are a number of different approaches to extend the partition theory to incorporate
don't cares. Each of these methods has its own peculiarities:

1. Don't care blocks

In this concept, all don't care symbols are placed in a special don’t care block and
the partition sum and product operators are extended for use with these blocks.
This approach is a generalization from the bit partitions introduced in Chapter 2.
For example, a partition with a don’t care block (74) could model the function in
Table 4.1 like this: .

w = {5 % & e Fog (0} (4.1)
However, this representation can be too coarse, since it assumes that a symbol is a
care symbol (belonging to exactly one block) or it is a don’t care (that does belong
into the don’t care block). In general, it is also possible that a don’t care belongs to
a subset of all partition blocks, for example the symbol ¢ is placed together with
e and f in one block of 4. This is however not completely correct, symbol ¢ is
partial don’t care and can also belong in the block ¢. This cannot be expressed
using don’t care blocks.

2. Set systems
A set system is a generalization of partition that allows each symbol to be placed
in one or more blocks. Don’t care conditions are modeled by adding a don’t care
symbol to each block whose value the don’t care can take. The function above can
be modeled using set systems as follows:

$=1{a5 @77 a.d w6 ]9) (4.2)

This is exactly the information that needs to be modeled. Unfortunately, compared
to partition theory set systems have a nasty property, they are not canonical, i.e.
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the same information can be represented using a number of different set systems,
for example instead of the block @,¢, g the set system ¢ could also consist of the
three blocks @;¢, @, ¢ and 7,7 and model the same information.

3. Using sets of incompatibility pairs

This last way of handling don’t cares represents all information by a set of incom-
patibility pairs. An incompatibility pair a | b is a pair that indicates that the two
elements a and b cannot be encoded by the same bit pattern, because difference
between these symbols is required. Incompatibility sets implement information
in a unique way, however this representation is not compact: a set of incompat-
ibility pairs can easily become very large. For example the incompatibility set
representing the function found in Table 4.1 is:

{(b, ) (byd; (b,e); (b f); (b9 (e,d); (c e (e,f); (d.e); (d,]); (01,5')&}4 .

From these possibilities, the set of incompatibility pairs models exactly that what is
needed: a representation that is able to distinguish a number of symbols. Unfortu-
nately, for logic synthesis, it is not easy to deal with these sets, because there is no
straightforward relation with bit patterns. In particular, it is not easy to determine how
many bits are necessary to implement the information present in a set of incompatibility
pairs. Classical set systems also model incompatibility pairs, but unfortunately they are
not canonical: different set systems can model the same information (the same set of
incompatibility pairs). For partitions with more than two blocks, it is possible to have
a don’t care, that belongs to a subset of the partition blocks. Therefore, partitions with
don't care blocks are not useful because they cannot handle this kind of don’t cares (in
partitions with don’t care blocks the don't care is always assumed to be don’t care for
all blocks).

In the next section a modified set system thecry is presented that has all the properties of
the classical set systems, but has the additional advantage of representing information
in 2 unique canonical way. In this section the relation between incompatibility sets and
set systems will also be further examined.

4.2.2 Set system theory

In this section the set system theory will be introduced. It will be shown that there is
a large resemblance with partition theory but there are also a number of important dif-
ferences. The theory in this section is partly based on the set system theory introduced
by Hartmanis e.a. [HS66] but extended in a specific way for the LUT synthesis purpose.
Development of the set system theory is not the goal of this thesis, therefore only those
parts of the theory that are required for the purpose of the considered logic synthesis
method will be described in this thesis.

Hartmanis e.a. [HS66] introduced an extension to their partition theory that they called
set system theory. The advantage of this set system theory over partition theory is
that it can model naturally don’t cares which is essential for the efficient synthesis of
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complex multiple-level Boolean functions. Unfortunately, the theory of Hartmanis e.a
has a number of strange properties with respect to the information point of view. For
example, the < operator for set system does not always yield the result which should be
expected from the information point of view (if two set systems ¢ and v implement the
same information, then it may happen that ¢ < v but also that ¢ £ ¢). In [Kon95] an
attempt has been made to fix it, by introducing a Red() operator. Unfortunately, there is
only an informal definition of this operator.

In this section, the set system theory of Hartmanis [HS66] will be reformulated, such
that the set system theory is consistent with the information point of view. It will be
proved, that the Red() in fact represents the maximum element of a lattice.

Definition 4.1 Compatibility relation
Let V be a finite non-empty set of symbols. A binary relation ~ is called a compatibility
relation on V if and only if it is reflexive and symmetric, i.e.:

~C VOV (4.4)
such that
Y (v,v) €x (4.5)
velV
and
Vo (w,v) €x {4.6)
(v,w)ex~

A pair of compatible symbois is called a compatibility pair. The notation ¢ ~ b will be
used to denote that (a, #) €. The set of all compatibility pairs of a certain compatibility
relation = is called the compatibility set. ]

A pair of symbols that is not compatible is called an incompatibility pair and the set of all
incompatibility pairs is called the incompatibility set. In this section compatibility pairs
are used; however later in this thesis, it is more convenient to use incompatibility pairs
and incompatibility sets. This is of course no problem, since the incompatibility set is
just the complement of the compatibility set. A compatibility pair is the most elemen-
tary unit of information (abstraction) that is used. In relation to the logic synthesis,
a compatibility pair expresses that two compatible symbols will be encoded with the
same bit pattern and thus that these symbols cannot be distinguished from each other.
Similarly, the incompatibility set represents all pairs of symbols that will be encoded
with different patterns and hence can be distinguished.

Example 4.1 Compatibility and incompatibility set
In this example the function presented in Table 4.1 is used again. The function table
consists of the following input symbols (patterns):

V={a,bocdef g} (4.7)
The function can be represented with the compatibility relation ~C V @ V:

~ = {{a,b); (a,¢); {a,d); (a,€); (a,f);
(a, 9% (c,q); (e.f) (e, 9); (f.0)} (4.8)
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which represents the pairs of different input symbols that need not to be distinguished
by the different output values. Note that for reasons of brevity the compatibility relation
=~ is not completely enumerated: for all z, y € V the pairs {z, z) are missing and only
one of the pairs (z, y) and (y, z) is present.

Each pair of input symbols in relation =~ can be encoded with the same output bit vector.
The complement of =~ is the incompatibility set |:

|={(b,c); (b, d); (b,e); (b.F) (B, g); (¢, d); (c.e); (e, f): {d, el {d.f); (d,g}} (49)

the pairs in | indicate that these symbols should be encoded using different output vec-
tors. ]

The relation between compatibility sets and set systems on one hand and encoding on
the other hand will be more thoroughly examined in the Section 4.2.3.

Definition 4.2 Compatible block
Aseth C V is called a compatible block with respect to compatibility relation ~C V@ V
(denoted as CB. (b)) if and only if each pair of symbols in b is compatible:

CB.()e V veew (4.10)
»wEh

a

Definition 4.3 Maximal compatible block

Aset b C V is called a maximal compatible block with respect to compatibility relation
~C V @ V {denoted as MB.(b)) if and only if the block is compatible and no other
symbol from V is compatible with all the symbols in &:

MB.(b) & CB.(O)A ¥ 3Jviguw (4.11)
veV\b wEh

]

Example 4.2 Compatible and maximal compatible block

In this example the symbol set V and the compatibility relation =~ from the previous
example will be used again. The following blocks are some examples of compatible
blocks:

CB.{{a}), CB~.({e,f}) and CB~.({e,f.¢})
The following blocks are examples of maximal compatible blacks:
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Definition 4.4 Set system
Let V' be a finite non-empty set of elements. A set system ¢.. is a representation for a
compatibility relation ~ defined on V if and only if:

¢ C2V (4.12)
such that:
1. The subsets are compatible:
Y CB.(b) (4.13)
bE Py
2. The set system is non redundant:
V bCh=b=10 {4.14)
b o
3. All pairs of ~ are present:
v 3 {vwich (4.15)
{v,w)Ex bEP~
0

The subsets of a set system are called blocks and the notation convention for set systems
is similar to that of partitions: the blocks are overlined and the symbols in the blocks are
comma separated. The blocks itself are separated by semicolons. If there is no doubt for
which compatibility relation the set system is a representation, then ¢ is used instead of
¢~. The notation S5( V) will be used to denote all set systems that can be defined on a
set V.

Example 4.3 Notation of a set system
Let V ={1,2,3,4} and let ~C V @ V be a compatibility relation defined as follows:

== {(1,2); (2,3); (2,4); (3,4)}
Then
¢~ ={1,2;2,3,4}
is a set system defined on V by ~. o

From these definitions and examples it follows that a set system is similar to a partition.
In a set system however each symbol can be placed in more than one block. A partition
is a special set system where each of the symbols is placed in exactly one block. Two
special set systems will be distinguished: the set system with all elements in a single
block will be calied the identity set system (denoted as ¢..(1)) and the set system with
each symbol in a singleton is called the zero set system (denoted as ¢..(0)).

A set system expresses information about the symbols allowing some symbols to be
distinguished from some others. Two symbols ¢ and ¢ can be distinguished from each
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other by a certain set system ¢ if and only if there is no block of ¢ that contains them
both. If a symbol is an element of more than one subset than this expresses the loss of
information. It is not known to which of the blocks this symbol belongs. As opposed to
fuzzy logic, there is no weight associated with uncertain symbols, the symbol belongs
with the same amount of certainty to each of the blocks. The fact that symbols can
belong to more than one block, will be used to express den’t cares in the circuit.
Unfortunately set systems are not unique representations for a compatibility relation .
In fact, a whole set of set systems that implement = can be defined:

Definition 4.5 Set system set Setsys{~)
Setsys{=) is the set of all set systems that represent a certain compatibility relation . O

Example 4.4 Setsys(=)

Let V = {1,2,3,4} and let ~C V ® V be a compatibility relation defined as:
== {(1,2); (1,3); (2,3); (2,4)}

Then
Setsys(=) = ({123 24 {T5 T3, T3, 2.4}

a

Setsys(=) defines all set systems that implement the same compatibility information.
This is in fact the source of all trouble in the Hartmanjs set system theory; a number of
set systems implement the same information, but the set system operators defined by
Hartmanis do not acknowledge this fact and can produce different results for different
representations of the same compatibility set.

If this problem is more closely examined, it turns out that the problem is caused by
the fact that the blocks of a set system need not be maximal; in the example above the
pairs (1,2), (1,3) and (2,3} can be implemented in a single maximal block, or can be
implemented as three blocks with two elements. Therefore, it makes sense to define a
canonical set system with maximal blocks and to use this canonical set system as the
representative of Setsys(~). Such a canonical representative can be defined as follows:

Definition 4.6 Canonical representative of =
Let V be a finite non-empty set of symbols. M. is called the canonical representative of
a compatibility relation ~C V ® V. M., is defined as

My ={b 2" | MB(b)} (4.16)
a

Theorem 4.6 (Setsys(~), C) is a lattice
Let V be a finite non-empty set of symbels. Let =C V @ V a compatibility relation
defined on V. Define C as:

Y ¢ C Y~ ifandonlyif v 3 s C ¥ {(4.17)
o W € Setys(~) bEd~ b EY
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Figure 4.2: Compatibility graph for ¢, and ¢,

then (Setsys(=), C) forms a lattice and M.. and m.. defined by

Me={bc2"| MB.(b)} (4.18)

mzz{{v,w}eV®V|v:w/\vaﬁw}u{{v}éVf 4 w;zév} (4.19)
weVA{v}

form the top and respectively the bottom of the lattice. o

The proof of this theorem can be found in appendix A.1. The importance of the theorem
is that the choice of M. as the canonical representative is not arbitrary but a logical
choice, it contains all the compatibility pairs in the most compact form.

The question is how the canonical representative can be obtained from an arbitrary set
system or compatibility set. This will be illustrated using the following example.

Example 4.5 Calculation of M..
Let V = {1,2,3,4,5}. V is a finite non-empty set. On V the compatibility relation
~C V © V is defined as follows:

~=1{(1,2),(1,3),(1,5),(2,3),(2,4),(3,4), (3.5)}
Set system ¢.. defined as:
¢ ={12 1,35 23,4}

represents compatibility relation ~.
The maximal set system of ~ can be calculated by representing the information as a
graph of compatibility pairs and calculate maximal connected subgraphs (also known
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as cliques) of this graph. For example for the set systems ¢.. and compatibility relation
= mentioned above the graph in Figure 4.2 can be drawn. In such a compatibility
graph, each vertex represents a symbol and an edge between two vertices means that
the associated two symbols are compatible. By using a standard algorithm for finding
maximal connected subgraphs the following maximal set system is found:

ve = {123 135 23,4}
It can be checked very easily that . € Setsys(=). m}

In practice, the above algorithm will not often be needed. It will be proved later in this
section, that the operators defined on set systems preserve canonicity.

Definition 4.7 < operator defined on set systems

Let ¥ be a non-empty set of symbols and let ~C V @ V and ~'C V @ V be two
compatibility relations defined on V. Set systems ¢ € Setsys(=) is called smaller or
equal than set system 1. € Setsys(~'}, written ¢.. < 9. if and only if: ~C~' o

In other words, a set system is called smaller or equal than another set system, if it
implements fewer compatibility pairs. This makes sense from the informational point
of view. Please note that if the set systems are in fact partitions then the < corresponds
to the < operator for partitions.

The definition used here differs from the definition used by Hartmanis e.a {HS66]. The
following theorem establishes the link.

Theorem 4.7 < operator defined on canonical set systems
Let V be a non-empty set of symbols and let ~C V @ V and ~'C V @ V be two
compatibility relations defined on V. Then

M.<Mue ¥V 3 bCe (4.20)
bEMa cEM.,
a

The proof of this theorem can be found in appendix A.2. The right hand of the expres-
sion is used by Hartmanis as the < operator. The theorem states that the < operator
defined on canonical set systems is equal to the Hartmanis definition of <. However,
if set systems are not canonical using the Hartmanis definition, it is possible to have
two set systems do, b € Setsys(~) such that ¢.. < ¢ but ¥~ £ ¢, whereas both set
systems implement the same information. This is not possible using the < operator
defined above.

Example 4.6 Set system < operator
Let V = {1,2,3,4}. Then for example the following relations are satisfied:

&

{1,2~

2,34} < {12 13.% 24 (4.21)

-
[ &)

313 4} < {123 3} (4.22)
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1234 <{1223 131} (4.23)
0

Note that the set systems in the second and third equation in the example above repre-
sent the same compatibility set. It should be noted that a set system that is the smaller
(as defined by the < operator) of two set systems can be the set system with the smallest
number of blocks; for partitions this is impossible,

Definition 4.8 Set system product
Let¢.. € Setsys(~) and 1+ € Setsys(') two set systems. The set system product ¢~ -y~
can then be defined as

¢n-Yu =9z 3 3 z=bNbA Y YV gChNb=z=b0 (424)
b€ ba€y s biEdn bl EPs

@~ - U i a set system and represents the following compatibility relation:

~'= {(u,w) eveVvVi 3 {vuw}e b} (4.25)
bEGa s
e ¢ - th € Setsys(x’) =]

The definition of the set system product is the same as the product defined by Hartmanis
e.a [HS66].

Example 4.7 Set systems product
Letset Vbe V = {1,2,3,4,5}. Then the following set system product can be calculated:

(12,3 1.4,5} - {1,2, 3,45} = {12, 3; 4,5} (4.26)

O

The set system product has the same practical meaning as the partition product. The
set system product combines the information of the two set systems into one new set
system. In the example, the first set system is able to distinguish symbol 3 from symbol
4. The second set system can distinguish symbol 2 from 3. So, the product set system
is able to distinguish symbols from both pairs. On the other hand, neither set system is
able to distinguish 1 from 2 so the set system product is unable to do it.

Theorem 4.8 The set system product preserves canonicity
Let M. € Setsys(~) and M., € Setsys(~') be two canonical set systems, and let the set
system product M.. - M. € Setsys(~"). Then

Mor = M. - My (4.27)

O
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The proof can be found in appendix A.3. The consequence of this theorem is extremely
important. It states that the set system product of two canonical set systems is another
canonical set system. This is important because the operators < and - are unambigu-
ously and naturally defined on set systems. Also, the < operator can be efficiently
checked for canonical set systems. Furthermore, it is not necessary to make set systems
explicitly canonical (which can be a time consuming operation). Finally, from the in-
formation point of view canonical set systems are sound. In other words, canonical set
systems provide a well defined, compact, unambiguous and easy o interpret mathe-
matical framework for LUT based logic synthesis.

Like in partition theory, the symbol and bit representation of the circuit can be coupled
using bit set systems. Unlike partitions, set systems are able to handle don't care bits.
Let B = {1, by, .., b5} be a set of (input or output) bits. Let T = {4, &, ..{;3} be a set
of (input or output) symbols. Each input/output bit b; € B, introduces a two-block set
system ¢(8;) on the set of symbols (bit value patterns) T one block of ¢ r(b:) contains
the symbols for which bit b has the value 0 and the other block centains the symbols
for which b, has the value 1. If a bit has the don’t care value, then the symbol is placed
in both blocks. The product of the set systems ¢r(b;) for all the bits b; : & € B will
unambiguously define the set of all input/output symbols, i.e. it will be a zero set
systemon T.

Definition 4.9 Symbol set system induced by a bit partition
¢ is a symbol set system induced by a bit partition 7g (¢r € ind(xp)) if and only if

b > I ér(bi) (4.28)

be{B—ded{rg))

O

Definition 4.10 The smallest symbol set system induced by a bit partition
$r is the smallest symbol set system induced by a bit partition 7 (¢ = ind*(nz)) if and
only if
br = II $ribe) (4.29)
8 €(B—deb(mp))
0

From the above to definitions it follows that any set system ¢r > ind*(mp) is an induced
set system of 7z.

Definition 4.11 Bit partition induced by a symbol set system
g is a bit partition induced by a symbol set system ¢ (w5 € ind(¢+)) if and only if

) dr(be) > dr (4.30)

bpe(B—dcb{ng))

]
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[LL L1 Ty Pady yﬂ]
al 0-00 0
b 0-01 1
c| -010 | 0O
d|l --11 0
el 0110 -
fi 1-0- 1
g| 1110 || O

Table 4.2: Function table for bit partition and set systems example

If ¢7 € ind{nz) then, having 7 the blocks of ¢ can be computed. If 7p € ind(¢7) then,
having the block of ¢7 the values of all the important bits from 75 can be computed.

Example 4.8 Bit partitions and set systems

In this example the function from Table 4.2 will be considered as a binary combinationa}
machine. Bit-partitions on the input bits can be made. The set of the input bits is called
X, te. X = {m, m, 75, 1 }. The input symbols are labeled with lowercase letters from the
alphabet, i.e. the set / of input symbols is defined as = {a,b, ¢, d,¢,f, g, h}. Abinary
input variable (bit) represents a symbolic two block set system such that all symbols
for which the bit is zero are placed in one block, all symbol for which the bit is one are
placed in the second block and symbols for which the bit is don’t care are placed in both
blocks: ¢;(z) = {a, b,e,d, e c, d,f,g}, or(mp) = {a, b,c,d. f; a,b,d, e,f,g} ete.

A bit partition on X is the partition vy = {%; 7; (71;7%)}. Given any set system ¢, ¢ is
a symbol set system induced by =y if and only if:

P> H ¢X(b1)

T be (X Sdeb(m )

which can be calculated as follows:

Y > ox(m) dx(m) =

> {a,b,c,d,f; a,b,d,e,f,g}-{a,b,f; c,d,e,g}=>

v2{3,8F; ¢ d; de g}

Similarly, an example of a bit partition induced by the symbol set system
{E; b oe d; f; Tg} is the partition 7x = {iy; &; =0, (=)} a

The set system theory presented here satisfies at least the first three of the four properties
mentioned in Section 4.2.1: the defined set systems algebra has nice mathematical
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Figure 4.3: LUTSYN synthesis framework model

properties and has powerful operators. The set systems represent the information in a
compact way and the information that is modeled is precisely all the information that is
necessary. The fourth property, the relation between set system theory and the synthesis
of Boolean functions using LUTs will be investigated in the next section.

4.2.3 Synthesis framework model

LUTSYN uses the set system representation for describing the information of primary
inputs, of primary outputs, of intermediate signals and of the LUTs and uses the set
system operators defined in the previous section to construct a network of LUTs that
implements the required function. In Figure 4.3 the synthesis process is illustrated. The
input of the algorithm consists of a function table of an incompletely specified Boolean
function. Instead of a direct implementation into a LUT based FPGA, the function table
representation is transformed into a collection of set systems. Details of the transforma-
tion process can be found in Section 4.2.4.

The set system collection is then used to construct a set system network. This transfor-
mation forms the core of LUTSYN. The transformations are expressed using set systems
and operators on set systems. The main transformation step itself is outlined in Sec-
tion 4.3 of this thesis.

A basic property of the so constructed set system network is that each of its nodes can
be implemented using a single LUT. The transformation from the set system network
to the corresponding LUT network is therefore straightforward. Because set systems do
not model the phase of Boolean signals, this transformation can only be performed if
for each of the set systems an encoding of the blocks has been chosen. This is however
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Figure 44; Translation from function table to set system collection

a trivial problem, since LUTs can implement input and or output inverters at no extra
cost. The translation from set system network to a LUT network can be found in 4.2.5.

In the next section the first transformation step (from function table to set system collec-
tion) will be discussed.

4.24 From function table to set systems

The bastc transformation process is illustrated in Figure 4 4. The translation from func-
tion table to input and output set systems is performed similarly to the translation into
partition representation. Each product term will be labeled by a unique symbol. For
each input/output bit a two-block set system on this symbol set is then constructed by
placing the symbols for which the bit is zero into one block and placing the symbols
for which the bit has 1 as its value in another block. Symbols for which the bit is don't
care (for which it is not important, whether it is 0 or 1) are placed in both blocks. A set
system collection is composed of the set systems of all input and output bits of a certain
Boolean function and describes the Boolean function in the set system notation.

Example 4.9 From function table io set systems
In Table 4.3 a 4-input, 2-output incompletely specified Boolean function is presented.
From the function table the following set systems can be derived:

¢z1 = {a,b,d,E,f,g,' a, b,C,h}

¢>22 = {a1bv < da € by ¢, d,f,g,h}

b = {a,b, 9.k c,d,e, [}

bz = {a,c,e,f,9.h; b, ¢, d}
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HEEEEY IR

aij -010 01
bl --11 01
c| 1-0- 10
df 0-01 11
el 0000 | 00
fio0100 00
g 0110 | 11
hi 1110 --

Table 4.3: Non minimized function table

by ={a,b,e,f h; ¢, d. g, h}

By = {a,b,d,g,h; ¢, E,f,h}

The four input bit set systems (¢,,, ¢, ¢, and ¢,,) induce together the zero symbol
set system (which can be easily verified by calculating the set system product of the
input bit set systems). This means that the information of the four bits is sufficient to
unambiguously determine each product term. o

From this example it can be seen that the set system representation. depends on the
cubes that are used to represent the function. If the function could be expressed in min
terms instead of some larger product terms, then 16 symbols would be required in the
complete set system representation. The relation between the function table represen-
tation and the set system representation is discussed further in Section 4.3.4 where the
preprocessor for LUTSYN will be described.

Theorem 4.9 Existence of a set system representation
For each Ni-input, NO-output Boolean function a canonical set system representation
exists. O

The proof of this theorem is trivial; each Boolean function can be represented with a
function table of 2%/ min terms, and to this table, the set system construction process
described above can be applied.

4.2.5 TFrom set system networks to LUT network

In this section the transformation from a set system network to a LUT network will be
discussed (see Figure 4.5). As mentioned before the LUTSYN algorithm will construct a
set system network such that each of the nodes in this network can be implemented us-
ing a single LUT. The following theorem states the sufficient condition that a set system
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Figure 4.5: Translation from a set system collection to a function table

node should satisfy in order to be implementable by a single LUT.

Theorem 4.10 Set system collection implementable by a LUT
Let V be a set of symbols. A set system collection defined on V consisting of NOI
two-block input set systems ¢;(1 < i < NOI)

¢ € SS(V)Allgill =2 (4.31)
and of NOO two-block output set systems ¢;(1 < j < NOG)

w; € SS(VYA ]| =2 (4.32)
is implementable by a LUTNOI-input, LUTNOO-output LUT if and only if:

1. The number of inputs and cutputs of the set system collection does not exceed the
number of available inputs and outputs of the LUT, i.e.:

NOI < LUTNOI A NOO < LUTNOO (4.33)

2. Each of the outputs is a function of the inputs, i.e.:

v II ¢<w (4.34)

1SiSNOO 1< < NOT
0O

Proof:

Because all the set systems have two blocks, each of them can be represented by a single
bit. Therefore, a set system collection with N7 inputs and NO outputs can be connected
to a LUT with LUTNO! inputs and LUTNOG outputs only if Equation (4.33) is satisfied.
The set system product of all the input set systems represents all the incompatibility
pairs that are implemented by at least one of the input set systems. The output set
systems can implement only such incompatibility pairs that are implemented by at least
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Figure 4.6: A LUT block with the corresponding set system collection

one of the input set systems. This is expressed by Equation (4.34). O

LUTSYN will make sure that ali the nodes in the set system network satisfy the theorem
mentioned above. The translation from set system network to LUT network is therefore
straightforward: each set system node description has to be translated into an equivalent
LUT description. The network structure itself (the way the nodes are interconnected)
does not change. Since set systems do not model the corresponding signal polarity for
each set system an encoding of the blocks has to be chosen before the set system node
can be translated to a function table. This is however a trivial problem, if the Boolean
function is implemented using LUTs. LUTs can implement inverters on their inputs and
outputs without any cost, so the phase of the Boolean signals is really unimportant and
can be freely chosen, except for the primary inputs and output of the original function
for which the phase is given by the function specification table. The following example
shows, how the function implemented by a LUT is constructed from a given set system
collection.

Example 4.10 From set system collection to LUT function table

Table 4.4 represents product terms of a certain function. Since, the outputs of this
function are not necessary for this example, they are not presented. Each product term
is labeled with a unique symbol. In Figure 4.6 a 3-input, 1-output LUT block and an
associated set system collection is presented. The set system collection consists of 3
two-block input set systems and 1 two-block output symbol set system. To verify that
this set system collection is implementable by the LUT, it must be shown that it satisfies
the theorem stated in the previous section. Equation (4.33) can be verified very easily.
To verify Equation (4.34) it is necessary to calculate the combined input set system



4.2. MATHEMATICAL FRAMEWORK 97

HEET

-019
--11
1-0-
0-01
0000
0100
0110
1110

SO i A s | Sle

Table 4.4: Product terms and their symbol labels

no |y
000 (| 0
001 J| O
010 {0
011 |1
1
0
o}
1

100
101
110
111

Table 4.5: Tabular representation of the LUT function

information t:

w:¢q'¢m‘¢u

'lf’:{a,ba C:d; esfag!h}'{a7bveif; c, dagyh}'{aa b,C, e a, bydwfag:h}

v={ab 7 def;gh)
To satisfy Equation (4.34) it must be shown that
P < gy

which can be done simply by applying the definition of <.
Because, the set system collection satisfies {4.33) and (4.34) it can be implemented by a
3-input, T-output LUT.

The input and output set systems together define unambiguously the function imple-
mented by the LUT, with precision to the input and output phase assignment of the
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function. In the case of LUT implementation, the input and output phase assignment
is however not important and can be freely chosen (except for the primary inputs and
outputs), because the implementation cost is the same for any assignment. In LUTSYN,
when translating a set system network to a LUT network, the phase assignment of the
LUT inputs will be predetermined, whereas the output phases can be randomly chosen.
To determine the block function of the LUT, it is necessary to assign to each block from
the input and output set systems the corresponding bit values 0 or 1. Suppose, that for
brs By Gy and ¢, the first block is encoded with a 0 and the second block is encoded
with a 1. Then the function Table 4.5 can be derived from the set systems as follows.
(0,0,0) designates those symbols that are in the first block of ¢.,, ¢, and ¢, ie. the
symbols o and b. Since a and b are in the first block of the output function, the function
for that value is a zero. A similar argument holds for product term (0,0,1).

Product term (0, T,0) means the symbols that are in the first block of ¢, and ¢, and in
the second block of ¢,,. This is the symbol ¢ which is in the first block of ¢, and hence
the function is 0 for this input vector. This procedure can be repeated for all possible
input vectors.

Aninteresting case is the term (1, 1, 0). There are no symbols that are in the second bleck
of ¢,, and ¢,, and in the first block of ¢,,. Hence, this input combination will never occur
and the function value in this case is a don’t care. However, in the actual hardware
implementation of a LUT, a zero or one has to be filled in in this case, because hardware
blocks cannot implement don't care values. Here, the don’t care is replaced by a 0.
Another interesting case is term (1,1, 1) that corresponds to the symbols g and h. Ap-
parently, it is not of interest which of these bit values the function will take, since ¢ and
h are don’t care symbols in the output set system. Once again, in the actual hardware
implementation of the logic block a certain bit value (zero or one) needs to be chosen for
these symbols In this example the value 1 is used. Maybe this extra information with re-
spect to symbols g and % is not useful in the remaining of the construction process of the
circuit, but it can certainly not harm anything and some extra information is provided
at no extra hardware cost.

Table 4.5 represents the following Boolean function:
Y= ntn BT
]
A final remark on the phase of the Boolean signals: set systems do not model the phase
of the signals because this information is not useful for the synthesis with LUTs. If this

information would be useful, then the phase can be simply added by labeling the set
systemn blocks with the desired Boolean values.

4.2.6 Comparison to other representations

In the previous section the set system based LUT network representation has been intro-
duced and the corresponding mathematical framework has been defined. In this section,
this representation will be compared to some other well-known representations.
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The most distinctive feature of the set system network representation is that it is used
in both the logic and the topology model. In fact, in LUTSYN no distinction is made
between these two models. This has the advantage that the effect of decisions made
in the logic model on the structure can be seen immediately. In many methods, the
topology model is derived from the logic model by a unidirectional transformation
step. For example, in methods based on algebraic or Boolean decomposition of sum-of-
product term functions, the sum-of-product term functions represent chiefly the logic
model and the structural model is obtained from this model by technology mapping. In
these methods often the error is made, that the structure of the Boolean expressions is
identified with the structure of the model. The original reduced ordered binary decision
diagrams represent also a logic view.

With respect to the LUTs, the set system representation is an abstraction of the phase of
the functions and their inputs. This is just the abstraction which precisely corresponds
to LUTs because the phase can be implemented at no cost by LUTs. Therefore, both
the function and the inverse function can be used as an input for another LUT at no
cost. A sum-of-product term function representation however cannot be complemented
easily and efficiently (concurrent decomposition [RV92] is a notable exception, but that
method is restricted to small and special cubes).

The set system based LUT network representation models don’t cares efficiently and
effectively. First of all, the input representation is not restricted in any way: every
incompletely specified function can be used as an input of the synthesis methods. This
is not the case with many Boolean or algebraic division algorithms, where two-level
minimization is used before the function is given to the multiple-level logic synthesis
algorithm. Don’t cares are also modeled very naturally (there are no changes or excep-
tions in the set system theory necessary to model don’t cares). Furthermore, ail the set
system operators naturally make use of available don’t cares.

Finally, the set system theory satisfies the four important properties of mathematical
models stated in Section 4.2.1.

4.3 LUTSYN overview and concepts

4.3.1 Introduction

In this section an overview of LUTSYN will be presented and the most important aspects
of the algorithm will be discussed.

The most prominent concept that distinguishes LUTSYN from all other approaches is
that the functions are constructed (composed) bottom-up, i.e. starting from the inputs,
the function is built level by level until the outputs have been reached. Details regarding
the bottom-up construction algorithm can be found in Section 4.3.2.

Another important aspect of LUTSYN is the way the heuristic algorithms make deci-
sions. In LUTSYN, all heuristic decisions are based on a single framework: the simila rity
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between set systems. The maximal similarity for set systems is obtained when the set
systems are equal. For all other set systems the similarity expresses the degree of resem-
blance of these set systems. More information on the set system similarity can be found
in Section 4.3.3.

The LUTSYN algorithm consists of three phases: a preprocessor phase, a clustering
phase and a construction phase. The basic task of the preprocessor phase is to transform
a two-level logic sum of term representation of an incompletely specified function into
the set system notation. Details on the preprocessing algorithms can be found in Sec-
tion 4.3.4.

The second phase of the LUTSYN algorithm is the clustering phase. In this phase a top-
down clustering is performed. The goal of the clustering is to decide for which single
output functions it seems to be useful to construct common subfunctions and which
subfunctions should be constructed. The developed clustering algorithm is discussed
in Section 4.3.5.

The construction phase forms the kernel of LUTSYN. This phase performs the actual
multiple-level bottom-up construction of the LUT network based on the information
obtained from the first two phases. LUTSYN will create a general decompeosition without
feedback loops. Details of the construction process can be found in Section 4.3.6.

4.3.2 Network construction approaches

In the network construction process subfunctions are constructed such that each of them
can be implemented in a LUT and that together form they the desired function. In this
context, a function is called feasible if it can be implemented by a single LUT and it is
called infeasible if more than one LUT is needed for its implementation.

The construction of a multiple-level network is usually started at the outputs of the
network and the construction process consists of a decomposition algorithm that re-
cursively decomposes all non feasible functions. It is also possible to use a bottom-up
construction: starting from the inputs a network is build that realizes the specified
function. This bottom-up approach is rarely used in multiple-level logic synthesis, and
therefore the bottom-up approach itself is worth an investigation. Furthermore, this
approach has a number of interesting properties.

In the top-down approach the starting point of the synthesis are the two-block output
set systems. Any set system that cannot be created using a single LUT, needs to be
constructed as the set system product of two or more other set systems. The sharing
of set systems between functions is allowed and encouraged. The goal is to find set
systems that near-optimal fulfill the optimization goals.

In the bottom-up approach the construction process starts with the input set systems. The
bottom-up approach is driven by the information that has to be computed, ie. a new
level of the network is constructed based on the set systems that are available (calculated
on a previous levels) and with the output set systems of the function to construct and the
common subfunctions as the target. The network is thus constructed level by level, such
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Figure 4.7: Typical logic function network structure

that each of the set systems of a certain level computes the desired output set systems
more precisely. The construction process terminates when all the primary output set
systems have been constructed. The bottom-up approach has two principle advantages
over the top-down construction:

1. A network of fine granularity LUTs has usually the form of a set of overlapping
triangles (see Figure 4.7). Each triangle represents the network of a single output.
At the base of each triangle the inputs that are used for that output function can
be found and the top of the triangles represent the primary outputs. Overlapping
parts of the triangles are the common subfunctions. The most logic is present
at the lower parts of the tree (near the leaves) and hence the largest gain in area
minimization can also be expected to take place in this region. Therefore, it makes
sense to use a bottom-up approach, since accurate information is available in the
region where minimizations are most effective. Using the top-down approach it
would be necessary to estimate the effect of decisions taken at the high levels of
the tree on the lower levels of the tree. This can be difficult.

2. In the bottom-up approach, heuristic decisions have a clear goal: the output set
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systems have to be constructed at the lowest cost. It is reasonable easy to find
somme measures that express the similarity of two set systems and hence it can be
determined which set systems are likely to be included in the set system collection
used to compute a certain output set system. In the top-down approach the goal
is less clear, set systems should be split until an input set system is found, but how
and which set system to use cannot be determined in a straightforward way.

The concept of bottom-up computational synthesis is successfully used in a number of
goal directed compositional methods developed for decomposition of sequential ma-
chines [JK91][JV¥92](JV95]. This idea of bottom-up synthesis is also supported by results
obtained by Saucier e.a. [SFA93]. Their lexicographical factorization algorithm pro-
vides a mechanism to select which inputs should be inserted at the leaves of the tree and
which inputs can be inserted at a higher level. The lexicographical algorithm shows big
improvement compared to non lexicographical factorization.

On the other hand, the top-down approach has one major advantage compared to the
bottom-up approach: in the top-down approach it is much easier to find and create
common subfunctions. After all, in the top-down approach Boolean functions are re-
cursively decomposed and it is relatively easy to decompose them so that they have
large common subfunctions. In the bottom-up approach it seems that subfunctions are
created by mere chance (a subfunction is created if a set system is created that can be
used for two output functions).

The bottom-up approach can however be extended with an analysis algorithm (cluster-
ing phase) that determines from the functicn’s description which common subfunctions
can have a large impact on the implementation and should therefore actually be con-
structed and used. The bottom-up construction algorithm will try to build these sub-
functions in parallel with the construction of the primary output functions. However,
while the 100% implementation of the primary output function is necessary, 100% imple-
mentation of the subfunctions is not required. Results of the clustering algorithm specify
only some potentially useful (maximal} subfunctions and if during the actual network
construction it turns out that such a subfunction is difficult or expensive to construct its
smaller subfunctions can be constructed instead or even a common subfunction may not
be constructed at all. An additional advantage is that only subfunctions are created that
have a large impact on the active area size; this is important because the distribution of
subfunction outputs often requires long or even global wires. For small subfunctions,
the cost of these extra wires and the extra complexity of the routing problem can have a
much larger negative global impact than the area savings that are obtained by using the
subfunctions.

Because of the above reasons bottom-up synthesis is used in LUTSYN. To find useful
subfunctions a clustering analysis will be performed (Section 4.3.5). The construction
process will be discussed in Section 4.3.6.
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4.3.3 Calculation of set system similarities
4.3.3.1 Incompatibility relations

A very important aspect of any heuristic search algorithm is the evaluation of the
branches of the search tree that need to be traversed by the algorithm. In LUTSYN all
information is represented using set systems, so it is necessary to find a way to evaluate
and compare set systems. The evaluation process basically consists of comparing two set
systems and determining a measure for the similarity that these two set systems have.
The calculation of the similarity is one of the most important algorithms of LUTSYN
because many decisions are based on it. In Section 4.2.2 canonical set system repre-
sentatives have been introduced. The theory establishes a one-to-one link between set
systems and compatibility sets. In this section the complement of the compatibility set
called the incompatibility sets is used to find a measure of similarity between two set
systems,

Definition 4.12 Incompatibility relation
Let ¢ be a set system on set S. Two symbols a, b € § are incompatible (denoted as a | &)
if and only if
albe Y{ee B=2bgB)A(beB=>agB) (4.35)
Bcg

The incompatibility relation | is symmetric, but it is not reflexive nor transitive. If o and
b are incompatible, then a | b is called a incompatibility pair. (]

In other words, two symbols are incompatible if and only if the associated set system can
be used to distinguish these two symbols. A set system introduces in fact a set of incom-
patibility pairs: each pair of symbols that the set system can distinguish is contained in
this incompatibility set. The incompatibility set for a set system ¢ will be denoted IC(4).
Each set system uniquely defines an incompatibility set and each incompatibility set
defines a unique canonical set system.

Example 4.11 From set systems to incompatibility sets
Given set § = {1,2,3, 4,5} and let ¢ be a set system defined on $:

¢={12 13 245}
The incompatibility set defined by ¢ is:
1€(9) = {{1.4); (1,5); (2,3); (3,4); (3,5)}
a

For the determination of the maximal set system that is defined by an incompatibility
set an algorithm for finding maximal connected subgraphs of a graph is necessary to
determine the largest possible set system blocks. This will be shown using the following
example:
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Figure 4.8: Compatibility graph associated with incompatibility set IC

Example 4.12 From incompatibility set to set system

Let $ = {1,2,3,4,5} be a set of symbols and let IC be the set of incompatibility pairs for
some set system ¢ defined on 5:

IC(9) = {(1,2); (1,4); (2,5)}

To find the maximal set system associated with IC(¢) a graph is drawn with an edge
between each pair of symbols that are compatible (i.e. an edge for each pair missing
from IC(¢)). For IC(¢) the graph can be found in Figure 4.8. An algorithm for finding
maximal connected subgraphs is then applied to the graph and a covering algorithm
is used to cover all the edges of the graph using as few as possible maximal connected
subgraphs. In Figure 4.8 3 maximal connected subgraphs are detected. Each subgraph
is then transformed into a block of the set system, resulting in the following three block
set system:

o={T335 23 343)

The graph algorithm determines the largest possible blocks for the set systems and uses
these blocks to cover the graph; if this algorithm would not have been used then the
following set system + can also be derived from the incompatibility set /C(¢).

¢ is the unique maximal set system based on (s}, v is also based on /C(¢) however it
is not a maximal set system. a
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An efficient method for covering the compatibility graph with connected subgraphs is
presented in [Kon95].

The concept of incompatibility pairs has been previously used for sequential machine de-
composition [Kon95] and race-free state assignment for level-mode sequential machines
[JS90]. It also resembles the concept of dichotomies used in [YC90] where dichotomies
are used to find a near optimal multiple-valued encoding whereas the incompatibility
pairs are used to determine the similarity between set systems. There is however one
important difference between dichotomies on one side and incompatibility pairs and
set systems on the other side: dichotomies are two block partitions, where the second
block can only contain a single symbol. This way dichotomies are more general than
incompatibility pairs (they can incorporate a number of incompatibility pairs that have
the same second symbol) but are more restricted than maximal set systems.

In the next subsections the concept of incompatibility pairs will be used to introduce
similarity measures for set systems.

4.3.3.2 Similarity of set systems

In the bottom-up construction process, a number of set systems are constructed in
parallel. At some points of the algorithm it has to be decided which of these set systems
should remain for further construction (because they are likely to be used in the final
realization of the circuit) and which set systems can be removed (because it is very
unlikely that these set systems will be part of the final set system network). Such
a decision is based on the amount of information that is implemented by these set
systems. If a set system implements a lot of information for a certain cluster or primary
output set system, then it is a good candidate for further development. The similarity
measure will be used to indicate the amount of cormmon information.

A simple solution for the calculation of the similarity measure is computing the fraction
of the number of incompatibility pairs that is common to both set systems. However,
that would not be sufficient because the incompatibility pairs don’t have the same im-
portance. For example, if an incompatibility pair o | b that is part of one or more output
set systems is realized in only few set systems, then keeping the set systems that realize
e { b is much more important than keeping other set systems. On the other hand, if
many set systems implement another incompatibility pair ¢ | d then there is no reason to
prefer set systems that implement ¢ | d. This way weighing of incompatibility pairs can
be important when comparing set systems. Furthermore, if two set systems implement
the same amount of incompatibility pairs of an output set system, one of them can im-
plement all the easy incompatibility pairs whereas the other implements more difficult
ones and thus be more valuable.

Therefore the similarity of two set systems will be calculated with weighed incompat-
ibility pairs. The basic formula for the calculation of the similarity of set system s
compared to set system s, is stated in the following definition.
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Definition 4.13 Sef system similarity

Let S be a symbol set, and let s; and s; be two set systems defined on symbol set 5.
The set system similarity of set systern s compared to set system s, can be calculated as
follows:

|6 JC(E)mC( )w_-;(a b)
SIM,, () = 2Psinins 4,
1(51) WS((I | b) ( 36)
albeC(a)
where ws(a | b) is 2 weighing function for an incompatibility pair « | b. o

ws{a | b) is used to express the importance of the incompatibility pair o | b. A number
of possible incompatibility weighing functions will be defined later in this section.

Example 4.13 Set systetn similarity
Let § = {1,2,3,4} and let

a={12 34}
and let
5 ={1,2;3; 1}

be two set systems defined on 5. Define wg(a | ) as the constant function 1. It can then
easily be verified that

SIM,,(51) = 0.8
and

SIM, () = 1.0

The function
ws(a|b):8@8 —[0,...,1] {(4.37)

is called the incompatibility weighing function, it associates a real number between 0 and 1
inclusive to each incompatibility pair. If no confusion is possible the index § will not be
used. The weighing function can be defined many different ways. In the most simple
form equal functional weighing can be selected by w(a, ) == 1. With this weighing
SIM,,(s1) gives a measure for the portion of information of s, present in s, without
stressing importance of a specific information.

If the set system similarity is used to select a number of promising set systems from a
large set of available set systems then this simple weighing function may not be suffi-
cient. In such a case it makes more sense to give the pairs a weight according to the
number of set systems that realize it. If an incompatibility pair ¢ | b is implemented by
many different set systems in the LUT network then apparently it is not so important
for a set system to implement this pair, since many alternative implementations exits.
If a set system is the only set system that implements an incompatibility pair then this
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Figure 4.9: Linear availability weighing function
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Figure 4.10: Availability weighing function based on y = 1/z
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set system is very important, because not using this set system means that a long wire
is necessary to get the information from lower levels or even primary inputs.

In Figure 4.9 the linear availability weighing function can be found. The X-axis contains
the number of occurrences of an incompatibility pair. Two thresholds = and =z, are
introduced. If an incompatibility pair a | b has less than 2; occurrences than this pair is
so important, that it gets maximal weighing. On the other hand, if a | b has more than
1y occurrences than there are so many alternatives that it is not worth paying special
attention to it. Between z; and z the weighing is calculated by a linear function. In
general y, = 1 so that the weighing of the incompatibility pairs is normalized. y; can
be zero, but also a little higher, since it is always worth to implement an incompatibility
relation, even if there are many alternatives. Best practice values for the parameters z,,
73, th and 1, can be determined using experiments. In different places of the algorithm,
different parameters can be used. In some cases the difference between good and bad
incompatibility pairs is not emphasized enough. In such a case the functions in TFig-
ure 4.10 (where a shifted version of the function y = 1/z is used) can be used.

For each incompatibility pair the weight can be calculated a priori, but it is also possible
to dynamically adjust it during the computations. For example in a set system selection
process, the weights of incompatibility pairs that are implemented by already selected
systems can be decreased in order to give set systems that implement slightly less
important pairs also a chance in being selected. More complete information about
information relationships of set systems and measures of the strength and importance
of these relationships can be found in [J6297a].

4.3.4 Input representation and don't cares

In Section 4.2.4 it has been shown how the set system representation is derived from
the function table. It has been noticed there, that the set system representation depends
on the way that the function is expressed by product terms. In this section this relation
is further investigated and the question will be asked whether it is necessary to use an
input data preprocessor for the LUTSYN algorithm.

A preprocessor can be used to rearrange the input data to an algorithm so that this
algorithm can use the input data more efficiently. Preprocessing can be passive (only
changing the way the input information is represented) or active (using and changing
the input information itself, to make new input data). Many multiple-level synthesis
methods presented in the past, perform active preprocessing in the form of a two-level
logic minimization before the actual multiple level synthesis is started. More recently,
it has been recognized by Luba e.a. [EK]J91] that often it is useful to minimize not the
number of product terms but the number of input variables of a Boolean function. This
concept will be illustrated using the next example.

Example 4.14 Input and term minimization

In Table 4.6 the 4-input, -output incompletely specified Boolean function /" has been
specified. This function can be minimized using the Karnaugh diagram in Figure 4.11. In
a product term minimization the product terms ¢ and b will be used and the minimized
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AN
9000 [0 1000 [0
0001 |0 1001 | -
0010 [0 1010 | -
0011 |1 1011 0
0100 |0 1100 |-
0101 |0 1101 |1
0110 |0 1110 |1
0111 |1 1111 | -

Table 4.6: Boolean function F for input and term minimization example

X, — _ X
X, |. X, X, X,
b
X, — {1 1)
a
X, G -
X, 1 -
~ b e e - C
_ X -
X3 {/"‘““_ _____ ~y
—
* \i.).u _____ A
a=Xx,x, =X Xy X,
b=x x, d=x % x,

Figure 4.11: Karnaugh diagram for functjon F
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function uses 2 product terms and 4 input variables:
F{ = T\ T3T4 + T T2

Function F can aiso be minimized using input minimization techniques. In that case,
the function uses the product terms a, ¢ and d, which results into a minimized function
with 3 product terms and 3 input variables:

F) = Tmry + T1737 + 17Tty

0

In general, there is an input term minimization trade-off. In most cases, input minimiza-
tion has a larger effect on the total complexity of a two-level function representation.
Efficient near-optimal algerithms for the minimal input support problem can be found
in [KJ95]. Unfortunately, both input and term minimization used as preprocessing steps
will remove a lot of design freedom (in particular all don’t cares) from the input speci-
fication even before the actual synthesis has started. It is expected that preserving the
don't cares (so that they can be used by the actual multiple-level logic synthesis algo-
rithm) will lead to better results. On the other hand, don’t cares can be used to make the
representation of the input data smaller and therefore more easily manageable.

For the reason mentioned above, the LUTSYN algorithm will use a passive preprocessor
and will not sacrifice don’t cares to make the representation of the input data more
compact. From the example in Section 4.2.4 it follows that it is important how the data
in the function table are arranged. After all, the function in Table 4.3 is expressed using
8 product terms. The function table in which these product terms are expanded to min
terms specifies the same logic function and hence the same decomposition problem. In
that case however, 16 different symbols have to be used instead of 8. Since, a network
of LUTs is modeled by set systems on the same symbol set, more memory is necessary
to store a network for larger symbol sets. In general, there are a many reasons why the
number of symbols should be as low as possible:

1. Each symbol is stored in every set system of the network, therefore each unneces-
sary symbol is stored a lot of times in memory.

2. Operations on set systems with many symbols are generally slower than the same
operations on set systems with fewer symbols. So, if the number of symbols can
be removed without changing the meaning of the function and limiting the design
freedom, there is no reason not to do this.

3. Unnecessary symbols give information that is not relevant for the problem at
hand and can distract the algorithm from its work. In Table 4.3 the symbols ¢
and f are distinguished by input z,. This means, that in the whole network set
systems are used with symbols ¢ and f in it. However, there is no real need
to know the difference between these two symbols (since they have the same
output vector). Therefore, symbols ¢ and f can better be replaced by one symbol
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for the input pattern (0, -, 0,0). A similar situation can be found by looking at
symbeols a and &. Input z; is able to distinguish between symbol ¢ and symbol b.
However, for none of the outputs it is necessary to distinguish between these two
symbols. Therefore, it is useful to write the product term associated with symbol
a as (—,0,1,~). If a symbol is don’t care for all output components (like symbol
h in the example), it is never necessary to distinguish this symbol from any other
symbol and the symbol can be removed from the symbol set.

LUTSYN is primarily devoted to controller like circuits. This type of citcuits can be
characterized by having relatively few product terms in their original specification com-
pared to all possible min terms and by many don’t cares. Therefore, the number of
symbols in the set systems can be quite easily kept low.

Based on this discussion the following task for the LUTSYN preprocessor has been
defined: preprocess the input data so that as few as possible product terms are used
and under this condition maximize the number of don’t cares in each of these product
terms. The preprocessor should be passive, i.e it does not limit the design freedom. The
preprocessor can be implemented using well known operators on cubes, for details see
Section 5.4.

4.3.5 Clustering process

During the analysis phase of LUTSYN a clustering process is performed. The clustering
algorithm will cluster the outputs of the function to synthesize. It will place those
outputs in the same cluster, that have a meaningful subfunction in common. The
resulting clustering data is used to guide the bottom-up construction process to find set
systems that are useful to implement as common subfunctions. The clustering is:

¢ hierarchical
This defines a precedence relation on the clusters, i.e. clusters can be build from
other clusters and a tree structure is constructed which shows how the clusters are
related to each other.

s with overlapping

Clusters may overlap and this has two functions. First of all, the use of overlapping
clusters is a way to deal with uncertain decisions. If a function is well related to
two clusters, it is hard to decide to which cluster it belongs. Allowing overlapping
clusters (and adding this function to both clusters) postpones this decision until
more accurate information is presented, A second reason for overlapping clus-
ters is that it is very well possible that a function shares part of its functionality
with one cluster of functions, whereas another part of the function is strongly
related to another cluster. In such cases with both clusters it will form meaningful
subfunctions.

¢ non-decisive
The clustering is merely used to show the potential in creating useful subfunctions
to the bottom-up construction process. Therefore the clustering is not decisive: the
construction process can ignore seme clusters or to construct some sub-functions
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only partially if it turns out that their implementation is too difficult or too expen-
sive.

similarity based

The clustering algorithm will create clusters based on the set system similarity of
the output set systems, i.e. a cluster will only be constructed if the output set
systems in the cluster have a high similarity. Please refer to Section 4.3.3 for more
information on algorithms for calculating set system similarities.

In Section 5.5 the above clustering concepts will be translated in an algorithm.

4.3.6 Heuristic network construction process

The construction process of LUTSYN for building the LUT network is different from
other known network building algorithms. The main distinctive feature of the con-
struction algorithm is that it builds a number of solutions in parallel (i.e. the search
algorithm is similar to breadth first search}, while most other construction algorithms
try to find alternative solutions sequentially {ie. they use a depth first search based
search strategy) or they find just a single solution. The choice for a parallel construction
process has a number of advantages:

1. Because the network is build starting from the inputs, it is not certain in advance

which of the constructed systems will be actually used for the calculation of a given
output. Since, the number of possible set systems is very large, it makes sense to
build the network with a number of the most promising set systems in parallel.

. Because a number of solutions are build in parallel the heuristic algorithms are able

to perform a relative evaluation. Normally, the evaluation of a set system is based on
comparing the set system with the output and subfunction set systems. Relative
evaluation means that the set systems can also be compared with each other.
Relative evaluation is especially important in the early stage of the construction
process, because there the constructed set systems are still very different from the
output set systems and hence most set systems are evaluated with a low quality.
By comparing these low quality set systems with each other, it is still possible to
make a good judgement about their relative quality.

. A special type of parallel search algorithm called a double beam first search has been

proved to be efficient for a wide range of synthesis problems: state assignment
[Kon90], output decomposition of Boolean functions [Vol91] [JV92], decomposi-
tion of sequential machines [JvD92] and test pattern generation for combinational
circuits [Bos94]. The construction process in all these problems is very similar to
the network building process considered here. Therefore, it is expected that this
kind of parallel search algorithms can be applied to work efficiently and effectively
for the LUT network construction.

The construction process will be illustrated with an example. For the sake of simplicity
two-input one-output LUTs will be considered. In Figure 4.12 the construction process
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Figure 4.12: Network construction process of LUTSYN

for a three-input two-output Boolean function is given. The network is divided into a
number of levels. The network is build level by level. All the set systems in a level are
constructed in parallel.

In the first level all LUT5 are constructed that are functions of the primary inputs. For
each input combination one or more output functions can be generated. The algorithm
will construct all non-trivial LUTs that it estimates to be most useful. In Figure 4.12 six
LUTs have been constructed, three of them are different functions calculated from ihe
inputs o and 12, one LUT uses input combination 1; and z; and two LUTs use inputs z;
and z3 with each LUT a certain quality measure is associated, that indicates how useful
the LUT is. If the number of LUTs in a level is too large, then this quality measure is
used to keep only the best LUTs of the level. In Figure 4.12 the Jimit has been set to five
LUTs per level, so one LUT has to be discarded.

The second level of the tree is constructed the same way as the first level: all input com-
binations are tried and useful functions for each of these combinations are constructed.
As the inputs of the level 2 LUTs, the outputs of level 1 LUTs and the primary inputs
are considered. It is possible that one or more LUT outputs of the first level cannot
be meaningfully combined with another LUT output or a primary input. In that case
the output of that LUT is never used and the LUT can eventually be removed from the
network (the last LUT of level 1 is such a case). Since, level 2 has only 4 LUTs, no LUT
needs to be removed.

Level 3 is then constructed the same way. In this case the LUTs of level 3 implement
the output of the circuit. It is also possible that some primary outputs are calculated by
more than one LUT.
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In general, the LUTs of a certain level N have at least one input that is an output of a
LUT of level N — 1. The remaining inputs can be freely chosen from any of the previ-
ously constructed levels including the primary inputs. The LUTs are also checked for
redundancy: all of the inputs of a LUT must be required for computing the LUT's output
function. Finally, for each level it is made sure that all incompatibility relations that are
part of one of the outputs are implemented by at least one of the LUTs in that level, even
if this means violating the limit on the maximal number of LUTs on a certain level.

If each output of the function is implemented at least once, then the construction process
is terminated and the network can be cleaned up. All LUTs that are not needed for the
calculation of the function outputs can be removed from the network. If an output is
realized by more than one LUT, then one of them has to be selected and the other LUTs
that implement that output can be removed. The selection process tries to minimize the
overall number of LUTs in the LUT network.

The above description serves only to globally explain the construction process and not
to explain the evaluation and selection functions. These functions will be discussed in
Chapter 5.



Chapter 5
LUTSYN - Algorithms

For the further research of the concepts discussed in the previous chapter, it was necessary to create
an experimental software environment that allows to study general decomposition concepts. The
description of this environment is the goal of this chapter. This environment, called LUTSYN,
will be introduced in Section 5.1. In Section 5.2 an example circuit will be introduced. This
circuit is called EB. Each of the algorithms discussed in this chapter will be illustrated using EB.
In Section 5.3 a flow diagram and a global overview of the LUTSYN algorithm can be Sfound,
The remaining sections of this chapter discuss different parts of LUTSYN: the preprocessor
{Section 5.4), the output clustering algorithm (Section 5.5), the network building algorithm
(Section 5.6) and the postprocessor (Section 5.7).

In the next chapter it will be shown how the LUTSYN environment can be used for the research
of general decompositions.

51 The LUTSYN environment

For the further research of general decompositions it was necessary to create a software
environment in which decomposition experiments can be performed and decomposition
concepts (like those presented in the previous chapter) can be tested and evaluated. Such
a software tool plays a role of a laboratory setup for the decomposition research. It is
important to have such a tool for the following reasons:

1. Many concepts of the proposed decomposition approach are new or have never
been used for the decomposition of Boolean functions. Although they are quite
well motivated and it is to expect that these concepts will work; this assumption
has to be confirmed by experimental research.

2. Researchers and designers do not have much experience with the decomposition
structures offered by general decomposition. This kind of practical knowledge is
however very important for the better understanding of decomposition problems
and development of decomposition methods and tools. For example it gives
researchers the feeling which things are typical and practical important (e.g. occur
a lot in practical circuits) and which aspects have only theoretical importance.

115
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. Some decomposition concepts {such as the application of similarity measures and

heuristic algorithms) cannot be fully developed without fine-tuning and experi-
mentation; their effects must be studied in practice.

. Some of the algorithms use parameters to determine some trade-offs. The default

values for these parameters should be based on empirical data which can only be
obtained from the decomposition of large classes of circuits.

. The general decomposition of even quite small circuits involves a lot of computa-

tions. Doing these computations by hand is very time-consuming and error prone,
and restricts the research to very small circuits only. Furthermore, some important
aspects of decomposition can be made visible for only larger circuits. Such an ex-
perimental software tool accelerates the experimental research "thousands” times,
what means that it actually enables such research, especially for large circuits.

Unfortunately, such a tool was not available and therefore needed to be created. Even
worse, it was impossible to create this tool by combination and modification of the
existing decomposition tools based for examples on the division paradigm (e.g. MIS
[BRSW87}, SIS [SSL.*92] or ASYL [SCS87]) because the general decomposition paradigm
is much more general then the division paradigm and the set system based represen-
tation was incompatible with the network structure used in other tools. Therefore a
new research environment called LUTSYN has been created. LUTSYN toolbox has the
following properties:

1. 1t provides an environment in which all components necessary for the research

of general decompositions are presents. This includes basic components (such
as appropriate internal data structures and input/output routines), but also more
complex components, such as the set system module, verification module and the
network building modules.

. It contains a framework synthesis tool. This framework tool is in fact an engine

that is able to generate all possible decomposition structures. It can be used for the
exhaustive search of the solution space; but even for small circuits this is not very
practical. The actual use of the framework follows from the fact that it is that it is
easy to add various heuristic search algorithms to it. This way, LUTSYN allows to
implement, modify and test new heuristic algorithms in a flexible and fast way.

. It allows to study the behaviour of the heuristic algorithms. This is extremely

important for the development, evaluation and fine-tuning of heuristic algorithms.
Basically, the toolbox is able to show the design decisions that have been made and
allows the researcher to influence these decisions. It is also possible to show the
current network structure. The toolbox has also an "automatic mode", in which
the heuristic algorithms take all decisions.

. Ttis robust in the sense that a lot of effort has been put in ensuring that the integrity

of the network structure is preserved in all cases. For example, an integrity check
will be performed on set systems after an operator is applied on them. Similarly,
the LUTs and the network structures are checked for their functional correctness.
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HEEY T
0] 0-0 00
T 001 [ 11
2} 01l 01
3] 100 | 00
4101 | --
S Tio |11
6] 111 |10

Table 5.1: Boolean function for example EB

The LUTSYN is designed as a research taol. This means that a lot of effort has been
made to make a lot of internal data available to the researcher, however the speed and
memory usage were not at the top priority.

In the remaining of this chapter the algorithms of the current version of LUTSYN will
be presented. This version involves only one prototype heuristic search algorithm
equipped with and only one similarity measure. It is a sound base for further experi-
ments and follow-up research. It is not yet a final complete decompositional synthesis
tool, but it has been developed to test the framework part of LUTSYN and to check the
most important concepts of the proposed decomposition approach.

5.2 The EB circuit

In this section an example circuit will be introduced. The circuit is called EB. It is
specially constructed to show as many properties of LUTSYN as possible and it will be
used in the remaining of this thesis to illustrate the concepts used within LUTSYN.

EB is a circuit having of 3 binary inputs 2, z; and z, and 2 binary outputs y and ;.
The goal of the synthesis will be the implementation of EB using two-input, one-output
LUTs. The function table of EB can be found in Table 5.1.

The size of the EB example may be considered rather small. That is true; however the
size of EB is about the maximal size an example can have without falling into pages of
calculations. This confirms again the huge solution space that is inherent to this type of
synthesis problems.

The implementation of the function of EB specified in Table 5.1 found by LUTSYN con-
tains 4 LUTs {see Figure 5.1). The functions that are implemented by each of the LUTs
can be found in Tables 5.2, 5.3, 5.4 and 5.5. Note that block ¢ contains a don’t care in the
output, this means that this blocks can be an EXOR cell {(implementing the don’t care as
a zero) or an OR cell (by setting the don’t care to one).

The following classes of set systems can be found in this example:
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Figure 5.1: Implementation of the EB example

[2m | va] S|
00 ] 0 00 0
01 0 01 1
10 0 10 [ 0
T 1 110

Table 5.2: Boolean function for block A Table 5.3: Boolean function for block B

[vavs [ e | [2ys [ 9o |
00 ] 0 00 | 0
01 | 1 01 [ 1
10 | 1 10 (1
11 | - 1110

Table 5.4: Boolean function for block € Table 5.5: Boolean function for block D
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¢ Input set systems

¢ ={0,1,2 34,56} (5.1)
¢n = {0.1,3,4 0,256} (5.2)
¢ =1{0.35 1,246} (5.3)
» Output set systems
s ={0.23% 1456 (5.4)
¢y = {0,346 1,243 (5.5)
* Intermediate set systems
4= {01234 55) | 56
¢up = {02356 T4} (57)
ve = {023, 1,45 6} (5.8)
$up = {0,3,6; 1,245} (5.9)

Due to space considerations the equivalent incompatibility sets will not be listed, they
can however easily be obtained from the above set systems as explained in Section 4.3.3.

The set system collections for each block satisfy the conditions for set system collections
as defined in Section 4.2.5 , furthermore ¢,,, and 4, » implement the outputs of EB:

Pye S Gy, and ¢y, < @y (5.10)

so these set systems form a correct implementation of EB.

The binary encoding of the set systems is as follows: the block containing symbol 0 is
always encoded with binary value 0, the other block is encoding with binary value 1.
In the sum-of-product representation this means that the following functions have been
realized:

W= - Ht+H B+ 0T (5.11)
=% 0+ 5 (5.12}

5.3 Overview of the algorithm

The flow diagram of LUTSYN can be found in Figure 5.2. From this figure it is apparent
that the LUTSYN algorithm consists of the following 4 major steps.
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Figure 5.2: Top level flow diagram of LUTSYN
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1. Preprocess() (Section 5.4)
The preprocessor has not been integrated with the minimizing part of LUTSYN
program, but is a separated program that has to be used prior to the real decom-
position algorithm. The goal of the preprocessor is to prepare the input data so
that the decomposition algorithm can make the most efficient use of it. The task of
the preprocessor is to calculate a minimal product term representation of the input
data without sacrificing don’t cares.

2. Cluster{) (Section 5.5)
The clustering algorithm performs a hierarchical clustering on the output set (as
discussed in Section 4.3.5). The result of this algorithm will be a tree of clusters
containing output functions. Each cluster represents a common subfunction shared
by the outputs of that cluster. The clustering tree will be used to help finding
common subfunctions.

3. Build() (Section 5.6)
The build function forms the kernel of the LUTSYN algorithm. This function is
responsible for constructing the LUT network. Heuristic decision algorithms are
used to guide the construction process. The build function continues constructing
new levels of the network until for each output function at least one implementa-
tion has been found.

4. Prune() (Section 5.7)
The prune function is necessary if one or more output functions have more than
one realization. In such a case, for each output exactly one implementation has to
be chosen, such that the network uses as few as possible LUTs in total. Selecting
these outputs is the task of the prune algorithm.
The result of the prune algorithm is the final LUT network that implements the
circuit. This network will be written to an output file.

Each of the steps listed above will be discussed in more detail in the next few sections.

5.4 Preprocess() : Preparation of the input data

54.1 Introduction

The concept for the preprocessor has been introduced in Section 4.3.4, The preprocessor
is necessary for two main reasons:

L. In order to create input and output set systems from a function table, this table
must contain the ON-cover and the OFF-cover. Many benchmarks are however
specified using the ON-cover and the DC-cover and the OFF-cover is implicitly
specified as the complement of these two covers. In such a case, the preprocessor
needs to calculate the OFF-cover explicitly.

2. Each product term in the function description becomes a symbol in the set sys-
tems. Therefore, it is important that the preprocessor minimizes the number of
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Figure 5.3: Flow diagram of the LUTSYN preprocessor
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product terms in the function specification without exploiting don’t cares, so that
the decomposition algorithm uses set systems on as small as possible symbol sets.

The LUTSYN preprocessor will not sacrifice don’t cares to make the function smaller, so
it does not change the function itself, but only changes the way the function specification
is organized. This way the complete don’t care freedom is preserved and can be used
by the decomposition algorithm to find better decompositions.

The flow diagram of the preprocessor function can be found in Figure 5.3. The prepro-
cessor consists of four tasks, each of these tasks will be described in more detail in the
next subsections.

54.2 Complete(): Calculate missing cover

The first step of the preprocessor is an algorithm that reads a function description from
aninput file into the internal data structure. The function is specified using the Espresso
file format (the specification of the Espresso file format can be found in [Yan91]). The
complete(} function has two subtasks:

1. If a function specification does not contain the ON-cover and the OFF-cover then
the missing cover will be calculated. This is necessary because the set system
associated with an output bit, basically distinguishes the input patterns for which
the output bit is zero, from those for which the output bit is one.

2. A consistency check will be performed on the function specification: if two product
terms have overlapping input parts, then their output parts should be equal.
Furthermore, it is checked if the whole input space is covered by the product
terms. If inconsistencies have been detected, the program will abort with an error
message.

The complete() function is implemented as a separate program. The algorithm is based
on the sharp operator [Mil66]. The sharp operator (denoted as A#B) is the difference
(or subtraction) operator and calculates all those product terms that are part of cover 4
but that are not contained in cover B. The complement of a cover can be obtained by
subtracting that cover from the universal cover (i.e. the cover containing all product
terms). Here, a special version of the sharp operator called the restricted sharp operator
[vW95][vH94] is used for complementing. The logical result of the restricted sharp is
of course the same as the ordinary sharp operator defined in [Mil66). The difference is
that the restricted sharp does not contain all the prime implicants but only those prime
implicants necessary for the covering. The sharp operator will be illustrated using the
following example, taken from [vH94, Section 3.3].

Example 5.1 Sharp operator
In this example, a two-input, two-output cover will be used. A cover is specified as a
set of product terms. A product term consists of an input part and an output part. Let
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11, 2 be the names of the input bits and let 31, 3o be the names of the output bits. The
cover X defined as

X ={-11{16; 1-101}
represents the following functions:

y1=nand = o
Given the universal cover U:

U~ {--11)

Using the definition of the sharp operator from [Milé6] the following sharp difference
can be calculated:

U#X = {0— | 01; -0 | 10; 00 { 11}

This sharp operator has been visualized in Figure 5.4. A property of this sharp operator
is that it calculates all prime implicants, even those that are not necessary for the cover.
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In fact the last product term 00 | 11 is not necessary for the cover (which can be seen very
easily from Figure 5.4. The restricted sharp [vW95] does not calculate these unnecessary
prime implicants and finds the following solution:

U#v‘est'r'ictedX = {0“ [ 01; -0 [ 10}

i

In general, the restricted sharp operation describes the complemented cover using few
product terms compared to the original sharp operator. The reader is referred to [vH94]
for more details on the definition and implementation of the restricted sharp function.

5.4.3 Split() : Split into output covers

The output of complete(), is a description of the function using the ON-cover and the OFF-
cover. This description will be optimized by optimize() (described in the next section).
As discussed, the optimization will be passive, it will not use don’t cares to minimize
the number of product terms. This means that product terms can only be optimized
using product terms that have the same output vector. Therefore, the function cover will
be partitioned by split() in a number of subcovers, each subcover will contain product
terms that have the same output vector. Each of these subcovers will then be minimized
by optimize().

5.4.4 Optimize() : Optimize each output cover

The optimize()block is quite complex, therefore a flow diagram of this block can be found
in Figure 5.5. The input of optimize(} is a cover composed of product terms that have
the same output vector. The optimize algorithin performs iteratively three independent
optimizations. If one of these optimizations results into a change of the cover, then a next
tteration is started. If none of the optimizations changed the cover, then the cover is said
to be optimized and the new cover is returned. The first optimization merge_pterm() is
the most classical product term optimization, this function checks if two product terms
form the cover can be merged to a new product term. For example, the product terms
a-band a- b can be combined to a new product term a.

Redundant_pterm() is the second optimization, it tries te find product terms in the cover
that are redundant, i.e. if such a redundant product term is removed from the cover,
then the cover covers the same min terms. For example, the cover consisting of the
preduct terms ¢, b c and - b is redundant, by removing the product term - b exactly
the same min terms are covered.

The last optimization is performed by sparse_pterm(). The goal of this optimization is to
remove literals from product terms. The classical example of the optimization performed
by sparse_pterm()is o + @ - b = a + b. Sparse_pterm() determines for every literal in the
cover, if it can be removed without changing the min term covering. In principal,
redundant_pterm() could also be performed as the by product of sparse_pterm(), however,
sparse_pterm() is a rather expensive operation whereas redundant_pterm() is reasonable
fast. This way, the optimizations obtained by redundant_pterm() help to reduce the
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Figure 5.5: Optimization flow used in the LUTSYN preprocessor
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computation time of sparse_pterm().

The first two optimizations are useful because they decrease the number of product
terms in the function table and hence the number of symbols in the set systems. The
third optimization (sparse_pterm()) does not decrease the number of product terms, but
decreases the number of literals. This is also of some importance, because such a
removable literal suggests to the decomposition algorithm that the corresponding bit
can be used to distinguish the product terms from some other product terms, whereas
this is not the case.

54.5 Combine() : Combine output covers

The function of combine() is fairly simple, it collects the minimized subcovers processed
by optimize(), makes a new cover from it and writes this cover to an output file. This
output file contains then the final preprocessed Boolean function,

5.4.6 Example

In this section, the preprocessor will be illustrated using an example. Given the 4-input,
l-output function F defined in Table 5.6. This function contains the ON, OFF and DC-
covers, so the complete() function only performs a consistency check. The split() algorithm
then strips all product terms for which all output bits are don’t care. The split() function
results in two covers: subcover 1 (see Table 5.7) that contains all the product terms for
which the output is 0, and subcover 2 (Table 5.9) that contains the product terms for
which the output is 1. For each of these covers the optintize() algorithm is executed.

For subcover 1, first merge_pterm() is called. Merge_pterm() will combine the third and
the fourth product term to a single product term 1, - 75 - 73. Then redundant_pterm() is
called, this function removes the second product term, since this product term is entirely
covered by the first and fifth product term. After these steps the subcover in Table 5.8
remains. Calling sparse pterm does not change the subcover, nor does a new invocation
of merge_pterm{) and redundant_ptermf(). Therefore, Table 5.8 contains the final optimized
subcover 1.

Subcover 2 is optimized the same way. Here, only the sparse_pterm(} algorithm con-
tributes to a change of the cover as can be seen from the Karnaugh diagram in Figure 5.6,
The optimized subcover 2 can be found in Table 5.10.

The optimized function F is obtained by combining the optimized subfunction and
writing it to an output file. These two tasks are performed by combine().

5.4.7 Implementation

The implementation of the LUTSYN preprocessor is based on a two-level logic synthesis
toolbox. This toolbox is described in [vH94][dB95].

At this moment the preprocessor does not use any heuristic algorithms in optimizing
the function cover. This is not so serious as it sounds, because the optimizations are
performed on small subcovers obtained as a result of split() and furthermore, the pre-
processor algorithm can be stopped anytime and the result found so far is a valid (but
maybe not fully optimized) input for LUTSYN. It is a deliberate choice not to spent too
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Figure 5.6: Karnaugh diagram of subcover 2

much work on the preprocessor algorithm at the moment. The main reason for this is
that currently it is unknown what the influence of the preprocessor will be on the amount
of resources that LUTSYN requires. Before a good preprocessor can be constructed, it is
necessary to have an answer to the following two questions:

1. Does the preprocessor cause a significant decrease of the computation time used
by LUTSYN? If the answer is yes, then preprocessing is useful, otherwise prepro-
cessing can be considered a waste of time.

2. Has the preprocessor an influence on the quality of the LUT networks constructed
by LUTSYN? If so, it should be determined which preprocessor steps have a
positive influence on the quality.

Both these questions, can only be answered after the decomposition algorithm is com-
pletely finished and throughout experiments can be performed with it. Therefore, a
near-optimal preprocessor is of lesser importance at the moment.

5.4.8 TPreprocessing EB

Figure 5.7 contains a description of the EB circuit in Espresso format [Yan91]. The
preprocessor accepts all cover combinations of the Espresso format. In this case the
circuit is specified using the ON-cover, OFF-cover and DC-cover. Since, all covers are
present the complete() algorithm performs only a consistency check. The don't care cover
is then dropped by splii() and the function is split in four subcovers based on the output
vector:

subcovergy = {0 — 0; 100}

subcovergy = {011}
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subcoveryy = {111}

subcovery, = {001; 110}

Each of these covers is then minimized by optimize(). Only subcoverg can be optimized,
the other covers were already optimal. The output of optimize(} is therefore the following
lists of optimized covers:

subcoverfy = {0 — 0; —00}
subcovery; = {011}
subcover], = {111}

subcover]; = {001; 110}

Based on these covers combine() creates an output file in Espresso format that contains
the preprocessed EB circuit. This output file can be found in Figure 5.8. This file will be
used as the input for the cluster algorithm discussed in the next section.

5.5 Cluster() : Cluster algorithm

5.5.1 The algorithm

The concept of clustering has been discussed in Section 4.3.5. The goal of the cluster()
algorithm is to determine for which outputs of the circuit it is useful to create common
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Figure 5.9: LUTSYN cluster algorithm

subfunctions (because these outputs will share much logic). The build() algorithm will
only try to construct subfunctions for the clusters obtained by cluster() and will not create
other subfunctions in order to prevent the creation of long wires for small subfunctions.
A cluster of some output set systems is only constructed if the number of common
incompatibility pairs is large compared to the number of incompatibility pairs of the
output set system in the cluster with the largest number of incompatibility pairs (i.e. the
cluster function must have a significant impact on all the set systems). The following
formula is used to determine if a cluster €' will be constructed:

{u!w v v|¢w}
9l

where || 5| denotes the number of elements in set S, ||¢| denotes the number of incom-
patibility relations in set system ¢ and v |4 w denotes that v and w are incompatible
with respect to set system ¢. The left hand of this formula expresses the number of
incompatibility pairs that are common te all output set systems in the cluster C. This
number is compared to the maximum number of incompatibilities that the set systems
in cluster C have. The user definable constant CLUFAC is used as a threshold factor.
Currently is has been set to 33%, but experiments have to confirm if this is a good value.

> CLUFAC - mazyec|| o) (5.13)

The cluster algerithm is illustrated in Figure 5.9. Clusters are constructed level by level
and form a cluster tree. In Figure 5.9 the cluster tree of a 4 output Boolean function has
been constructed. Level 0 of the cluster tree contains singleton clusters; there is a cluster
for each output of the eircuit.

In the first level all primary outputs are clustered in pairs. In theory using 4 level 0
clusters, 6 different combinations can be constructed. In Figure 5.9 only 4 clusters have
been accepted (i.e. two clusters did not satisfy (5.13) and were deleted).

The second level of the cluster tree is then constructed based on combinations of level 1
clusters only.
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At the moment the clusters on each level use the same CLUFAC value. As an extension
it is possible to let CLUFAC be a function of the level of the cluster tree. For, at higher
levels of the cluster tree the number of functions for which the cluster is a subfunction
becomes larger and hence the amount of saved active area is larger. Therefore, it makes
sense to use a lower CLUFAC if the number of outputs in the cluster increases.

Each cluster is described using the set of common incompatibility relations. Construc-
tion of these sets will be performed by the build() algorithm described in the next section.
There is however a difference between primary outputs and the cluster incompatibility
sets. Build(} is required to implement the primary output set systems, but it does not
necessary have to construct logic for the entire cluster incompatibility set. If it is easier
for the construction process, build() can decide to implement only a subset of the incom-
patibility pairs as the subfunction. This will be discussed in the next section.

The cluster algorithm has been implemented and is quite efficient, large Boolean func-
tions (more than 15 outputs) can be clustered within few minutes.

5.5.2 Clustering EB

Clustering for the EB example is quite easy, since there are only two output set systems.
When expressing the output set systems of EB as incompatibility sets, the following is
obtained:

1C(y,) = {(0,1); (0,5); (0,6); (1,2); (1,3); (2,5); (2,6); (3,5); (3,6)}

1C(9,) = {(0,1); (0,2); (0,5); (1,3); (1.6); (2,3); (2,6); (3,5); (5,6)}
A cluster C can be obtained by intersecting the incompatibility sets of these two outputs;
it contains 5 incompatibility pairs.

10(C) = {{0,1}; (0,5); (1,3); (2,6); (3,5)}
Using a CLUFAC of 0.33 C is an acceptable cluster, which can be very easily verified

using Equation (5.13). The set system ¢ ¢ that corresponds to JC(C') is defined as follows
{¢¢ is obtained using the algorithm described in Section 4.3.3.1):

$c=1{0,234 03,46, 1,245 1.4,5,6}
This is however a 4 block set system, thus this set system cannot be implemented by a
LUT (for EB only single output LUTs are used and thus subfunctions can only have two
blocks). The build() algorithm described in the next section will use the information of

IC(C) to generate a subfunction ¢/ that implements only part of C, but does this in a
two block set system:

»={0.1,2.34 56}
'~ implements 3 out of 5 incompatibility pairs from IC(C): (0,5), (2,6) and (3,5).

In the next section the kernel of the LUTSYN algorithm will be discussed: the LUT
network construction algorithm build().
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5.6 Build() : Network construction algorithm

5.6.1 Introduction

Build() forms the core of the synthesis algorithm. It is responsible for building the LUT
network for a given Boolean function. An overview of the build(} algorithm can be found
in Figure 5.10.

The input of the algorithm consists of three types of information: the input and output
set systems, the cluster tree and the LUT parameters. The input set systems represent the
primary input of the LUT network, the output set systems are the functions that must
be calculated by the LUT network. The cluster tree is used to guide the construction of
subfunctions and the LUT parameters indicate the number of inputs and outputs of a
considered LUT.

The function build level 0} makes input LUTs (LUTs with no inputs and one output
that corresponds to the input set system} for each of the primary input set systems. It
is of course not necessary to implement these input LUTs in the final physical realiza-
tion. These input LUTs are only used to simplify the algorithms: by using inputs LUTs
the construction process does not need to distinguish between primary inputs and the
outputs of the other LUTs. The input LUTs will be removed before the actual network
implementation.

The main part of build() consists of a loop. In each iteration of this loop a level of the LUT
tree is constructed. The loop process stops as soon as for each of the output set systemns
an implementation has been found. This way the algorithm prefers implementations
with fewer levels above implementations that have more levels but fewer LUTs. The
result of the build process is a LUT tree. This tree may contain too many LUTS, for ex-
ample the tree may contain dead ends or it may contain more than one implementation
for a certain function. Therefore the tree needs to be cleaned up. This is the task of the
prune() algorithm described in Section 5.7. The result of prune() will be the final LUT
network that implements the circuit.

The main loop of the build algorithm consists of three heuristic algorithms: find_inpuis(),
find_input_combinations() and find_lut_outputs(). Each of these algorithms operates on a
single output or cluster set system that has not been implemented at one of the previous
levels. This way each function is implemented using as few as possible levels. In rare
cases it is possible that implementations of a set system will be found at higher levels in
the tree as the by-product of the construction of some other set system. Such implemen-
tations with more than the minimal number of levels are permitted, but they will never
actively be searched for.

Suppose the construction process is building level n of the LUT tree and set system o
is an output or cluster set system that has not yet been implemented. The algorithm
find_inputs(o) will find a list of inputs that are useful as the inputs for a level n LUT, such
that this LUT is useful for the implementation of set system o. As inputs of this LUT the
outputs of LUTs of one of the previous levels and the primary inputs are considered. If
the list of inputs becomes too large (determined by a user definable threshold value) then
a heuristic selection process will be performed that will select only the most promising
input combinations. Details of the find_inputs(o) algorithm can be found in Section 5.6.3.
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The algorithm find_input_combinations(o} uses the list of inputs created by find_inputs(o)
to make useful input combinations for a LUT. An input combination is useful if it is non
redundant and if it is likely to contribute to the implementation of function o. The exact
algorithm can be found in Section 5.6.4. Of course, a heuristic selection algorithm will
be used to keep the set of input combinations within practical limits.

Each input combination obtained from find_input_combinations(o) is transformed into a
LUT. Calculating the output of this LUT is the task of the function find_lut_outputs(o).
This function calculates for each of the LUT one or more output functions that are
likely to be a part of the implementation of function o. If one or more of the out-
puts implements function ¢ then the construction of function o is completed and the
function is marked done. Otherwise, the algorithm starts with building level n + 1.
find_input_combinations(o) is described in more detail in Section 5.6.5.

The heuristic algorithms find_inputs(), find_input_combinations() and Sfind_lut_outputs() are
all based on the same basic heuristic algorithm. This basic decision algorithm will be
discussed in the next section. Following this section each of the three steps in build() will
be discussed in detail. Each step will be illustrated using the EB example.

5.6.2 The basic heuristic decision algorithm

The three algorithms find_inputs(), find_input_combinations() and find_lut_outputs() use the
same heuristic framework. This means that these algorithms all have the same structure
and use similar functions for the evaluation and selection. This way it is guaranteed that
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the independent steps find_inputs(), find_input_combinations(} and find_lut_outputs() work
in the same direction. A flow diagram for the heuristic decision framework can be found
in Figure 5.11. The framework consists of 4 blocks. The framework operates on items.
What an item exactly is depends on the function in which the heuristic algorithm is
used: in find_inputs() an item is a signal that is a valid input for a LUT, in find_input_com-
binations(} an item is a non redundant combination of inputs and in find_lut_outputs() an
itern is a set system that can be calculated from the LUT inputs and that does not exceed
the maximal number of blocks.

The first block in Figure 5.11 is generate(). Generate() simply generates a list of all feasible
items. This list is then passed to evaluate() that weighs each of items. Evaluate() is based
on the similarity between the item and the set system that is being constructed and uses
a decreasing incompatibility weighing function as described in Section 4.3.3.2.

Select() forms the core of the decision algorithm. It determines which items will be
selected and which items will be removed. Select() uses two user definable threshold
values SELECT_MAX (an integer) and SELECT_QUALITY (a floating point number
between 0.0 and 1.0) to determine which itemns should be selected. SELECT.MAX in-
dicates the maximal number of items that can be selected; this is an absolute limit. A
relative limit is specified by SELECT_QUALITY : the weight of an item should be at
least Wi, x SELECT_.QUALITY in order to be selected. In this formula, Wi is the
weight of the item with the highest weight. The goal of SELECT_MAX is to prevent a
combinatorial explosion. SELECT_QUALITY is used to prevent the selection of items
for which it can be safely assumed that they ate not useful (because their quality is so
much lower than the best item). The selection algorithm itself is then straightforward:
the best SELECT_QUALITY items are selected provided that they satisfy the relative
limit imposed by SELECT_QUALITY .

Two variants of the select() algorithm exist: a static version that calculates the item’s
weights once before the selection process starts and a dynamic version that recalculates
the weights after a single item has been selected. The reason for the introduction of the
dynamic select() algorithm is that after selecting an item the weights of the not selected
items change. Since, if an item is selected then selecting another item that implements
almost the same incompatibility relations becomes less interesting and selecting an item
that implements incompatibility relations that are not implemented by any of the se-
lected items become more important. The dynamic select(} algorithm is however much
slower than the static version, because all weights must be recalculated after selecting
an item and the list of not selected items must be resorted. If using the dynamic select()
algorithm costs too much time, then it is of course possible to recalculate after selecting
for example ten items, instead of recalculating after each selection.

The function add_essential() forms the last block of the heuristic decision framework. The
goal of add_essential() is to add items that are not selected by select() but that are necessary
for the implementation of any function. In LUTSYN it is made sure that each incompat-
ibility relation of an output or a cluster set system is at least implemented by one of the
selected items. If for some reason the select{) algorithm misses this incompatibility rela-
tion then add_essential() will add a set system that implements it. This way, each level of
the LUT tree can potentially implement the output or cluster set system. Add_essential()
should not be necessary in normal cases. Its application by the construction algorithm
generally indicates that the limits SELECT_MAX and SELECT_QUALITY are set to
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high, so that good and necessary items are removed.

In LUTSYN the algorithm above is implemented with two options. It is possible to use
this heuristic algorithm interactively. This way, the researcher can completely control the
design decisions taken by the algorithm. He can intervene if it finds that the wrong or too
many items have been selected and change the search parameters. This is very important
for the analysis of existing heuristics and for developing new ones, Italso helps in finding
good empirical values for the search parameters. There is also an automatic option, in
which the search parameters SELECT _MAX and SELECT_QUALITY are predefined
and the search algorithms make all decisions fully automatically, without interacting
with the user.

5.6.3 Find_inputs(o)
5.6.3.1 The algorithm

In this section the function find_inputs(o) will be discussed, where o is the output for
which an implementation is to be found. Unless stated explicitly, o can be both a pri-
mary output or a subfunction obtained by the cluster algorithm discussed in Section 5.5.
Find_inputs(o) will only be executed for outputs o which are not implemented on one of
the previous levels of the LUT tree. It will be assumed that the algorithm is currently
building level n (n > 0) of the LUT tree.

The task of find_irnputs(o} is to make a list of inputs that can be used as the inputs of the
level n LUTs. Generally, find inputs(o) should not be necessary or at least should not be
very restrictive. This is because find_inputs(o) selects as the inputs the outputs of LUTs of
lower levels. However, the LUT outputs of lower levels are created because they were
useful for the construction of the function o and it may be safely assumed that good
outputs of a LUT are still good if they are used as inputs on the next level. There are
three cases in which the operation performed by find_inputs(o) is really necessary:

1. Symmetric functions (like arithmetic operations) tend to produce a lot of LUTs
with similarity in the same order of magnitude; in such a case an extra selection of
inputs may be necessary to prevent a combinatorial explosion.

2. If the cluster algorithm has determined many useful subfunctions for function o
selection may be necessary to prevent the list of inputs to become too large.

3. When studying the behaviour of find_input_combinations(o) or find lut_outpuis(o) it
may be necessary to make the algorithm less restrictive in these functions. This
can result in the generation of many LUTs such that the number of potential inputs
on the subsequent level of the LUT tree can become too large.

The find_inputs(o) algorithm consists of the four basic steps of the heuristic framework
described in the previous section. The flow diagram can be found in Figure 5.12.
Generate_inputs(o) just makes a list of all permitted input signals. For inclusion on that
list of inputs it considers the following signals:
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Figure 5.12: The find_inputs(o} algorithm
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1. All primary inputs.
2. The outputs of level m(m < n) LUTs if these LUTs are constructed for function o.

3. The outputs of level m(m < n) LUTs if these LUTs are constructed for one of the
subfunctions found by the cluster algorithm and function o is part of that particular
cluster.

The consequence of this is that find_inputs(o) can only create subfunctions that are found
by the cluster algorithm. find_inputs(o) will use LUTs that are constructed for a cluster
if the output o is a part of the cluster even if that LUT does not implement the cluster
yet. The goal of this approach is to allow the use of a subfunction that implements
the cluster only partially. This is done because a cluster is only a tool in finding good
subfunctions, the exact subfunction might be too difficult or too expensive to create,
while its subfunction can be constructed much cheaper.

The list of all potential inputs constructed by generate_inputs(o) is then processed by
evaluate_inputs(o). Evaluate_inputs(o) simply calculates the set system similarity between
the set system representation of the potential input and ¢, and sorts the list of inputs
with respect to this value. The incompatibility pairs are weighed based on the number
of input set systems that implement them. As the incompatibility weighing function,
the function weight = 1/noc is used, where noc is the number of occurrences of a
certain incompatibility pair and weight is the weighed value. This way set systems
that implement many incompatibility pairs (and thus resemble ¢,) and set systems that
implement important incompatibility pairs are preferred by the algorithm.

Then select_inputs(o) statically selects inputs using the heuristic algorithm described in
section 5.6.2. It uses the values SELECT_INPUT_QUALITY (which defaults to 0.33)
and SELECT_INPUT MAX (which has a default value of 50) to limit the selection
process.

Finally, add_essential_inputs(o) checks if all incompatibility pairs of set systems ¢, are
implemented by at least one of the selected input set systems. If this is not the case then
it will be impossible to completely construct ¢, at this level of the search tree. Therefore,
add_essential_inputs(o) adds the best not selected input set system that implements the
missing incompatibility pair. Generally, the adding of essential inputs indicates that the
search process is deleting important set systems and the search parameters need to be
adjusted.

5.6.3.2 The EB example

In this section the find_inputs() algorithm will be illustrated using the EB circuit. This
circuit has tree primary inputs (1, 7 and ) and two primary outputs (y and ;). See
Section 5.2 for the details. Also a cluster ¢ has been identified as a potential common
subfunction for yy and y (see Section 5.5.2). It will be assumed that the default values
SELECT_INPUT_QUALITY = 0.33 and SELECT_INPUT_MAX = 50 will be used for
the search. Please note that in this example, the function from Section 5.2 will be used
and not the preprocessed format described in Section 5.4.6.
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Table 5.11: Weight of the incompatibility pairs in find_inputs()

The selection of the level 1 inputs is done for each output function and subfunction
separately. For output y, the following selection decisions are made. Since at level 1
there is only a choice from the primary inputs generate_inputs(y,) will find the following
lists of input set systems: ¢q,, ¢, and ¢,,.

Lualuate. inputs(yg) will calculate the similarity for each of these set systems with ¢, using
the incompatibility weighing function weight = 1/noc. For example the incompatibility
pair 0 | 1 is implemented by ¢, but not by set systems ¢, and ¢,,, so its number of
occurrences is 1 and it weight will be 1/1=1. The pair 2 | 3 is implemented by all three
primary inputs, so its number of occurrences is 3 and its weight will be 0.33 (using two
decimals). Calculating the weight for all incompatibility pairs results in Table 5.11. The
similarity between ¢,, and the input set systems can then easily be calculated using
Equation (4.36):

SIM;, (bg) = 0.50
SIMy,, (¢2) = 0.36

SIMj, ($s) = 043

This results in the following sorted list of potential inputs: ¢, ¢ and
by, Select_inputs(iyy) will select all these inputs because the list is shorter than
SELECT.INPUT_MAX element and the similarity of all the set systems is within the
33% percent limit imposed by SELECT_INPUT_QUALITY .

In this case there exist no incompatibility pairs from &,, that are not implemented by at
least one of the selected input set systems. So the function add_essential_inputs(y,) does
not add new set systems.

For the second output and the subfunction cluster a similar calculation can be held. In
all these cases the three primary inputs are selected as potential inputs without the aid
of add_essential_inputs(). The construction of the second level of the LUT tree is done in
a similar way. In that case however, generate_inpuis() will alse consider the outputs of
level 1 LUTs as potential inputs.
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find_input_combinations (o)

generate_input_combinations (o)

evaluate_input_combinations (o)

select_input_combinations (o)

add_essential_input_combinations (o)

list with LUT inputs for function o

Figure 5.13: The find_input combination(o) algorithm
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5.6.4 Find.input_combinations(o)
5.6.4.1 The algorithm

The basic goal of find_input_combinations(o} is to find combinations of input set systems
that will form the inputs of level n LUTs. The function will make the combinations based
on the list of input set systems obtained by find_inputs(o). The function find_Iut_outputs(o),
which is discussed in the next section will then find the output set systems for each of
these LUTs. The flow diagram of find_lut_combinations(o) can be found in Figure 5.13;
it can be seen from this figure that find_input_combinations(o) closely follows the basic
heuristic decision algorithm.

The generate_input_combinations(o) algorithm is rather straightforward. It takes the list of
input set systems and it generates all possible input set system combinations that satisfy
a number of conditions. Since all possible combinations of input set systems are tried,
the list of combinations can become huge (this is also the reason why find_inputs(o) has
been introduced). In order for an input combination to be accepted, it should satisfy the
following conditions:

1. Each combination should consist of at least 2 and no more than LUTNO] input set
systems, where LUTNOI defines the maximal number of inputs that a LUT can
have.

2. Each pair of input set systems should be non redundant. This means that if ¢
and ¢; (i # j) are two input set systems in the combination then the information
present in ¢; should not be contained in the information of ¢; (i.e. ¢, £ ¢;) and
vice versa. This non redundancy check is not quite sufficient for LUTs that can
have more than 2 inputs. For example, it is possible that a combination of three
input set systems exist such that ¢; - ¢; < ¢,. However, due to the computational
impact of checking of all this kind of combinations, only pairs of inputs will be
checked for redundancy.

3. If the set system product of the input set systems only contains two blocks then it
is checked if this set system has already been constructed on one of the previous
levels. If such a set system is found and it was constructed for output o then the
input set system combination is rejected.

The above rules construct a list of input set systemn combinations that are poten-
tially useful for the construction of output o. This list of combinations is passed to
evaluate_input_combinations(o) for the calculation of the weight factors. The evaluation
of the input combination is based on the set system product of the input set systems in
that combination. This set system product expresses the combined information of all the
input set systems in the combination. Unfortunately, the input set system product will
generally have more than two blocks. The output of a LUT is however a binary signal
and can therefore only be represented by a two block set system. What is necessary
is an abstraction of the input set system product to the output set system. Such an
abstraction can be obtained by merging the set system blocks of the input set system
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product such that a two set block set system is left. This is the way in which find_Jut_out-
puts(o) will find feasible output set systems for an input combination. The goal of
find_input_combinations(o} is to look for input combinations that can generate useful set
system outputs for the construction of ¢,. Finding these combinations is the target of
evaluate_input_combinations(o). This is accomplished by making a fast greedy prediction
of the output set system that the find_lut_outputs(o) algorithm might construct. It is
assumed that this greedy output set system will predict the set systems constructed by
find Jut_outputs(a) well enough, so that decisions made on the greedy output set system
are also valid for the output set systems that will be created later on by find_lut_outputs(o).
The prediction algorithm is illustrated using the following example.

Example 5.2 Greedy output function prediction
Let

4:={12 3458
be the input set system product for a certain LUT and let
$o={1,2 34,58

be the function that is to be constructed. Since ¢; is a four block set system, it is first
reduced to a three block set system. There are six ways to accomplish this:

1. Merging block 1 and 2 of ¢; : ¢; = {1,2, 3,4; 5; E}

2. Merging block 1 and 3 of ¢; : ¢, = {], 2.5; 3,4; 3}

3. Merging block 1 and 4 of ¢, : ¢3 = {1,2,6, 3,4; 3}
4. Merging block 2and 3of ¢; : ¢y = {1,2; 3,45; §)
5. Merging block 2 and 4 of ¢ : ¢z = {1, 2, 3,4,6; 5}

6. Merging block 3 and 4 of ¢; : ¢ = {1,-2, 3,4; ,6}

For each of these set systems the set system similarity with ¢, is then calculated. The set
system with the highest similarity is then selected and called #. Suppose that SIM,_(¢4)
is the best similarity then ¢ = {1,—2; 3,45; 6}. ¢} is a three block set system that needs
to be further reduced. This is done in a similar way:

1. Merging block 1and 2 of ¢/, : ¢ = {1, 2,3,4,5; 6}

2. Merging block 1and 3 of ¢} : ¢y = {1,2,6; 3.4,5)

3. Merging block 2 and 3 of ¢/ : ¢g = {l, 2; 3,4,5, 6}
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Again the set system similarity between ¢, and each of the set systems ¢», ¢x and g is
calculated. Since ¢g = ¢, that set systemn will have the highest set system similarity and
that set system will be selected. In general it is of course not necessary that the greedy
set system finds the primary output function. o

A few remarks with respect to this greedy selection process:

1. If there are more set systems with the highest similarity then one of them is
picked at random (in find_lut_outputs(o) this is of course not desirable and a more
sophisticated algorithm will be used there).

2. The block reduction step only reduces the number of blocks by one. 5o, if a ten
block input set system product is calculated (which is very well possible using a
four input LUT), it will take eight steps to come to a two set system block. This
algorithm is however much faster than calculating the set system similarity for
all possible block combinations directly (which is O(2°) where b represents the
number of blocks).

3. The calculation of the set system similarities uses weighed incompatibility pairs
using the formula: weight = 1/noc where noc represents the number of occurrences
of the incompatibility pair in the input set system products.

The algorithm performed by function select_input_combinations(o) is straightforward.
It uses the parameters SELECT_INPUT_COM BINATIONS QUALITY {default value
0.33) and SELECT_INPUT.COM BINATIONS_MAX (default value 100) to statically
select the best input combinations using the algorithm described in Section 5.6.2.

Add_essential_input_combinations(o) acts as a safety net: if an incompatibility pair of ¢,
is not implemented by the greedy input set system of the selected input combinations,
then the best input combination that implements it is added to the selected set. This is
however not so bad as it seems at the first sight: it is possible that the incompatibility
pair is implemented by an input set system product, but it is not part of the greedy set
system. However, it is better not to take any chance and add an extra combination to
make sure that an implementation with this pair is possible.

5.6.4.2 The EB example

In this section the find_input_combinations(o) algorithm will be illustrated using the EB
example circuit as described in Section 5.2.

As an example the input combinations for primary output ¢,, will be calculated. In
Section 5.6.3.2 it has been determined that the list of input set systems is: ¢, ¢, and
éa,- Based on this list generate_input_combinations(¢,,) will generate the following input
set system products:

1. By combining ¢,, and ¢,,: ¢ = {5; 1,2; 3,5; 4,7}

2. By combining ¢, and é,,: ¢z = {G,MT; 0,2: 3.4; ,6}
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Table 5.12: Weight of the incompatibility pairs in find_input_combinations()

3. By combining ¢, and é,,: ¢3 = {m, 0,5 1.4; 2_6}

From these input set system product it is very easy to obtain Table 5.12 that contains the
weighed number of occurrences of the incompatibility pairs in the input combination
list. In this table the standard incompatibility weighing function weight = 1/noc has
been used. Using this table the blocks of the set systems can be reduced. For @, six
possibie three block set systems can be constructed:

1. Merging block 1and 2 of ¢, (similarity 0.61): ¢1; = {3,1,%; 3,5; 4,6}

2. Merging block 1and 3 of ¢ (similarity 0.61): ¢1, = {0.3,5; T.3; 48}
3. Merging block 1 and 4 of ¢, (similarity 0.65): ¢15 = {0,4,6; T, Z; 3.5}

4. Merging block 2 and 3 of ¢, (similarity 0.56): ¢; 4 = {0,' 1,235 47:}

5. Merging block 2and 4 of ¢, (similarity 0.60): ¢15 = {0; 1,2,4.6; 3,5}

6. Merging block 3 and 4 of ¢ (similarity 0.65): ¢1,5 = {0; T.2; 3.4,5,6}

In this case there are two set systems with the maximal similarity: ¢y 3 and ¢ . LUTSYN
takes the first one and performs the block merging algorithm again:

1. Merging block 1and 2 of ¢ 5 (similarity 0.39): ¢15; = {0,1,2,4,6; 3.5)
2. Merging block 1 and 3 of 4, 5 (similarity 0.43): 415, = {0,3,4,5,6; 1,2)
3. Merging block 1 and 4 of 13 (similarity 048): ¢35 = {0,4,6; 1,2,3,5}

In this case, set system ¢ 33 is selected. This set system will be called Poreedy, - FOI the set
systems ¢; and ¢; greedy algorithms can be obtained in a similar way. The sorted list of
greedy set systems becomes:

Goreaty, = {0,2,3,%; 0,1,5,6} similarity = 0.65

Barectn = {0,3,5; T,2,4,6} similarity = 048
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Porecin = 10,4, 6; 1,2,3,5} similarity = 0.48

This list also shows the drawback of a fast greedy search algorithm, the set system dgrc.ay,
is the same set system as input set system ¢,, and thus the proposed LUT function would
be f = z,. In the next section it will be shown using an example that a more sophisticated
search algorithm will be able to find useful output set systems for input combination
{hs), Pz, ); In fact as can be seen from Figure 5.1, this combination is used in the final
solution.

Select_input_combinations(s,,) uses this list of greedy set systems to determine
which input combinations should be removed. Using the default values 0.33 for
SELECT_INPUT_COM BINATIONS _QUALITY and 100 for SELECT INPUT_COM-
BINATIONS_MAX all input combinations will be accepted. Since all incompatibil-
ity relations of ¢, are implemented by at least one greedy set system, the algorithm
add_essential_input_combinations(d,,) does not need to add other input combinations (this
was not possible anyway, since all combinations already have been selected).

For the second output select_input_combinations(gy, } will of course find the same 3 input
combinations. These input combinations are also found for the common subfunction
expressed by cluster C.

5.6.5 Find lut_outputs(o)
5.6.5.1 The algorithm

The output of find_input_combinations(o) is a list of combinations of input set systems
that will be used as the input for a LUT. Each of these LUTs can implement a number of
different output functions. It is the task of find_lut_outputs(o) to create a few promising
output functions for each of these LUTs. The flow diagram of find_Jut_outputs(o) is very
similar to the other two heuristic decision algorithms {see Figure 5.14); in this case there
is however an extra block add_to_lut_tree(o) which takes care of the actual creation of the
LUTs and for adding these LUTs to level n of the LUT tree.

Generate_Iut_outputs(o} takes as its input the list of selected input combinations obtained
by find_input_combinations(o). The goal of the generation process is to create few promis-
ing LUT output functions for each of these input combinations. This approach is a
little different from generate_inputs(o) and generate_input_combinations(o) that generate all
feasible items, while generate_lut_outputs(o) will use a heuristic decision process to only
create a few promising output functions, The reason for this is, that generating all pos-
sible outputs is computationally expensive. For example, a 4-input LUT can result in a
input set system product that contains 16 blocks and hence 2'® possible output functions.
Generate_lut_outputs(o) will create a list of output set systems for each input combination
by repeatedly merging two blocks of the set system and keeping only the most promising
one. The algorithm is very similar to the greedy algorithm used in find_input_combina-
tions(o) only here a number of good set systems will be selected instead of only the best
one. The algorithm will be illustrated using the following example.



5.6. BUILD() : NETWORK CONSTRUCTION ALGORITHM 147

find_tut_outputs (o)

y

generate_lut_outputs (o)

evaluate_lut_outputs (o)

select_lut_outputs (o)

add_essential_lut_outputs {0)

add_to_lut_tree (o)

level n luts for output o
added to LUT tree

Figure 5.14: Flow diagram for find_fut_outputs(o)
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Figure 5.15: Generation of L.UT output set systems for set system i
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Example 5.3 Finding output functions for a LUT
In this example the set system

¢={03; 0.5, 1.; 2,6}

will be used. This set system is the set system product of the input combination of
primary inputs ¢,, and ¢,, as discussed in Section 5.6.4.2. The goal is to construct output
set systems for output ¢,,. The greedy set system algorithm was not able to find a useful
output function for the LUT. In this example it will be shown that 2 more sophisticated
search algorithm will be able to do find a useful output function.

The generation of the output set systems is done by repeatedly merging pairs of blocks
of the input set system product until a two block set system remains. The difference
with the greedy algorithm is however, that more than one set system may be selected.
The selection process is based on the select() algorithm described in Section 5.6.2. As an
absolute limit the parameter SELECT_QUTPUT_SS_MAX with a value of 3 is used and
as the relative limit the parameter SELECT_QUTPUT_SS_QUALITY = 0.80 will be
used. The select algorithm is illustrated in Figure 5.15, Since, ¢ is a 4-block set system,
6 3-block set systems can be computed from it by merging different combination of two
blocks. These set systems are the set systems from 14 to . For each of these set systems
the similarity with ¢, is calculated. SELECT_QUTPUT_.S5_MAX will allow only three
set systems to be selected. Therefore the 3 set systems with the highest similarity are
selected (in Figure 5.15 these are marked with "ok"), the other three set systems will be
removed (marked with "lim" because they violate the maximal set system limit).

For each of the selected 3-block set systems, the number of blocks is further reduced by
merging two blocks. For set system v three two-block set systems i1 1, Y2 and ¢, 3 are
constructed. From this list 1, 3 is removed because it is the same as one of the LUT inputs
(ie. it implements the trivial function f = 2,); this set system is marked with "triv" {triv-
ial). The other two set systems satisfy the parameters SELECT_QUTPUT_SS_MAX and
SELECT_OUTPUT_SS_QUALITY and are therefore accepted. For set system ¢ also
three two-block set systems can be constructed: Y1, Y2 and 4y 3. However, 147 = 91,
so this set system will not be duplicated. Set system 3 3 is accepted, but 1y ; is destroyed
because it does not satisfy the relative limit SELECT_QUTPU T_SS_QUALITY = 0.80;
this set system is marked with "qual". For 1 similar considerations apply.
Summarizing, the following four output set systems have been selected by
generate_lut_outputs(¢,,) for the input combination (¢, d,, ):

Vi1 =1 = {0,1,3,45; 2,8}
42 {0,235,6; 1,4}

s {0145 0,236}

and
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%61 {0,1,2,45,6; 0,3}

0O

By repeating this algorithm for each of the input combinations a list of LUTs
is created. This list is passed to evaluate lut_outputs(o) which has a very simple
task: since the similarities of the LUTs already have been calculated, the LUT lists
only needs to be sorted with respect to these similarities. The sorted list is then
passed to a dynamic selection algorithm select Jut_outputs(o) that uses the parameters
SELECT_LUT_QUTPUTS_MAX =200 and SELECT_LUT_QUTPUTS_QUALITY =
0.33. If necessary, add_essential Jut_outputs(o) will add extra LUTs for incompatibility
relations of ¢, that not have been implemented. This is not strictly necessary, because
level n - 1 can obtain the missed incompatibility relations from a level m : m < n.
However, getting information from lower levels will result in long wires, which is un-
desirable from a routing point of view. Adding these incompatibility pairs, gives the
build process for level n -+ 1 at least the possibility to obtain this information from the
level n LUTS.

The last step of the find_iut_outputs(o) algorithm is the block add_to_lut_tree(o). This block
performs two tasks. First of all, it adds the selected LUTs to the LUT tree, so that they
can be used in the build process for the next levels. Secondly, it will check if one or more
of the added LUTs implements the function o. If this is the case then the LUT is marked
with this fact and output o is marked done.

In the next subsection find_lut_outputs(o) will be illustrated using the EB example func-
tion.

5.6.5.2 The EB example

In this example, the construction of the level 1 LUTs for output g of function EB will
be described. In Section 5.6.4.2 it has been shown that find_input_combinations(ys) has
selected three different input combinations. For easy reference, the set system product
of these set systems have been copied here:

2; 3,5 4,6}

73

o
|

1. By combining ¢, and ¢ ¢1 = {

[

3

2. By combining ¢., and ¢q,: ¢2 = {0, 1;

M
2
=
P
e

3. By combining ¢., and ¢, ¢3 = {0,_3; 0,5 1.4; ZZ}

Using these set systems, the weights of the incompatibility pairs can be calculated. Since
this are the same set systems as used in find_input_combinations(yo) the weights of the
pairs are equal and Table 5.12 can be used to calculate the similarities.

For set systems ¢y, ¢» and ¢ generatevlut_outputs(yo) will then find a list of LUTs. For
&5 this process has been detailed in the example from the previous section; the same
algorithm can be applied for ¢, and ¢2. The result of generate_lut_outputs(yo) is a list
of ten different output set systems. This list is then sorted by evaluate_lut_outputs(yy)
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prune(}

remove_dead_ends()

find_best_implementation()

final LUT network

Figure 5.16: The flow diagram of the prune algorithm

and handed to select_lut_outputs(y,). Since the best LUT's similarity is 0.65 and the
lowest similarity is 0.30 all set systems are accepted using the default search parameters:
SELECT_LUT_OUTPUTS_MAX =200 and SELECT_LUT_QUTPUTS_QUALITY =
0.33. Finally, add_to_Iut_tree(yrp) will add these LUTs to the LUT tree and check if any of
these set systems implements an output or a cluster, Unfortunately this is not the case
and an extra level of the tree is required for the implementation of output y.

Looking at the other output find_Iut_outputs(y;) will result in a list of 7 LUTs. For the
cluster € also 7 LUTs are found, which makes a total of 24 level 1 LUTs.

5.7 Prune() : Find best of feasible realizations

5.7.1 The algorithm

The output of the heuristic build() algorithm is a level n LUT tree that implements all the
primary output functions. Prune() performs two postprocessing steps to transform the
LUT tree into the final LUT network. The flow diagram of prune() can be found in Figure
5.16. The task of remove dead_ends() is simple. The LUT tree will contain LUTs that are not
used for the implementation of any of the primary output functions. These LUTs were
created because the heuristic algorithms in build() determined that they were promising,
but in the end they were not needed. They are removed by remove_dead_ends(), so that
only the LUTs actually used for the calculation of one of the outputs remain.
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It is possible that more than one implementation for a primary output has been found.
In that case, it is necessary to choose for each primary output one implementation,
such that the overall number of LUTs is minimal. This is the task of the function
find_best_implementation(). At the moment find_best_implementation(} is an exhaustive
search algorithm that finds the optimal number of LUTs. Until today it was not nec-
essary to create a heuristic version of this algorithm, because the computation times of
find._best_implementation{) were considerably lower than the computation times of build().
The result of find_best_implementation(} is a LUT tree that implements all the output func-
tions such that overall number of LUTs is minimal. This tree is saved in an output file
and is the realization found by the LUTSYN algorithm.

5.7.2 Pruning EB

With respect to the EB circuit, the LUT tree constructed by build() consists of 24 level-1
LUTs and 234 level-2 LUTs. It has found 12 different realizations for output y and 10
realizations for output .

After all unused LUTs have been removed from the LUT tree by remove_dead_ends(),
11 level-1 LUTs and 22 level-2 LUTs remain. find_best_implementation() then finds the
minimal number of blocks that is needed in a realizations. Since 4 is implemented 12
different ways and  has 10 different realizations the total number of possible realiza-
tions comes to 120. find_best_implementation(} finds 8 implementations that use 4 LUTs,
16 implementations that use 5 LUTs and 96 implementations that require 6 LUTs. From
the § implementations that require 4 LUTs one implementation is selected at random
which will be the implementation found by LUTSYN. This implementation can be found
in Figure 5.1 in Section 5.2.

This completes the discussion of the LUTSYN algorithms. Some practical results ob-
tained using the LUTSYN environment will be discussed in the next chapter.



Chapter 6

Experimental results

The algorithms described in Chapter 5 have been implemented in the form of a C++ program.
Experimental results obtained with this program can be found in this chapter.

6.1 Experimental results

Although LUTSYN is not yet a complete automated synthesis tool, it is interesting to
look at some synthesis results that can be obtained from it, to see what results can be
produced by such a first prototype and to have a first impression on the proposed de-
composition approach. In Table 6.1 some synthesis results for 2-input, l-output LUTs
have been presented for a number of Boolean functions from the MCNC logic synthesis
and optimization benchmark set [Yan91]. The first three columns after the circuit name
represent the number of inputs, outputs and the number of product terms in the func-
tion table of the description. These function tables have been preprocessed using the
preprocessor described in Section 4.3.4 and Section 5.4. As can be seen from the table,
the preprocessor was not able to reduce the number of product term of the circuits rd53,
shift and xor5. This is due to the fact that these circuits have orthogonal product terms,
so it is impossible to collapse them into larger product terms.

The fifth column in the table presents synthesis results obtained fully automatically by
LUTSYN, using the default search parameters described in the previous chapter. In this
column the number of levels of the circuit have also been presented. The results for
LUTSYN are compared to DEMAIN [£595], one of the best logic synthesis algorithms
for look-up table based architectures currently available. This algorithm, developed
at the University of Warsaw is in a way similar to LUTSYN: both algorithms are being
used for the research on Boolean function decomposition and both algorithms have both
an interactive and an automated mode. Both use the set system based approach. The
difference is however, that DEMAIN uses a top-down reduction approach in which it
combines a bit parallel decomposition with an parallel (disjoint) input bit decomposition
(see Section 3.3.2) whereas LUTSYN strives to find general decompositions using the
bottom-up construction approach. Since obtaining the number of levels from DEMAIN
is not straightforward, they have been calculated by hand for two small circuits. As
can be seen from Table 6.1, the results of LUTSYN and DEMAIN are about comparable,
except for the the symmetric function rd53, where DEMAIN produces much better re-
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[ Benchmark [ #inputs | #outputs | #terms | #LUTs LUTSYN | #LUTs DEMAIN |

a06 5 5 2 2974 27 |
bbtas 5 5 19 29/4 29
conl 7 2 19 36/6 37
dk27 4 5 12 23/3 24
eb 3 2 7 4/2 5/3
lion 4 3 11 15/3 13/4
rd53 5 3 32 36/6 26
shift 4 4 16 23/3 24
tra04 4 3 14 11/4 11
xor5 5 1 16 4/3 4/3

Table 6.1: LUTSYN results for 2-input, I-output LUTs

sults. This is very encouraging since LUTSYN is only a prototype research environment
which will be used for the development of adequate heuristic algorithms. Apparently,
the already implemented simple and yet incomplete heuristics of LUTSYN are already
able to find good decompositions for many circuits from the MCNC benchmark set.

In the remaining of this section a number of benchmark results will be examined in more
detail.

The interesting aspect of the a0 benchmark are the preprocessor results. It turned out
that this benchmark had a redundant input variable. This fact is not easy to detect in
the original function table (Figure 6.1), but the preprocessor discovered it and used it to
reduce the input file, what is evident from the output file of the preprocessor (Figure 6.2}.
From this figure it can be clearly seen that for all care conditions /1 and /2 have the
same value.

For the eb circuit, the difference between the LUTSYN and the DEMAIN solution can be
explained by the fact that DEMAIN needs an extra level for the implementation. This
level is necessary, because as the first step, DEMAIN performs a parallel decomposition
that splits the two-output function describing eb into two single-output function. This
reduces the decomposition problem for eb in two independent (but simpler) synthesis
problems. These two parts can however not share logic, and sharing logic is necessary
to find the 4 block solution. Furthermore, DEMAIN uses a parallel (disjoint) input bit
decomposition but for the 4 block solution the non-disjoint decomposition is required
(see Figure 5.1). This shows once again the advantages of the general decomposition

paradigm.

The effect of one of the optimization criteria of LUTSYN ("try to minimize the number of
levels in the realization) can be seen from the results obtained for the lion benchmark.
Although DEMAIN has a sclution that uses 13 LUTs (while LUTSYN requires 15), the
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Figure 6.2: Preprocessor output file
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Figure 6.3: Implementation found by LUTSYN for xor5

solution offered by LUTSYN uses only 3 levels, while DEMAIN needs 4. For small
circuits this does not seem very important, but extra levels do have an impact on the
delay, routability and the complexity of large circuits.

In Figure 6.3 the network structure found by LUTSYN for benchmark xor5 can be
found. From this figure it can be seen that LUTSYN discovers the only sensible network
structure, but uses the complement of an EXOR in two cases. Since

a®b=Td®b

the network with and without the complements are functionally equivalent. The com-
plements are due to the fact that the phase of intermediate signals is arbitrarily assigned.
If the negated phase assignment had been used then these complements would not have
been necessary.

The network constructed by LUTSYN for benchmark #4204 can be found in Figure 6.4.
In this figure, the function implemented by each block is represented by a Boolean ex-
pression. In this expression a and b represent the inputs of that block. This network
is interesting for two different reasons. First of all it shows that LUTSYN really uses a
rich set of Boolean blocks: in the implementation of ira04 five different block functions
have been used. Secondly, from this network it can be seen that the subfunction cre-
ation strategy works. Two clusters have been formed and the subfunctions constructed
for these clusters have been used: in this case one subfunction is shared by all output
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functions and another subfunction is shared by 1 and .

LUTSYN does not give good results for the symmetric function rd53. This is caused by
the fact that LUTSYN is able to construct the functions for two of the three outputs in
the first few levels, but fails to construct the last function. This is obviously a flaw in the
heuristic algorithm. Ways to improve LUTSYN for symmetric functions can be found
in the next section.

6.2 Symmetric functions and LUTSYN

It has been known for a long time that special care has to be taken when doing a multiple
level synthesis of symmetric combinational functions [KD91]. The special care consists
of exploiting the following property of symmetric functions: the inputs are disjointedly
decomposed over the tree, i.e. one half of the inputs is used in the left half of the function
tree, whereas the other half of the inputs is exclusively used on the right. Since DEMAIN
is very good in finding parallel decompositions [EK]J91] and because it is working top-
down it is able to exploit the special properties of symmetric functions very well.

The same special properties prevent LUTSYN from finding good solutions for symmet-
ric functions. This is caused by the following reason: when LUTSYN selects inputs or
input combinations for the generation of the next level of LUT, these inputs and input
combinations are selected independently; their similarity with the output set system
is calculated and the best are selected. However, due to the symmetric nature these
similarities are about equal. This means that LUTSYN selects more or less randomly a
number of combinations, without keeping the overalt result into view. What needs to be
done in LUTSYN is to create a new heuristic algorithm that selects the inputs and input
combinations not independently, but in groups. Each group consists of a number of set
systems that together implement all the input combinations of a Boolean function. The
set systems in such a group need to be related, i.e. it should be easy to combine the in-
formation that they possess. These groups will be kept together across the construction
of levels, so the next level will use the information in the group and tries to strengthen
the group by adding new promising set systems to it or by replacing set systems in the
group by better ones.

Such an algorithm will not only benefit symmetric functions, but will benefit the synthe-
sis of all combinational functions. This will be the first problem that will be addressed in
the follow-up research, and in fact further research in this area has already been started.

6.3 Larger LUT blocks

LUTSYN is also able to construct networks for LUTs that have more than 2 inputs.
Unfortunately, the construction of these networks takes at the moment an unpractical
amount of computing resources because of too weak and incomplete heuristics. The
bottle-neck for 4 input LUTs is the huge increase in the number of candidate input
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combinations for the LUTs. For 4 inputs, all combinations of 2, 3 and 4 inputs must be
checked. The grouping algorithm suggested in the previous section will certainly help,
but that is not all.

During some experiments with LUTSYN it has been found that when the number of
blocks in a set system increases the important information can be stored in more ways.
For example, when using two-block set systems there are not many ways incompatibility
relations can be stored in the set system. However, using large set systems (for example,
4-input LUTs can have a 16-block product set system) the incompatibility relations that
represent the necessary information can be distributed over many different set system
blocks. The set system product of two set systems with very different set system blocks
results in a product set system with many blocks and abstraction is necessary to reduce
the block count so that the set system product can be encoded with the available number
of output bits. The set system product of two set system with similar blocks, is a set
system with relatively few blocks and requires therefore only a little abstraction. In other
words, combining and preserving the information present in two set systems becomes
easier if the blocks of these set systems are more alike.

This means that the simple information driven similarity measure defined in Sec-
tion 4.3.3.2 needs to be extended to include a structural component: a value that in-
dicates how much the blocks of the two set systems are similar. A number of algorithms
for this are currently under investigation. With such an algorithm it will be undoubtedly
possible to generate general decompositions for LUTs with any number of inputs in a
reasonable time.

6.4 Improvements

One of the first things that need to be done with LUTSYN is to extend and refine the
similarity measures and heuristics. Two examples of extensions for which research is on-
going have been proposed in the previous sections. A few other possible improvements
are the following:

1. LUTSYN is not the fastest algorithm and uses a lot of memory. This is the result
of its software implementation that aimed to provide not a final synthesis tool
for practical applications, but a research laboratory setup. It is slow because it
performs a lot of integrity checks on the internal data structures. It uses a lot of
memory because it keeps a lot of information that is not required by the program,
but which is useful information for the researcher that uses the program. Both
these properties are valid in research and useful in research software, but make the
program unsuitable for the synthesis of large circuits. Therefore, an option that
disables these features would be very desirable.

2. Extra heuristics based on the similarity measures between the input/output set
systems and between the input set systems should be implemented for better con-
ducting the search for solutions; especially for symmetric and strong asymmetric
functions. These heuristics will both limit the search space (and search time), and
result in better decompositions.
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3. LUTSYN is currently unable to work with LUTs that have more than one output.
For architectures that allow more than one output (such as Xilinx FPGA}, this
means that not all possibilities offered by the FPGA are used. Adding more
outputs to LUTSYN is not very difficult. If LUTSYN is extended in this respect, it
is important to realize that it is better to model the cutputs with a number of two
block set systems, than to medel it using one n(n > 2} block set system. In the
first case, it is much easier to use only subsets of the LUT outputs as the input of
another LUT.

4. Another point of improvement of LUTSYN is the way that subfunctions are created.
The concept itself (explicitly search for useful subfunctions) is very good, but the
current clustering algorithm itself is not so good. It has the following weak points:
first of all, the threshold for creating a cluster should not be a constant (as it is now)
but should take into account for how many functions the cluster is a subfunction.
If a cluster is common to many output functions, than it is acceptable to lower
the threshold, because overall gain is still possible. Secondly, it sometimes creates
strange subfunctions. This is caused by the fact, that instead of a real subfunction
a set of common incompatibility relations is used in the algorithm and this set of
incompatibility relations not always translates to a nice set system.

Another way of tackling this problem is by combining the bottom-up with the
top-down approach. The main advantage of the top-down approach that it is able
to create good subfunctions in an easier way.

Although still a lot of research needs to be performed, the preliminary results from the
first prototype version of LUTSYN with very simple and not complete heuristics show
the power and abilities that are offered by general decomposition and therefore, we are
encouraged to continue the research in this field.



Chapter 7

Conclusions and recommendations

In this chapter the discussion in this thesis will be recapitulated and some suggestions for
improvements and future research will be given.

Int Section 7.1 the most characteristic features of LUTSYN are listed and the differences with other
logic synthesis methods are shown. Then, in Section 7.2, the contributions of the Ph.D. work are
enumerated. The last section of this chapter contains a look into the future; in Section 7.3 a few
possible improvements for the LUTSYN algorithm will be discussed.

7.1 Characteristic features of LUTSYN

In this thesis a new general decomposition synthesis approach is considered and a syn-
thesis method based on this approach and the associated tool called LUTSYN (Look-Lip
Table SYNthesis) are presented. LUTSYN deals with the muitiple-level synthesis for
Boolean functions using look-up table based Field-Programmable Gate Arrays (FPGAs)
for the implementation. The method is targeted for controller-like circuits and has a
number of characteristic features that distinguishes it from other logic synthesis meth-
ods.

The most prominent feature of LUTSYN is that it creates general decompositions being
acyclic networks, i.e. without loops (see Section 2.4). A general decomposition in the
form of an acyclic network means that the method does not impose any restrictions on
the implementation {other than the physical limits imposed by the FPGA and the fact
that no feedback loops can be created); i.e. every possible block functions, network
structures, input combination etc. is permitted and can be potentially found by the
decomposition algorithm. This is different from all methods and algorithms described
in Chapter 3; which are all special cases of general decomposition. For example the di-
vision based synthesis methods (Section 3.1) limit the block functions to AN D, OR and
NOT only. The graph based synthesis algorithms in Section 3.2 limit themselves to mul-
tiplexer type block functions. The special cases of general decomposition (Section 3.3}
are as the name suggests, only able to find special cases of the general decomposition
structure and thus are not general. The functional decomposition based methods and
algorithms (Section 3.3.1), that are the most closely related to LUTSYN, restrict the way
in which the decompositions, and in particular their free and bound input sets can be

161



162 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

created. Their current implementations involve a generator that is a special case of the
LUTSYN generator.

A second important aspect of LUTSYN is that it is based on the canonical set system
theory introduced in Section 4.2. The set system theory has two important aspects.
First of all, set systems are used as the single representation model within LUTSYN:
set systems are used for the representation of input and output signals and for the
representation of the building block functions. Network structures are modeled using
networks of set systems. Secondly, the operators defined in set systems are used as a
mathematical framework for the analysis and construction of LUT networks. The set
system representation has a number of important advantages over other representations:

1. Set systems provide an efficient and compact way of representing Boolean func-
tions and especially the controller-type functions. The number of symbols in set
systems grows linearly with the number of terms and the number of set systems
used to model a function is equal to the number of its input and output variables.
Thus, the only factor which considerably influences the size of the representation is
the number of term symbols because these symbols are in all input and output set
systems. Fortunately, the controller type logic is specified always by a relatively
small number of terms (control predicates), this is true for a number of other types
of logic also. Only some special type functions, like EXOR, have a number of
terms which grows exponentially with the number of inputs, but the considered
decomposition method is not devoted to such functions. For other representations
like the product term representation or the OBDD representation the size of the
representation can significantly differ for practical Boolean functions, and heavily
depends of the number of input and output variables.

2. Set systems provide a compact maximal functionally complete representation of
logic blocks and Boolean functions. This means that any possible function defined
in the representation algebra is used. For example, for 2-input, 1-output LUTs this
means that any 2-input, l-output function can be used at the same cost. Other
representations (like those used by division based synthesis algorithms) use only
minimal functionally complete representations: they consider only the operators
AND, OR and NOT as block function and require technology mapping to form
more complex cells.

3. Setsysiem and set system operators model the concept of don’t cares very naturally
and nothing special has to be done for exploiting don’t cares. Their exploitation
follows from the synthesis target directed decomposition decisions. This is differ-
ent from division based logic synthesis methods that use a two-level minimizer to
remove all original don’t cares before starting the actual synthesis. By keeping all
the don’t cares and passing them to the real synthesis algorithm, the whole design
freedom is given to the actual synthesis process, and used to synthesize better
circuits.

4. Set systems also model exactly what is needed for the synthesis with LUTs: they
model the block functions but they don’t model the phase of the signals because
that information is not important for the synthesis.
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5. The synthesis performed by LUTSYN uses only three operators (the set system less
or equal operator, the set system product operator and the merging of set system
blocks). All these operators can be very efficiently computed on set systems.

LUTSYN models the FPGAs as networks of LUTs. This means that LUTSYN synthesizes
the Boolean functions using building blocks that can be mapped one to one to the blocks
used by the implementation, and thus it does not require technology mapping. This is a
major advantage since in many cases the technology mapping phase must perform the
actual logic synthesis starting only from some input network that realizes the function
in a way randomly related to the actual synthesis target, and with a removed design
freedom. Furthermore, it has to alter the network structure obtained by the technology
independent logic synthesis algorithm in order to fit it into the building blocks used in
the implementation. In fact, technology mapping must often locally resynthesize a part
of the network in order to find a feasible mapping to the given building blocks.

A very characteristic feature of LUTSYN is that it uses a clustering algorithm that
searches explicitly for common subfunctions, whereas other methods find subfunctions
only implicitly as the by-product of the synthesis process. Furthermore, only these
explicitly found subfunctions will be used as subfunctions. This is done to prevent
the creation of small subfunctions that need to be distributed all over the FPGA and
therefore cause long wires.

LUTSYN uses a bottom-up construction algorithm. Starting from the inputs, it con-
structs a network of LUTs until ail outputs have been implemented. Also, the algorithm
constructs a number of potential solutions in parallel. This is different from most other
synthesis algorithms that use a top-down reduction technique (a special case of decom-
position where the problem is decomposed into trivial and nontrivial part, thatis further
decomposed) for the network construction and that construct solutions serially or do
not create more than one solution at all.

Since the problem of optimal logic synthesis is computationally complex, strictly opti-
mal implementations cannot always be obtained using a realistic amount of resources.
Therefore heuristic algorithms are used that strive to find a solution that would be as
near as possible to the optimal implementation. All heuristic decisions made by the
search algorithm are based on a single heuristic decision framework that is applied
consequently everywhere, thus ensuring that all decisions work in the same direction.
The heuristic algorithms are highly controliable by the user, e.g they allow the user to
specify a trade-off between the required computation time and the quality of the im-
plementation found. They can also easily be changed or replaced because the heuristic
part is separated from the framework part of LUTSYN. A set of default values for all
search parameters is defined, that allows to find good decompositions without deep
knowledge of the heuristic algorithms.
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7.2  Contributions of the work

To the best of my knowledge the work presented in this thesis is highly original. This
opinion has been confirmed by a number of researchers with an outstanding reputation
in this research area. In this section the contributions of the work will be summarized.

» The formalization of the set system theory is new. The formulation presented here
introduces the canonical representation of set systems. This overcomes the prob-
lem of having several set systems that represent the same information, a problem
that was present in earlier descriptions of the set system theory [FS66], [Kon95].
Furthermore, by proving that (Setsys(~), L] forms a lattice and defining the canon-
ical representative of =~ as the top of this lattice we were able to show that all
necessary set system operators preserve the canonical property.

In general, the formulation presented here, has increased the mathematical insight
in the set system theory and has made this theory more consistent and easier to
use.

o LUTSYN is the first algorithm that really performs a general decomposition, other
logic synthesis algorithms for LUT based FPGASs all use special cases of general
decomposition (Section 4.3.6}.

 The explicit search for commeon subfunctions and the way this information is used
in a bottom-up construction algorithm is novel {see Section 4.3.5}.

o The way set system similarities are used for decomposition is new and developed
especially for LUTSYN (Section 4.3.3).

o A new short proof that the synthesis problem is NP-hard has been presented in
Section 4.1.4.

A C++ class has been developed that implements set systems and the operators
defined on set systems. This class is general and can be used for all problems
involving set systems (Chapter 5}.

o A C++ program LUTSYN has been developed that implements the algorithms
presented in this thesis. LUTSYN provides an experimental environment which
is currently being used for the further research of general decompositions and for
the development and testing of heuristic algorithms for the near optimal decom-
positional synthesis. The program is specially designed to provide a lot of internal
information, so the program can be experimentally used for research purposes,
and especially for analysis and fine-tuning of all heuristic parts of the algorithm
(Chapter 5).

7.3 Future work

The future work has already been started: the continuation of the research presented in
this thesis. The goal of this work is the further research of general decompositions with
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much more experimentation (which is enabled by the generated research environment)
and the creation of effective and efficient heuristic algorithms so that LUTSYN environ-
ment can be really used for synthesizing large circuits using the general decomposition
paradigm. In this research also the improvements suggested in Chapter 6 will be taken
into account.

Finally, many ideas for further work with LUTSYN have came up in the past. Here are
some of them:

1. The set system representation of the Boolean function is obtained from any of a
large number of cube representations of the function. The influence of the choice
of the cube representation on the decomposition results should be investigated
more closely. Especially, it is interesting to know if it is possible to determine the
best cube representation for a function.

2. LUTSYN has been developed for FPGAs that use one type of cells: n-input, m-
output look-up tables. Itis interesting to investigate how LUTSYN can be extended
to a broader class of FPGA architectures. It is believed that it is fairly simple to
extend LUTSYN for the use with the FPGA architectures of Actel [Actd5] and
Atmel [Atm95].

3. In Section 5.6.2 the framework for the heuristic decision algorithm of LUTSYN is
presented. The last two steps of this algorithm are select() (that selects a number
of potential good items) and add_essential() that adds items that are necessary for
the construction but that are forgotten by seleci(). The reason for this order is
internal speed optimizations in LUTSYN (for example certain lists of items are
automatically sorted because set systems are selected in order of their similarity).
It would however be interesting to experiment with switching the order of these
two blocks, such that all incompatibility pairs of the output set systemn are selected
at least once by add_essential() and then using select(} to add other good items to
the list. Such an algorithm will be slower, but the results might be better.

4. LUTSYN uses 9 different parameters that tune different parts of the heuristic
algorithm. Although a setting has been found that works fairly well, the influence
of these parameters should be more closely investigated.

5. The blocks of some FPGA based architectures have more capabilities then the
simple look up table. These capabilities can be used in the implementation of
circuits. For example, the logic blocks in the Xilinx FPGAs include a large number
of registers that are unused by the current LUTSYN version. These registers
can be used to create a pipeline architecture, thus increasing the speed of the
combinational machine at no extra cost. Another possible way of using these
registers is the creation of a scan path to improve the testability of the design.

6. In LUTSYN the topology of the FPGA is modeled by a network of LUT blocks.
This model is inaccurate. It is possible (however not much probable, because
LUTSYN does a lot for good routability) that LUTSYN finds a LUT network that
does not exceed the number of LUTs in the FPGA, but cannot be implemented
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into the FPGA because of routing issues. By giving LUTSYN a better knowledge
of the topology of the FPGA, or by adding a placement-and-routing algorithm to
LUTSYN this problem can be solved.
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Appendix A

Proof of set system properties

The goal of this appendix is to prove some of the fundamental theorems introduced in Chapter 4.
In the first part of this appendix (Section A.1) it will be proven that by defining the correct
L, (Setsys(~), ), forms a lattice. The top of this lattice will be written M. and is called the
canonical set system representative of Setsys(==). In Section A.2 the < operator on canonical set
systems will be defined and it will be proved that this definition is equivalent to the definition
used for non-canonical set systems. The last section (Section A.3) is devoted to the proof of the
theorem that states that the set system product of two canonical set systems results in a canonical
set system.

A.1 Properties of set system sets

A.11 Introduction

The following definitions are copied from Section 4.2.2 for the sake of easy reference.
For the interpretation of these definitions the reader is referred to Section 4.2.2.

Definition A.1 Compatibility relation
Let V be a finite non-empty set of symbols. A binary relation = is called a compatibility
relation on V if and only if it is reflexive and symmetric, i.e.:

=C VeV (A1)
such that
Y (v,v) €~ (A2)
eV
and
Vo (w,v) €x {A.3)
{v,w)ex
0

The relation = is called the compatibility operator and a pair of compatible symbols is
called a compatibility pair. The notation g ~ b will be used to denote that (a,b) e~.
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180 Proof of set system properties

Definition A.2 Compatible block
Asetb C V is called a compatible block with respect to compatibility relation =& V& V
(denoted as CB.(b)) if and only if all pairs of symbols in b are compatible:

CB.(b)e= ¥V vew (A4)

vwed
d

Definition A.3 Maximal compatible block

Asetb C V is called a maximal compatible block with respect to compatibility relation
~C V @ V (denoted as MB.(b)) if and only if the block is compatible and no other
symbol from V is compatible with all the symbols in b:

MB.(b) & CB_(B)A ¥ I vzw (A.5)

vEV\b wedh

W]

Definition A.4 Extendible block
Aset b C V is called an extendible block with respect to compatibility relation ~C V@V
{(denoted as EB..(b))if and only if a maximal compatible block can be found that contains
b:

EB.(b) & 3 bCH AMB.Y) (A6)

e
£]

Definition A.5 Set system

Let V be a finite non-empty set of elements. A setsystem ¢ : ¢~ C 2" is a representation
for a compatibility relation ~ defined on V if and only if the following conditions are
met:

1. The subsets are compatible:

¥ OB.(b) (A7)
bEPe
2. The set system is non-redundant:
v bCh =b=¢ (A.8)

b, b E b
3. All compatibility pairs of = are present in the set system:

¥ o 3 {v,w}Ch {A9)

(v, w)c bEPx

Definition A.6 Set system set Setsys(=)
Setsys(~) is the set of all set systems that represent compatibility relation ~. m]
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In Section 4.2.2 the foliowing theorem has been introduced:

Theorem A.1 (Setsys(~), C) is a lattice
Let V be a finite non-empty set of symbols. Let ~C V ® ¥ be a compatibility relation
defined on V. Define C as:

v SC Tifandonlyif Vv 3 pC ¥ (A.10)

8,T€ Setsys() be§ deT

then (Setsys{~), C) forms a lattice and M.. and m... defined as
M. ={bC2" | MB.(b)} (A11)

and

m::{{v,w}eV®V|v':w/\u#w}u{{v}€2vj v w¢v} (A12)
we Vi{v}

form the top respectively the bottom of the lattice, Because M,. is the most compact set
system in Setsys(a), it is often referred to as the canonical representative of Setsys(=~). O

This section is devoted to the proof of this theorem. The proof consists of three parts.
First, it will be proved that (Setsys(~), ) is a lattice (Section A.1.2). Secondly, it will be
proved that M.. is the top of this lattice (Section A.1.3). Finally, in Section A.1.4 it will be
proved that m.. is the bottom of this lattice. In these sections, the following theorem is
used:

Theorem A.2 Non-redundant blocks
Let V be a finite non-empty set of symbols. For B C 2V define the set of non-redundant
blocks of B (denoted as NR(B)) by

NR(B):{bGBI v bgb'=>b=b'} (A13)
vep
Then
v ¥ {(3 bgb’)ﬂ( 3 bgb”)} (A.14)
BC2V 6CV Vel b"eNR(B)
]
Proof:

The proof is by mathematical induction on n = #(B). The induction predicate is defined

as:
P(n}:(v #(B):n):;»(\f{(ﬂbgb’)é( 3 bgb“)}) (A.15)
BC2V bV [ \beB ¥'ENR(B)
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+ Base: P(0)
Let B C 2" such that #(B) = n = 0. Then B = @. Let b C V. Then
I bCY
ves

is false and thus

(3 bgb’)é( 3 bgb")
beB b"ENR(B)

is true.

Induction : P(n) = P(n+1)
Let b C 2V such that #B) = n + 1. Let b € V and assume that for some
¥ e B:bC¥. Fixsuchad. If n =0 then NR(B) = B and hence for some
b € NR(B) : b C b” holds. If n > 0 define B’ = B\ {b"}, where " € B\ {¢'}.
Then #(B") = n and since &' € B' and b C b’ we have that
3 bCY

b{EBl

By induction we then also have
3 bCe

cENR(B')

Fixsucha c. If

VeCd=>c=4d

dcB
then ¢ € NR(B) and then
i bCH
b ENR(B)
holds. If
~(V cCd=c=d)
deB

then for some d € B, ¢ C d. Then d ¢ B' because otherwise ¢ ¢ NR(B'), which
would be a contradiction, Hence d = b*. But then b” € NR(B) because otherwise
there would be an ¢ € B with b C e. But then e € B/, ¢ C e and thus ¢ ¢ NR(B'),
which is a contradiction. Hence

3 bC¥
b e NR(B)

We thus have

¥ P(n)
ncN

Now let B € 2¥ then for some n € N, #(B) = n. Since P(n) holds we have

V{(B bgb’):( 3 bgb”)}
bcv | \veB b"ENR(B)

and we have (A.14). This ends the proof of this theorem. o
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A1.2 Setsystems form a lattice

Theorem A.3 L is a partial order on Setsys(~)

Proof:

To prove that relation Cisa partial order it has to be shown that the relation is reflexive,
anti-symmetric and transitive. The proofs of the reflexivity and transitivity properties
are straightforward, so only the property of anti-symmetry is outlined here. Let Gyt €
Setsys(x), let ¢, C Y~ Y~ C ¢ and let b € $.. Then

EI Xe (A.16)
LY
and by fixing such a ¥’
R e (A.17)
" e

Fix ", then based on (A.16) and (A.17) it can be concluded that
bCbH Cb (A.18)

By definition of Setsys(~) one has that b C §" = b = b”. Therefore b = ¥ and thus
b € 4. So for each b € ¢. we have that also b € ¥~. Hence ¢ € 4. By a symmetric
argument it can be shown that ¥.. C ¢., 50 ¢, = 1. a

Definition A.7 Block collection of a set system set
The block collection UX of a set of set systems X C Setsys{~) consists of all the set
system blocks of the set systems in X:

UX:{bf E| quﬁz} (A.19)

PxeEX

a

Theorem A.4 Least upper bounds of (Setsys(~), C)
Let X C Setsys(~) be a non-empty set of set systems. Then 11X defined as

uX:{beuX| % bgb’::»b:b’} (A.20)
beux

is the least upper bound of X. It is further contained in Setsys(=~). O

Proof:
To prove the least upper bound, three properties must be checked:

1. The least upper bound operator is closed:

L X € Setsys(~) {A.21)
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2. Itis an upper bound:
¥ . CUX (A22)
X

3. LX is the smallest of all upper bounds:

v (( - ¢:) SuX C %) (A23)

¢~ € Setsys(~) P~EX

(A.21) will be proved first. It has to be shown that LLX satisfies the definition of Setsys(=).
It will first be shown that the blocks of L1X are non-redundant. Let by, b € UX and let
by C by By definition of LIX:

Vo Cb by =0 (A.24)
Yeux

Since, b; € UX C UX it follows b; = by. Next, it should be shown that all the blocks of
UX are compatible. Thisis trivial because the blocks of L1X are blocks of set systems from
Setsys(~) and the blocks of Setsys(~) are compatible by definition. Finally, it should be
shown that each collection {v, w} for which v =~ w, is contained in some block of LUX . To
this end let v ~ w. Since X # & and since (by definition of Setsys{~)) each set system
in X contains a block & for which v, w € b, we have that

3 {v,wlCh

beuX

But then we also have

3 {v,w}Ckh

bellX

by applying Equation (A.14). This concludes the proof of UX € Setsys(~).

To prove {A22}let ¢ € X and let ) € ¢ Then by definition of UX it follows that there
exists a block ¢ € LY, such that  C ¢. Hence ¢ C 11X and thus (A.22) holds.

The third part of the proof consists of proving (A.23}. Let ¢ € Setsys(~~) be an upper
bound of set X, i.e. let ¢~ be such that

VoL E o (A.25)
¢leX

Assume b € UX. Then by definition of L.X a set system ¢, € X exists such that b € P
Since ¢!, T ¢= there exists a block ¥’ € ¢.. such that b C b'. Hence

Y 3 bC (A.26)
bEUX b Eghn

and thus UX C ¢.. This concludes the proof of (A.23). a
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Definition A.8 Block intersection of a set system set
The block intersection N.X of a set of set systems X C Setsys(~) is defined as:

ﬂX:{b] v 3 bgb'} (A27)
PEX by

Theorem A.5 Greatest lower bounds of (Setsys(~), C)
Let X C Setsys(~)bea norrempty set of set systems. Then MX defined as

HX:{beﬂX| v bgb’:b:b’} (A.28)
benx
is the greatest lower bound of X. It is further contained in Setsys(~). O

Proof:
To prove the greatest lower bound, three properties must be checked:

1. The greatest lower bound operator is closed:

M X € Setsys(~) (A.29)
2. X is a lower bound:
VY NXC ¢ {A.30)
¢eX

3. NX is the largest of all lower bounds:

v ( v g g¢;) = 6. CNX (a31)
@

P € Setsys() \PLeX

(A.29) will be proved first. Ithas to be shown that M X satisfies the definition of S etsys(=).
The proofs of (A7) and (A.8) are straightforward. (A.9) remains to be proved. Let
v = 1. Then for each ¢ € X there exists a block b ¢ such that {v, w} C b. Hence
{v, w} € NX. But then by (A.14) there exists a block 5 ¢ 11X such that {v, w} € ¥'.

{A.30) will be proved next. Let ¢ € X and let b € NX. Then b € NX. But then there
exists a & € .. such that b C ¥". Hence NX C ¢..

Finally, we will prove (A.31). Let ¢.. be a lower bound of X. It has to be shown that
¢~ EMX. Let b € ¢.. Then for each ¢, € X there exists a b’ € ¢L, such that b C ¢'. But
then by definition of NX, b € NX. Hence, by (A.14), for some ¢ € NX, b C ¢. We thus
have ¢. £ NX. a

Theorem A.6 (Setsys(~), C) is a lattice
(Setsys(=),C) is a lattice, [USetsys(=~) is the maximum element and NSetsys(~) it the
minimum element of this lattice. a
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Proof:

A lattice is defined as a partial ordered set in which each non-empty set of elements has
an upper bound and a lower bound. It has been proved before that C is a partial order
and that LLX is the least upper bound of a non-empty set X € Setsys(=), and that MX is
the greatest upper bound. It has also been proved that LUX, NX € Setsys(=). We thus
have that LSetsys(z) is the maximum element of the lattice and that MSetsys(~) is the
minimum element of the lattice. O

This concludes the first part of the proof of theorern A.1.

A.13 M. is the maximum of (Setsys(~),C)

The goal of this section is to show that M. is the maximum of (Setsys(~), C). Before this
theorem can be proved it is first necessary to prove another theorem.

Theorem A.7 Existence of maximal compatible block
Let b C V be a set system block. Then

CB.(b) = EB.(b) (A.32)

Proof:
The proof is by mathematical induction on n = #(V'\ b). The induction predicate is
defined by:
P(n)= ¥ #(V\ ) =nA CB.(b) = EB.(b) (A.33)
beV

o Base: P(0)
H#(V\ b) = Othen b = V. Assume CB.(b) holds. Then trivially there exists no
c€ V\V =@suchthatv = wforallw € V and thus MB..(b) holds. Since b € b,
EB..(b) must also hold.

¢ Induction: P(n) = P(n+1)
Let b C V such that
#V\b)=n+1A CB.(b) {A34)

Suppose MB.(b). Then EB..(b} holds trivially. Suppose ~MB.(b). Then

3 Var~uw (A.35)

z€ V\b wEb
Fix such an z. Let block & = b U {z}. Then
HVAW)=#(V\bU{z}) =#HV\b)—1=n (A.36)

Since CB.(#') holds because of (A.35) and CB.(b), EB.(b') can be concluded
using the induction hypothesis. Hence, there exists a b” € V such that b’ C b” and
MB.[b"}. But since b C 4" and MB.(b") we then also have EB..(b].



A.l. PROPERTIES OF SET SYSTEM SETS 187

We thus have that

YV H(V\b) = n A CBu(b) = EB(b)
neNbeV

Now let b C V such that CB..(b). Then for some n € N#(V\{b}) = nand thus EB..(b).
Hence for each & C V with CB..(b), EB.(b) also holds. This concludes the proof of
(A.32). a

Theorem A.8 USetsys(=) is the maximum of Setsys(~)

U Setsys{x) = M. {A.37)
[m]
Proof:
The proof consists of two parts:
1. M. is a set system:
M. € Setsys(~) (A.38)
2. M. is the maximum:
v SC M. {A.39)
FESetsys(=~)

Proof of (A.38):

It must be shown that M. satisfies the Equations (A.7), (A.8) and (A.9). (A.7) is satisfied
trivially because the blocks of M. are maximal compatible. (A.8) can be proved as
follows. Let by, b, € M. and let b; C b,. Now assume b1 C by. Then a symbol p € b, can
be found such that p ¢ &,. By definition of MB.(#) we have

V Jauge (A.40)

wEV\b veh

However,p € V\bandp =~ vforallv € § (since MB..(b;} holds). This is a contradiction
and therefore b; cannot be a subset of 5,. Hence b1 = b,. For the proof of (A.9) let v ~ w,
Then CB.({v,w}) and thus, by (A.32), there exists a block ¢ C V with MB.(c) and with
{v, w} C c. By definition of M.., c € M.., and thus (A.9) holds.

Proof of (A.39):
Let b € 5 so CB.(b). Then, CB.(}b) and thus by (A32) aset b C V with b C ¥ can be
found such that MB.(1"). Clearly " € M... Hence § C M. a

This completes the second part of the proof of theorem A.1.
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A.14 . is the minimum of (Setsys(~),C)

Theorem A.9 m.. is the minimum of Seisys(=)

m. = MSetsys{~) (A41)
O
Proof:
The proof consists of two parts:
1. m.. is a set system:
M € Setsys(==) (A.42)
2. m. is the minimum:
v me C 8§ {A.43)
S€Setsys(z)

Proof of (A.42):
The properties (A.7), (A.8) and (A.9) can be checked trivially using the definition of m-..

Proof of (A.43):
Let § € Setsys(~) and let b € m.. Then b = {v, w} with v = w. By the definition of a
Setsys(~) there exists a b' € S such that b C . Hence m. C S. O

This completes the last part of the proof of theorem A.1.

A2 < operator
In Section 4.2.2 the following definition and theorem have been stated.

Definition A.9 < operator defined on set systems

Let V a finite non-empty set of symbols and let ~C V @ Vand ~'C V ® V be two
compatibility relations defined on V. Set systems ¢ & Setsys(=) is called smaller or
equal than set system ¢ € Setsys(~'), written ¢ < ¢, if and only if =C~"

< o=l (A.44)
O
Theorem A.10 < operator defined on canonical set systems

Let V be a finite non-empty set of symbols and let ~C V@ V and ~'C V @ V be two
compatibility relations defined on ¥. Then
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M.<Mye ¥ 3 bCec (A.45)

bEMa cEMuy

Proof:
By definition of the canonical set system:

M.={pc2" MB..(b)} (A.46)

My ={bc2¥| MB.. (b}} (A.47)
The proof consists of two parts:
1. Proofof M. <M. = V 3 bCe¢

bEM~ cEM

Let M. < M... Let b € M.. Then CB.(b). But since by (A.46) ~C=' we also have
CB..(b). By (A.32) there exists a ¢ with b C ¢ and MB.(c).

2. Proofof M. <M. <= V 3 bCec

bEM= cEM..s
Assume
Y 3 bCe
beMy ceEM.,

We have to show that ~C~'. To this end let v ~ w. Then for some b € M.,
{v,w} C b. But then for some ¢ € M., {v,w} C ¢. Since CB.(c) we then have
v,

A.3 Closeness of set system product
In Section 4.2.2 the following definition has been stated.

Definition A.10 Set system product
Let ¢ € Setsys(~) and w € Setsys(=') be two set systems. The set system product
&~ - P~ is then defined as

%-%,z{u 3 3 z=bnkA Y oV ng{ﬂbéz:»z:bl’ﬂbé} (A 48)

5E€¢~ brEy,, bi€de biEw.
Itis not hard to show that ¢...- 1. is a set system representing the following compatibility
relation:

:":{(u,w)e Vev| 3 {v,w}eb} (A.49)
[ 2SIV
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where =" is defined by
a~x"boa=brab (A.50)

We thus have ¢ - o € Setsys(=~") 0
The goal of this section is to prove the following theorem:
Theorem A.11 The set system product preserves canonicity

Mo = Mo - My (A51)

Proof:
The proof consists of two parts:

1. Proof of M.» C M. - M

Let b € Mor. Then CB..(b) and thus by (A.50) CB(b) and CB.(b). Then for
some ¢ with b C ¢, MB.(¢) and for some d with b C d, MB.(d). Then CB.»(c d).
If b ¢ ¢nd, we have a contradiction, hence b = ¢nd. Nowletd' € M. and b" € M.
such that b © o' N 8”. Then CB.«(b’ N b"). This contradicts the fact that MB..(8).
Hence b € M. - M.

2. Proof of M:H :2 ME . M:t

Let b € M. - M. Then for some ¥’ € M. and b’ € M., b = &' N " and there are
no ¢ € M. and ¢" € M. such that & C ¢/ N ¢, Further, we have CB(b). Suppose
~MB..(b) then for some v & b:

vV v~w
weh

But then CB.(¢ U {v}) and CB.(b" U {v})and (v & b’V v & b"). Hence ~MB..(¢)
or ~MB.,(b"} which is a contradiction. We thus have MB.»{b) and hence b < Mo,

0
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Stellingen

Behorende bij het proefschrift

A bottom-up approach to multiple-level logic synthesis for
look-up table based FPGAs

door
Franciscus Adrianus Maria Volf



10.

11.

12,

- LUTSYN is er het levend bewijs van dat logische synthese en technology mapping

beter als één probleem beschouwd kunnen worden [dit proefschrift].

. Don’t care condities horen gebruikt te worden om de implementatie te optimali-

seren en niet om de specificatie te versimpelen [dit proefschrift].

- De setsysteemtheorie is sluitend gemaakt door de canonieke setsystemen. Dit is

goed bruikbaar voor het beschrijven van decompositiestructuren [dit proefschrift].

. De logische synthese is een van de belangrijkste stappen in het ontwerptraject van

digitale systemen. Zij vertaalt een mens georiénteerde symbolische beschrijving
naar een machine georiénteerde binary beschrijving.

- In de ideale synthesemethode voor LUT-based FPGAs wordt de bottom-up

netwerkconstructie van LUTSYN gecombineerd met de traditionele top-down aan-
pak.

. Tegenwoordig compenseren bedrijven een matig product door een agressieve mar-

ketingstrategie.

- Het is vreemd dat de TUE s avonds en in het weekend zijn deuren voor haar

medewerkers sluit. Dit past niet in het imago van een research instituut.

. Het is verstandig om na de promotie te gaan werken in een ander vakgebied.

. Als de voortekenen van CNN ons niet bedriegen, staan er straks meer verslag-

gevers dan soldaten aan het front.

De digitale snelweg begint steeds meer te lijken op een gewone snetweg. Verschijn-
selen als files, opstoppingen, spitsuur en omleidingen doen zich tegenwoordig ock
op de digitale snelweg voor.

In het huidige ruimtevaarttijdperk, waarin spionagesatellieten de score op de
golfbaan kunnen bijhouden, is het verstandig bij sommige activiteiten een paraplu
te gebruiken, ook als het niet regent.

Een stelling is een plaats waar een partij eikenhakhouttakken geschild wordt
{van Dale Groot woordenboek der Nederlandse taal).



