
 

Division-based versus general decomposition-based multiple-
level logic synthesis
Citation for published version (APA):
Volf, F. A. M., Jozwiak, L., & Stevens, M. P. J. (1995). Division-based versus general decomposition-based
multiple-level logic synthesis. VLSI Design, 3(3), 267-287. https://doi.org/10.1155/1995/19823

DOI:
10.1155/1995/19823

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1155/1995/19823
https://doi.org/10.1155/1995/19823
https://research.tue.nl/en/publications/01aa82ac-2dac-402b-a2ac-dacb85923d1e


VLSI DESIGN
j995, Vol. 3, Nos. 3-4, pp. 267-287
Reprints available directly from the publisher
p~otocOpyiflg permitted by license only

© 1995 OPA (Overseas Publishers Association)
Amsterdam BY. Published under license by

Gordon and Breach Science Publishers SA
Printed in Malaysia

Division-Based Versus General Decomposition-
Based Multiple-Level Logic Synthesis

FRANK VOLF, LECH JOZWIAK and MARIO STEVENS
Eindhovefl University of Technology, Faculty of Electrical Engineering, P.O. Box 513, 5600 MB Eindhoven,

the Netherlands

During the last decade, many different approaches have been proposed to solve the multiple-level synthesis problem with
different minimum functionally complete systems of primitive logic blocks. The most popular of them is the division-based
approach. However, modern microelectronic technology provides a large variety of building blocks which considerably
differ from those typically considered. The traditional methods are therefore not suitable for synthesis with many niodem
building blocks. Furthermore, they often fail to find global optima for complex designs and leave unconsidered some
important design aspects. Some of their weaknesses can be eliminated without leaving the paradigm they are based on, other
ones are more fundamental. A paradigm which enables efficient exploitation of the opportunities created by the
microelectronic technology is the general decomposition paradigm. The aim of this paper is to analyze and compare the
general decomposition approach and the division-based approach. The most important advantages of the general
decomposition approach are its generality (any network of any building blocks can be considered) and totality (all important
design aspects can be considered) as well as handling the incompletely specified functions in a natural way. In many cases,
the general decomposition approach gives much better results than the traditional approaches.

Key Words: Logic Synthesis, Decomposition, Digital Circuits, FPGA Synthesis, ASIC Design, VLSI Design

1. INTRODUCTION

The term logic synthesis refers to all transformations in
the design of digital hardware in which binary data are
involved. In this paper, we will only consider a subset of
logic synthesis methods, namely methods for the trans
formation of a multiple-output binary function into a
(near-)optimal multiple-level network of primitive logic
blocks, The term primitive logic block refers to any
binary function that can be mapped one-to-one onto a
primitive hardware building block in a certain technol
ogy. A primitive hardware building block is the
smallest hardware unit considered that is used to imple
ment binary functions in a certain technology. Examples
of primitive hardware building blocks are the gates in the
library of standard-cell implementations or configurable
logic blocks (clbs) for Xilinx FPGA [54] implementa
tions.

Up to 1980, very special cases of the multiple-level
logic synthesis received the most attention namely, the
transformation of a binary function into an optimal
two-level network (e.g. AND-OR-NOT, OR-AND-NOT,
NAND-NAND, NOR-NOR and AND-EXOR implemen
tations), and the transformation into multiple-level

EXOR, AND-EXOR, AND-OR-NOT or MUX networks.
This interest resulted from the fact that these networks
could be easily modelled, minimized and mapped one-
to-one on networks of typical primitive hardware build
ing blocks provided by the electronic technologies of that
time, for example, on those as in TTL and ECL tech
nologies and on PLAs or PALs.

Multiple-level networks often allow a more compact
implementation of combinational logic in comparison
with two-level networks. They enable the separate imple
mentation of common sub-expressions and sharing them
among multiple functions or sub-functions. However,
many functions do not result in compact AND-EXOR,
AND-OR-NOT or MUX networks. On the other hand,
modem microelectronic technology provides us with a
huge number of various primitive hardware building
blocks which can be used for obtaining more compact
networks. Exploitation of these abilities requires new
appropriate multiple-level synthesis methods. The intro
duction of a new generation of FPGAs [49] has recently
generated very strong stimulus for research in multiple
level logic synthesis. The internal structure of the FPGAs
is in fact a programmable multiple-level network and
therefore, these devices require the use of multiple-level

267



268 F. VOLF, L. JO~WIAK AND M. STEVENS

logic synthesis techniques in order to exploit their
abilities. Unfortunately, the synthesis of general mul
tiple-level networks is much more complicated than the
synthesis of two-level logic. The main reason for this is
the difficulty in defining the nature of the “optimal
solution” in the multiple-level synthesis problem. For
example, in the case of two-level AND-OR-NOT logic,
the “optimal solution” is the solution with the minimal
number of product terms, which is a relatively good
measure for the complexity of the implemented network.
In multiple-level logic, the structure of the logic is less
uniform and can be considerably more complex than
two-level logic. Also, the design decisions have a much
more substantial impact on the many factors that decide
the total quality of a multiple-level logic network: area,
speed, power dissipation, testability etc. Furthermore,
these factors are no longer simple functions of the
implementation structure as it was the case for two-level
logic.

During the last decade many different approaches have
been proposed to solve the multiple-level logic synthesis
problem. The most important of them are the following:

o algebraic and Boolean division techniques
[2}[7] [8][l0] [421 [45],

• multiple-level BDD and other decision graph ap
proaches [6][13][14][37],

• algorithms based on the minimisation of the com
munication complexity between blocks [23],

• multiple-valued logic based approaches
[36][43][52],

• methods based on spectral analysis techniques ([171
contains an overview),

• methods based on the iteration of gate transforms
and gate reductions, th~ so-called transduction
methods [40].

In recent years a number of papers have been published
which implicitly or explicitly use a new concept of general
structural decomposition as a synthesis paradigm (e.g.
[15][26][27][30][32]). The distinctive feature of these
methods is that they are all special cases of a general
full-decomposition as presented in section 3. In the
general full-decomposition approach, an incompletely
specified multiple-output binary function is decomposed
into a network of communicating subfunctions (logic
blocks) in such a way that this network realizes the
specified behaviour, satisfies specified constraints and
optimizes given objectives. Decomposition decisions are
based on analysis of the structure of the information
streams in the function and the relations between this
structure and the specified con-straints and objectives. The
constraints imposed by hardware building blocks and their
possible interconnections are innately taken into account.
This approach has a number of interesting properties,
including the following:

• In many multiple-level synthesis approaches }3
ean expressions are used to describe functions
often these approaches use only a limited set (nijJ
mum functionally complete set) of Boolean oper - I
tors (e.g. AND-OR-NOT) and not the full set
operators implemented by a certain library of h~. ~
ware building blocks. To implement the minimis~A I
expression, a transformation step called technol0 ‘~

mapping must be performed in order to transf0~
the expression into a network of hardware building
blocks. If the repertoire of primitive logic block
offered by a certain technology library differs sub..
stantially from the set of Boolean operators used
during synthesis, the work completed during syn
thesis is~almost futile, because the real synthesj5
must be performed during the technology mapping~
The synthesis methods based on general decom1~..
sition integrate the technology mapping phase into
the synthesis: a network of logic blocks, that can be
mapped one-to-one onto a network of primitive
hardware building blocks, is constructed.

• The internal structure of Xilinx FPGAs and similar
fine granularity FPGAs is in fact a programmable
multiple level logic block structure which can be
innately modelled using the theory in Section 3.
Therefore methods for the synthesis of these types
of FPGAs can be relatively easily constructed using
this theory.

This paper aims to present a comparative analysis of
the general decomposition-based and division-based
multiple-level logic synthesis approaches. We will inves
tigate the properties of the decomposition-based logic
synthesis methods by introducing the general full-de
composition concept, presenting and discussing the ex
isting decomposition methods and comparing the decom
position methods with the classical multiple-level
synthesis methods based on the division of Boolean
expressions. We have chosen the division-based algo
rithms as our reference, because they are by far the most
popular ones (as measured by the number of publications
on this subject).

The remainder part of this paper has been organised as
follows: Sections 2 and 3 contain introductions to the
theory and the most important results obtained in divi
sion-based and decomposition-based logic synthesis, re
spectively. In Section 4, a comparison between these two
classes is presented. Some concluding remarks can be
found in Section 5.

2. DIVISION-BASED LOGIC SYNTHESIS

The fundamentals for division-based multiple-level logic
synthesis were introduced by Robert K. Brayton in 1982
[7][81[10]. In this section, we will review the most
important aspects of Brayton’s original method and

J



MULTIPLE LEVEL LOGIC SYNTHESIS 269

its advantageS, disadvantages and a few exten
to thiS method.

J~asic Theory

d~vision~based multiple-level logic synthesis is
on manipulation of Boolean expressions. The

~ical framework for these expressions consists of
Boolean algebras. These binary Boolean algebras

well ~own [5] [21] [47] and therefore, we will not
aar them here.

A J3oolean variable is a single coordinate in a
~oo1ean space. A literal is a Boolean variable or its

*mpleme~~t. A cube c is a set of literals such that x 6
~c, for example {a, b} represents the cube ab; {a,
l~ not a cube. Two trivial cubes 0 and 1 exists; they are

as the Boolean functions 0 and 1 respectively. A
a expression is a set of cubes. We will not write

~pressions as set of cubes, but we will use the well
j~wn sum-of-product term representations. The trans
js4on between these two notations is straightforward. A
Eoolean expression is called non-redundant if no cube
~qf the expression contains another cube properly. For
~tample the expression a + ab is redundant because
~ Cta,b}. The expression a+ab is non-redundant. The
~snpport sup(f) of an expression f is sup(f) =

{xl3c6f:x6cv~6c}. Less formally, the support is the
~t of Boolean variables which appear either comple
mented or uncomplemented in the expression f. Two
~ünctions f and g are said to have a disjoint support if
~nd only if sup(f) fl sup(g) = 0.

The expressions describe the structure of a multiple
~ui~put Boolean function. Parentheses are used to specify
the multiple-level character of the expressions; such a
parenthesised expression is called a factored form and
~he process of obtaining a factored form of a Boolean
tmction is called factorisation. An incompletely speci
lied single-output function .~is represented by a triple
of completely specified single-output functions: ~
~f~d,r), where f representsthe on-set, i.e. all input patterns
for which ~W evaluates to 1. Similarly, d and r are

I representations of the don’t care-set and the off-set,
respectively. The functions f, d and r should be multiple
exclusive and they should form together the complete
Boolean space (i.e. all vectors from the Boolean input
Space should belong to precisely one of these functions).
The product of two expressions f and g (denoted f. g)
is defined as f. g = {c1Ud~ I c~6fAd~6g}, The product set
15 made explicitly non-redundant after calculating the
product. If f and g have a disjoint support, then f~g is
Called the algebraic product, otherwise f.g is called the
BOolean product. A completely specified function g is a
BOolean divisor of an (incompletely specified) function
~ (f,d,r), if two completely specified functions h and
1 exist so that g h~d and fCg h÷iCf+d, where g~h

represents the Boolean product. h is called the quotient
and i is called the remainder of the division, similar to the
names used in number calculus. However in our case, h
and i are not necessarily unique. For example, the
function f = ac + ab + bc + d + e where the underlined
cube is a cube from the don’t care set, has a Boolean
divisor (a + b), with a quotient (a + c) and a rest
expression d, as (a + b)(a + c)+ d = ac ÷~b + bc + d C f.
Because (a + b) and (a + c) have intersecting input sup
ports, the product is a Boolean product.

The disadvantage of the Boolean division approach is
that the set of Boolean divisors is usually very large and
therefore good divisors cannot be easily found. Conse
quently, an altematiwe approach has been considered. It is
based on the fact that the sum-of-product term represen
tation for two-level functions is almost canonical and
efficient common algebraic factors can be identified as
being common factors of the product terms. The idea is
motivated by the fact that manipulations of sum-of-
product terms are in most cases quickly performed (many
algebraic operations have linear time complexity). The
disadvantage of this idea is that it does not guarantee
optimal solutions. Brayton uses an alternative approach
based on this idea. In this approach, the incompletely
specified function ~is minimised to obtain a two-level
minimal representation of the on-set f of ~ (using the
two-level minimiser Espresso [9]) and algebraic division
is used to manipulate f. A completely specified function p
is an algebraic divisor of a completely specified function
f if q and r exist, such that p * 0, q ~ 0 and f = p q + r,
where p•q the algebraic product. q is once again called the
quotient. In the remainder of this article we will denote
the quotient as q = f/p; r is called the remainder of the
division; q and r need not be unique. However, if we
define q as the largest set for which f = p q + r then q and
r are unique. This special type of algebraic division is
called: weak division. For example (a + b) is an algebraic
divisor of the function f = (a + b)(c + d + e) + g. Both q
=c+d,r=ae+be+gandq=c+d+e,r=garevalid
quotient/remainder pairs for f divided by (a + b). If the
calculations are restricted to weak division then the
second pair is the unique quotient/remainder pair. Note
that in f = p• q + r, the names of the divisor and the
quotient are arbitrary, if p is a divisor and q is the
associated quotient, then we can equally call q the divisor
and p the quotient.

A cube c is said to (algebraically) divide expression f
evenly if and only if VdEf:cçd. An expression is said to
be cube free if no cube divides the expression evenly
(e.g. ab + c is cube free, but ab + ac is not cube-free,
since cube a divides ab + ac evenly). The primary
divisors of a Boolean function f are the elements of the
set D(f) defined as: D(f) = {f/clc is a cube}. The set of
kernels of a Boolean function f is the set:K(t)
{gIgED(f) A g is cube free}. In other words, the kernels



270 F. VOLF, L. JO~WIAK AND M. STEVENS

of an expression f are the cube-free, primary divisors of
f. The cube c used to obtain kernel k (k = f/c) is called the
co-kernel of k, and we use C(f) to denote the set of co
kernels of f. A kernel kEK(f) is said to be of level n if
kEKt1(f) and k ~ K~1(f), where K°(f) = {kEK(f)IK(k) =

{k}} and K’~(f) = {kEK(f)I3lEK(k):lEK’~’(f)}. For
example, for the function f = a~ (b + c) + d the set of
divisors is D(f) = {a; b + c; a(b + c) + d; 1). The set
kernels for this function are: K°(f) = {b + c} and K1(f) =

{b+c; a(b+c)+d}.

Theorem 1: Functions f and g have a common multiple
cube divisor d if and only if

3 3 d=k~flkg[7].
k~€K(f) k~€K(g)

This theorem states that two functions only have a
multiple cube divisor if an intersection of a kernel of f
and a kernel of g has more than one cube. It is the
fundamental theorem used in the factorisation algorithms
presented in the next sections.

2.2 Standard Factorisation Algorithm

• The algorithm discussed below was introduced by R.K.
Brayton in 1982 ([7][8][1Oj). We will call it the standard
factorisation algorithm, because all other factorisation
algorithms are based on it. Each method presented in this
paper will be characterised by sketching an outline of the
major steps and by discussing the impact of these steps
on the quality of the result. The standard factorisation
method can be characterised as follows:

• The fundamentals of the method are based on the
notion of kernel/co-kernel pairs. This notion is
easy to comprehend, which makes easy reasoning of
the synthesis process. Although the set of kernels
can become very large, it is considered to be
reasonably small for most practical synthesis prob
lems. Kernels form a very small subset of all
algebraic divisors of a function. Algebraic divisors
are a special subs~et of another group of divisors: the
Boolean divisors. Therefore, the set of kernels of a
Boolean expression is a very small sub- set of all
possible divisors and can be too restrictive to find
near optimal solutions.

• The input to the algorithm is the two-level, locally
minimised on-set f’ of an incompletely specified
function .Y{f,d,r) obtained using the two-level mini-
miser Espresso [91. This makes incompletely speci
fied multiple-output functions much easier to
handle, but the loss of the don’t cares before the
algorithm actually starts will almost certainly lead
to a less satisfactory implementation.

• In the type of factorisation problems presented here,
two optimisation criteria are generally considered.

Firstly, the area occupied by the implementation ~
the circuit and secondly the maximal speed of t~

implementation of the circuit. The area of the
implementation is usually split into two comp0~
nents: the active area (area used for active elemen~
(transistors)) and the routing area (the area used for
wiring). The maximum speed of the implementation
is usually determined by its critical path; this j~
defined as the worst case response time of any
output to a change in one or more of its inputs.

In the standard factorisation algorithm, the number
of literals is used as the optimisation criterion. The
number of literal~ is a quite accurate measure for the
implementation of AND-OR-NOT based Boolean
expressions, because each literal is an input of a
gate and the difference between the minimum and
the m~iximum number of inputs for a gate of a
certain technology is usually small (typical 2 or 3).
Although this measure is reasonably accurate for
the active area of a physical implementation, it is
not adequate enough for the routing area or for the
delay of the circuit. Since the routing area of
complex multiple-level logic circuit can be much
larger than the active area and heavy parenthesised
expressions increase the delay, the number of liter
als can be a weak selection mechanism for large
logic circuits. It is important to realise that the
number of literals is only an adequate measure for
the active area if we use an AND-OR-NOT based
technology. If more complex gates are possible (like
the AND-NOR-21 gate: f = a b + c) then a non
trivial technology mapping is required as this will
transform a set of Boolean expressions with mini
mum literal count to a gate network using the
minimum amount of area. This problem is known to
be NP-hard. The same problem can occur when the
Boolean expression uses operators with too many
inputs: for example, the expression f = a.b.c.d.e~h~i~j
probably requires technology mapping, because not
many technologies support 8-input AND gates.
Furthermore, for FPGAs which have an internal
structure of programmable networks of look-up
tables (like Xilinx FPGAs), the number of literals is
in fact completely irrelevant because these look-up
tables can implement any function which has a
limited number of inputs and outputs (regardless of
how many literals are needed to describe this
function). The general full-decomposition theory
presented in section 3 does not have this disadvan
tage as in this theory, functions are modelled as
networks of arbitrary building blocks.

• Each kernellco-kernel pair obtained using theorem 1
is applied to all functions and the gain in the number

I’

I

4



MULTIPLE LEVEL LOGIC SYNTHESIS 271

of literals obtained by this pair is calculated. The
jcernelcokemel pair with the highest literal gain is
selected and applied to all functions. Although this
approach is fast and easy to understand, we consider
it to be a weak point of the algorithm. Firstly, the
selection is based on the momentary gain of the
number of literals of a kernel. It does not predict the
total gain in the number of literals that can be
expected by choosing this kernel. This is important
because the choice of a kernel may block other
kernellco-kelllel pairs and, after choosing the cur
rently best kernel, no good kernel/co-kernel pairs
may remain. The second objection is that the selec
don algorithm is greedy. A greedy search strategy
should only be used for solution spaces which are
more or less continuous and regular. If the solution
space is very rough, a greedy algorithm often finds
a local instead of a global optimum. The solution
space of logic synthesis is very rough [281 and
therefore greedy algorithms are not suitable. A third
disadvantage is that the selected kernel is globally
applied. This means that a kernellco-kernel pair
with a large gain in some functions is not only
applied to the functions where it results in a gain in
the number of literals, but also to functions where it
is a very bad choice, and therefore may block good
kernels for that function. All these factors together
provide evidence to show that to guarantee a near-
optimal gain in the number of literals, a more
sophisticated kernel selection algorithm should be
used.

• The kernel/co-kernels of Brayton are not algebra
ically compatible. This means that after choosing
and applying a certain kernel, other kernellco-kernel
pairs may no longer be valid. The quality factors of
the other kernel/co-kernel pairs can also change.
Therefore, after each kernel selection the kernel/co
kernel set needs to be recalculated. This is a rather
expensive operation and therefore Brayton tries to
select a few kernels/co-kernels before rebuilding the
kernel/co-kernel set, which means that the algorithm
works with somewhat inaccurate estimations and
extra checks are required to assess whether a kerneL!
co-kernel pair is still feasible.

• The algorithm continues to select the kernellco
kernel with the highest gain in the number of
literals, until the gain is smaller than a threshold
value X. Then, all single-cube divisors which have
a literal gain larger than X are extracted. If no more
multiple-cube or single-cube divisors can be found
then the threshold value X is decreased and the
extraction process is continued. The choice of the
sequence of values of X is determined by experi
ments (empiric data).

2.3 Lexicographical Factorisation

The lexicographical factorisation algorithm [l1[21
[31[451 was developed in the Laboratoire Conception de
Systèmes Integrés of the Institut National Polytechnique
de Grenoble. It aims to improve Brayton’s method by
removing some of the disadvantages previously men
tioned. Its basic idea is to find and use an order of the
input variables in the factorised expression. This ap
proach leads to a multiple-level random logic implemen
tation with an improved routing factor compared to the
standard factorisation algorithm of Brayton. In the lexi
cographical factorisation, the variables are factored out
in order of apponrance in a certain variable ordering.
Suppose we have ajunction f = abc + abd + ae + bc +

be + cd and an input order {a, b, c, d, e}, then the
factorised form of f with respect to this order is f =

a(b(c + d) + e) + b(c + e) + cd. The construction of the
input order is based on kernel/co-kernel pairs. The
precedence relation induced by the kernel/co-kernel
pair (k, c) states that the variables in co-kernel c precede
the variables of kernel k. For example, function f =

ac(bd + bd) has a kernel/co-kernel pair (bd + ba,~). The
precedence relation is: a and c precede b and d. A
factorisation (k, c) is compatible with a reference
order, if and only if its precedence relation is respected
by the reference order. For example, ba(c ÷ d) is com
patible with all reference orders in which b and a precede
c and d. These reference orders are: {a, b, c, d},
{ b, a, c, d}, {a, b, d, c} and {b, a, d, c}. Two factorisa
tions (k1, c1) and (k2, c2) are lexicographically compat
ible, if and only if at least one input order exists with
which they are both compatible. Suppose we have two
elementary factorisations on some function: (ce + d, ~b)
and (d + f, ce). These factorisations are compatible
because they are both compatible with the reference
order {a, b, c, e, d, f}.

The lexicographical factorisation method can be char
acterised as follows:

• The lexicographical algorithm, like standard fac
torisation, has the locally two-level minimised
Boolean functions as its inputs. The input-order is
created in the first step. Part of the input order can
be imposed externally to account for external fac
tors (e.g. late arrival times of some input). If this
enforced input ordering is not complete, then the
following input ordering algorithm is used to com
plete the order. A list of all kernel/co-kernel pairs is
first constructed. The pairs are sorted with respect to
their global gain in the number of literals. The pair
with the largest gain in the number of literals and
which not violates the input order is selected and the
input order is updated with regard to the precedence



272 F. VOLF, L. JO~WIAK AND M. STEVENS

relation of the selected kemellco-kernel pair. These
steps are repeated until no more compatible kernel]
co-kernel pairs can be found.
The lexicographical factorisation algorithm uses a
greedy selection algorithm to find a good input
order. The constructed input order may not be the
best one (in addition to the fact that any input order
is a large restriction on the set of kernels). There
fore, a more sophisticated algorithm may be neces
sary to find a near optimal input order. Related to
this problem is the fact that lexicographical factori
sation uses the number of literals to estimate the
quality of an implementation.

• One of the main advantages of lexicographical
factorisation over standard factorisation is the fol
lowing theorem proven in [45]:

Theorem 2 Lexicographical compatible kernel]
co-kernel pairs are algebraically compatible.

Lexicographical factorisation therefore does not
require the recalculation of the set of kernels/co
kernel pairs after one pair is selected from the set.
The result is that lexicographical factorisation is a
much faster algorithm when compared with stan
dard factorisation.

• The factorisation is then performed and respects the
variable ordering just created. Since the variable
ordering is known, factorisation is very simple.
Negated variables are factored out immediately
after the non-negated variable. In the final step,
common sub-expressions are identified and imple
mented as sub-functions. Because of the input order,
the search for common sub-expressions is very
efficient. It is performed as the last step, because
high priority is given to internal simplifications of
the expressions and this results in a low number of
wires and short wires.

• The lexicographical factorisation results in imple
mentations which have a much smaller routing area
compared to the standard factorisation algorithm of
Brayton. Respecting the variable ordering can how
ever result in an increase of the active area, Many
good kernels can not be used because the input
order is very restrictive. Therefore, the method
produces only good results for circuits with a high
routing factor (the amount of active area used is
larger than the active area obtained using Brayton’s
method). Most large circuits are known to have a
large routing factor and experiments ([45]) have
shown that the lexicographical factorisation algo
rithm produces better results in less time for large
circuits.

o Unfortunately, only external inputs are accouhted
for in this method. The method does not explicitly
try to avoid long lines which result from internal

sub-function creation (although implicitly this prob
lem is partially solved because the variable orde~j~
keeps related sub-functions close to each other)

2.4 Concurrent Decomposition Algorithm

This method was introduced by Janusz Rajski ~d
Jagadeesh Vasudevamurthy of the McGill University jj~
Montreal, Canada [411 [42] [501. It is based on testability
preserving transformations and the factorised multiple
level network is fully tested by a complete test set
derived from the original two-level circuit. The charac
teristic feature of the concurrent decomposition method
is that it limits itself to the use of double cube divisors
(i.e. kernels with~only two cubes), single cube divisors
with only two literals and the complements of these
single and double cube divisors. It has been found that
these divisors (in spite of their simplicity) can be used to
synthesise circuits with small area and short delay times.
Furthermore, by restricting the calculations to double
cube divisors and single cube divisors with two literals,
the calculations of these divisors are now polynomial
time operations (whereas the calculation of the set of
kernels can require an exponential amount of time). A
double cube divisor is a cube-free multiple cube divisor
with only two cubes. The set D(f) of all double cube
divisors is defined as D(f) = {dIV~~:1≤ i ≤ n, 1 ≤j ≤ n,
is~j: d= {c1\(c~ fl c~),c~\(c~flc~)}} where n is the number
of cubes off and c~ represents cube i off. (c~flc~) is called
the base of double cube divisor d. Note that the definition
of a double cube does not exclude empty bases (i.e the
situation for which c~ and c~ are disjoint). The complexity
of the construction of D(f) is 0(n2).

Given the function f = ade + ag + bcde + bcg, the double
cube divisors of f are

• de + g obtained from the cubes ade and ag or from
the cubes bcde and bcg.

o a + bc obtained from the cubes ade and bcde or
from the cubes ag and bcg.

• ade + bcg obtained from the cubes ade and bcg.
• ag + bcde obtained from the cubes ag and bcde.

The set of double cube divisors D(f) is represented by
a number of subsets D~~~(f), where x represents the
number of literals in the first cube, y the number of
literals in the second cube and s the number of literals in
the support of f. Without loss of generality one can
assume x ≤ y. Note that max(x,y) ≤ s ≤ x + y. The spe
cial sets Dexor(t) and Dexnor(f) denote the EXOR and the
EXNOR double cubes respectively; D222(t) Dexor(f)

Dexnor(f). ~ is used to denote the set of single cube
divisors of f with exactly x literals. A feature of concur
rent factorisation is that it does not only take elements of
D(fj and S(f) as divisors, but also uses the complement of
these divisors. In [42] an important theorem is formu



MULTIPLE LEVEL LOGIC SYNTHESIS 273

ted that describes the cases in which the complement of
~double cube divisor is also a divisor:

ijieorem 3: Let f and g be two Boolean functions. If a)
for every d~ED1,1,2(f), s~ES2(g) and b)d~ ~ d~ for

~yery djEDexor(f)~ djEdexnor(g) and c) d1 ≠ d~ for every
djEDexnor(~’ djeDexor(g) and d) d~ ≠ for every
d~ED2,2,3(t)~ d~ED223(g) and e) d1 * s~ for every
4~ED1,1,2(g)~ s~ES2(t)

then f has neither a complement double cube divisor, nor
a complement single cube divisor in g.

This theorem is quite important from the practical
viewpoint: by checking for a complement divisor of a
dEDW, we have to search for them only in a small
subset of~ or S2(t). As in standard factorisation, a
theorem for finding divisors among two functions exists
[42).

Theorem 4: Expressions f and g have a common
multiple cube divisor if and only if D(t)flD(g) ≠ 0.

Finding multiple cubes based on the sets D(f) and D(g)
leads to a higher run-time efficiency because the set of
double cube divisors is much smaller when compared to
the set of all kernels. The method can be characterised as
follows:

• The double cube divisors are constructed by an
0(n2) algorithm, where n is the number of terms.
Each double cube divisor d is stored in the appro
priate ~ and its implementation cost is calcu
lated. If d has a single cube complement (which can
be easily checked using theorem 3) then the cost for
the single cube complement is also taken into
account in the implementation cost. The quality of a
Boolean expression is estimated by the number of
literals in the expression. The quality factor speci
fies the gain in the number of literals which results
from choosing both this double cube divisor and its
complement. Double cube divisors are extracted
separately for each function. The extraction of
double cube divisors is only done once for the entire
factorisation process. A similar algorithm is used to
select all single cube divisors.

• The divisor selection algorithm is a greedy algo
rithm selecting the (single or double cube) divisor
(and possibly its complement divisor) with the
largest gain in the number of literals. Our objec
tions to this measure have already been discussed in
section 2.2 and hold for concurrent decomposition.
The set of double cube divisors is not algebraically
compatible. However, because the complexity of
the double cube generation algorithm is quadratic,
this algorithm is much faster when compared to the
standard factorisation (which occasionally can have
exponential time complexity).

• In order to preserve testability the algorithm has to

be used on single-output functions and not on
multiple-output functions. This means that good
sub-expressions cannot be shared among different
output functions. Furthermore, the transformation of
a multiple-output function to a set of single-output
functions can increase the number of product terms
by at most a factor equal to the number of outputs in
the multiple-output function. In an attempt to over
come this problem, the single-output Boolean func
tions are searched for common parts prior to execut
ing the concurrent decomposition algorithm. The
common parts are implemented as sub-functions. It
must be noted that the search for common parts
involves common product terms not common sub-
cubes, i.e. the intermediate variables occur in the
functions as product terms with this intermediate
variable as the only variable in the product term and
they are not literals of a cube.
The algorithm preserves testability but this is a
severe restriction. In [42] a number of rules are
specified which should be fulfilled in order to
preserve testability. These rules state that single
cube extraction, double cube extraction and concur
rent extraction on single-output functions preserve
testability. Similar rules state that it is very difficult
to preserve testability in multiple-output circuits
(i.e. Boolean expressions with common sub-expres
sions). Therefore, the concurrent decomposition
methods act on single-output functions. It seems
reasonable to expect further gain in the number of
literals if the testability condition is dropped and
common sub-functions and common double cube
divisors are allowed.

2.5 Example of Division Based Synthesis Methods

In this section the division based algorithms that are
presented are illustrated by an example. Given the
function w(a, b, c, d, e, f, g) defined as w(a, b, c,
d, e, f, g) = abce + abd + ~ef + bef + efg. w is a single
output completely specified function and is minimal with
respect to the number and the size of the terms. The
standard factorisation algorithm presented in section 2.2
applied to w results in the function x(a, b, c, d, e, f, g):
x(a, b, c, d, e, f, g) = ab(ce + d) + ef(a + b + g) (see also
Figure la). The standard factorisation has obtained a
solution with 10 literals. The lexicographical factorisa
tion algorithm cannot find this solution because the used
co-kernellkernel pairs are incompatible: the pair (ce + d,
ab) requires (among others) the precedence relation a
precedes e, whereas the second co-kernellkernel pair of x
(~ + + g,ef) requires the precedence relation e precedes
a, which is incompatible with the first relation. The
lexicographical factorisation finds the following factori
sation that respects the variable ordering (d, e, c,



274 F. VOLF, L. JO~WIAK AND M. STEVENS

f, a, b, g}: y(a, b, c, d, e, f, g) = d y1 + e(c.y1 + f(~1÷ g))
with y1 = a b (See Figure ib). The function also requires
10 literals. As it can be seen, a subfunction Yi has been
introduced. Because the lexicographical factorisation
algorithm uses NANDs as an internal representation, it
was able to identify ab and a + b as common subexpres
sions. If this realisation is compared with standard fac
torisation then it shows the properties of lexicographical
factorisation: each input is only once connected to a gate
and therefore the routing complexity for the inputs is
reduced. It can also been seen that the method does not
try to minimise wires for subfunctions as the subfunction
y1 is routed globally. It is however possible to specify a
threshold on the gain of the number of literals for
sub-functions. If the gain of a certain sub-function is
larger than the threshold, the subfunction is created and
applied globally (expecting a large active area gain, but
small extra area for wiring), otherwise it is implemented
locally (costing extra active area, but negligible routing
area). Furthermore, the lexicographical factorisation al
gorithm needs more gates than standard factorisation
(increase of active area). The real power of the lexico
graphical factorisation algorithm can only be shown on
large examples, where the gain in active area and the
extra routing area for sub-functions is compensated by a
large reduction in the routing area for the inputs. We refer
to the benchmark results in [45] to illustrate the effec
tiveness of the lexicographical factorisation for large
circuits. Using lexicographical factorisation, the partial
input order can also be enforced. Suppose we want the
inputs a,b and c to be extracted first (because these inputs
have late arrival times due to external circumstances), the
input ordering is first completed as {a,b,c,d,e,f,g} and the
following factorisation is then found: z = ab(ce + d) +

(az1 + bz1 + gz1) and z1 = ef (see Figure ic) which
requires 13 literals. It should be noted that the second
part of z cannot be written as z1(a + b + g) without
violating the precedence relation. Also, it should be
noted that the critical path of a and b has reduced from 6
gates to 2 gates at the expense of a somewhat more
complex routing and an increase in active area (more
inputs per gate). The concurrent factorisation algorithm
searches explicitly for the complement of the kernel

+ ~, whereas in lexicographical factorisation this
equivalence was implicitly found. Concurrent factorisa
tion finds the same factorisation as lexicographical fac
torisation (function y) (see Figure ib). As it can be seen
only double cube divisors and cubes with two literals are
used.

3. GENERAL DECOMPOSITION-BASED
MULTIPLE-LEVEL LOGIC SYNTHESIS

In this section, we will present a theory of general
full-decomposition for combinational machines and give

an overview of the decomposition-based methods for
multiple-level combinational logic synthesis. Basic defi
nitions are presented in sub-section 3.1, the theory of
general full-decomposition can be found in sub-section
3.2 and some special decomposition cases are the topics
of sub-section 3.3.

3.1 Basic Definitions

A (completely specified) combinational machine M is
an algebraic system defined by:

M = (I,O,X)

I - a finite non-empty set of inputs,
0 - a finite non-empty set of outputs,
X - the output function X:I—*0.

The design requirements do not always completely
specify a machine for example, certain input values may
never occur due to external constraints or due to realizing
the machine in such a way that some of the input values
of the realization are not used for implementing the
inputs of the originally specified machine. From the
behavioural viewpoint, the designer does not care what
will be the output value for such an input value. In all
such situations one talks about so called “don’t care”
conditions. “Don’t cares” are commonly denoted by “-“.

In order to account for them, the combinational machine
definition should be slightly modified by changing the
definition of the machine function K. For the single-
output machine: X:I—*O U { - }. For the multiple-output
machine: X= [Xi], X~:I—*O~ U {-} and 0 = [Os]. A combi
national machine without “don’t cares” will be referred
as completely specified and with “don’t cares” as
incompletely specified. Machine M’ = (I’,O’,X’) is a
realisation of machine M = (I,0,X) (see Figure 2) if and
only if the relations ~P :I—*I’ (a function) and 0:0 ‘—*0
(a surjective partial function) exist, so that VxEI: X(x)
= 0(X’(’I’(x)). The machine composed as a structure
consisting of ~‘I’, M’ and 0 and being the realisation
structure for M defined by M’ will be denoted by
str(M’). It is possible to prove, that if M’ is a realisation
of M then for all possible inputs, the outputs produced by
machine M and its realisation M’ are identical after
renaming.

Partitions and partition pairs, originally introduced by
Hartmanis [19] are useful for modelling information and
information flows inside and between machines. Let S be
any set of elements. Partition ‘rr on S is defined as
follows: it {B~IB~ C S and B, fl B~ = 0 for i # j and
U B, = S} i.e. a partition it on S is a set of disjoint
subsets of S whose set union is S. For a given s 6 5, the
block of a partition it containing s is denoted as [slit
while [s]’n = [t]’rr denotes that s and t are in the same
block of it. Similarly, the block of a partition iv

where:

C

F101

inpu

con
paii
is C
paii
call
it1
‘fl.1.
if
pai
[s]i

~1’~

[s~]
Fro
it’.

it2,
all



MULTIPLE LEVEL LOGIC SYNTHESIS 275

(B)

z

(C)

FIGURE 1 Different division based realisations of function w. (a) Standard factorisation. (b) Lexicographical factorisation without predefined
input order and concurrent factorisation algorithm. (c) Lexicographical factorisation with partial defined input order {a,b,c}.

containing S, where S’ C 5, is denoted by [S’]ir. The
partition containing each element of S in a separate block
is called a zero partition and denoted by ‘rr5(O). The
partition containing all the elements of S in one block is
called an identity partition and is denoted by ‘rr5(I). Let
~r1 and ‘rr2 be two partitions on S. The partition product
~I~2 is the partition on S such that [sj’rr1•’rr2 = [t]’rr1.ii~2
if and only if [s]’rr1 = [tJ’rr1 and [sJ’rr2 = [tilT2. The
partition sum rr1 + ~r2 is the partition on S such that
[sJ’rr1 + ‘rr2 = [tiir1 ~ ‘~‘F2 if and only if a sequence: s =

Sj,...,s~ t, s~ES for i = l..n, exists for which either
[s~]ir1 [si.,,. 11ir either [st]lr2 [s~.,. 1JlT2, 0 ≤i ≤ n—i.
From the above definitions, it follows that the blocks of
lT1~lT2 are obtained by intersecting the blocks of ‘~ and
‘Fr2, while the blocks of ~r1 + ir2 are obtained by uniting
all the blocks of ~ and IT2 which contain common

elements. 1r2 is greater than or equal to ‘~r1: ‘rr1 < ‘Fr2 if
and only if each block of ir~ is included in a block of IT2.

Thus ii~ ≤ ‘rr2 if and only if ‘1T1”Fr2 = ‘Fr1 if and only if
+ ‘~2 = ‘Fr2. Any partition ‘Fr on S can be interpreted as

an equivalence relation defined on S with the equiva
lence classes being the blocks of ir. Using this interpre
tation, the partition ‘ir gives information about the ele
ments of S with precision to the equivalence class. With
this information, it is possible to distinguish elements
from different classes although it is impossible to distin
guish elements from the same class. The partial ordering
relation ≤ denotes the fact that if ‘ir~ ~ ‘Fr2 then ‘u1 (and
so the associated equivalence relation) provides informa
tion about elements of 5, that is at least as precise as
information given by ‘Fr2 (and its associated equivalence
relation). A zero partition provides complete information

at

(A)
g

d



276 F. VOLF, L. JO~WIAK AND M. STEVENS

FIGURE 2 Realisation of machine M by machine M’.

about elements of S and an identity partition gives no
information. The partition product can be interpreted as a
product of the appropriate equivalence relations intro
duced by these partitions; it represents the combined
information about the elements of S provided by both
relations together. The partition sum can be interpreted as
a sum of the appropriate equivalence relations introduced
by these partitions and it represents the combined ab
straction of both relations.

Example
In Table I, the function table of an incompletely

specified Boolean function is presented. The function has
3 input bits (x1, x2, x3) and two output bits (y1 and y2).
Each input combination has been labelled with a unique
name (a, b, c, d, e, f, g and h) and hence we can use these
symbolic names in the following considerations. Like
wise, the output combinations have been Jabelled by w,
x, y and z. These functions can be written as the
following completely specified machine: M(I,O,X) such
that I = {a,b,c,d,e,f,g,h}, 0 = {w,x,y,z} and X:I—*O as
specified in Table I. Machine Mr: Mr(Ir, Or, Xr), with ‘r =

{1,2,3,4,5,6,7,8}, Or {~,i3,’y,~’}, XrJr~0r, Xr = {(1,~3)
;(2,~);(3,c~);(4,~y);(5,’y);(6,~);(7,a);(8,a) } is a realisation
of M, since the mappings ~I’:I—~Ir, ‘I’ = {(a,1);(b,2);(c,3)
;(d,4);(e,5);(f,6);(g,7);(h,8) } and 0 :Or—~.I, { (a,w);(f3,x);
(‘y,y);(~,z)} satisfy the relation VxEI:X(x) = O(Xr(~I’(X)).

For example, take x = f: X(t) z (see Table I) and
O(Xr(P(f)) = O(Xr(6)) = O(~) = z. Verification of this
relation for other combinations can be performed by the
reader as an exercise. For machine M(I,O,X) as defined
above ir1(O)={a;b;c;d;e;f;g;h} is the zero input partition
and ‘rr1(I)={a,b,c,d,e,f,g,h} is the input identity_partition.
Let ir1 = {a,b; c,d; e,f,g,h} and ‘FT~2 = {a,b; c,e; d,f,g,h} be
partitions on set I. The product ‘ir1 ‘Fr2 = {a,b;
~; ~i; ~; f,g,h} denotes the combined information of ‘rr1
and ‘rr2, for example in ‘~ the symbols c and d are
equivalent and hence partition ~r1 cannot distinguish
between these two symbols. ‘F~~2 can make the distinction
between c and d (because they are in different blocks of
‘Fr2). The product ‘rr1 ‘rr~ represents the partition that
makes the union of the distinctions of ‘n~ and ‘rr2 and
combines in one block only those elements which are

a 000 01
b 001 11
c 010 00
d 011 10
e 100 10
f 101 11

110 00
111 00

equivalent in both_partitions. Similarly, the sum i~ +

= {~; c,d,e,f,g,h~ represents the information about
distinctions present in both partitions. Finally, for the
partitions ir3 = {~; ~; e,f,g,h} and it4 = {a,b;
c,d,e,f,g,h}, ir3 ≤ ~r4, because ‘Fr3 makes all distinctions
that ‘Fr4 makes. This can also be checked by the definition

≤: ‘Fr3≤iT4<z1~Fr3 ‘Fr~=iT~ and IT3 IT4 {a,b;
c,d; e,f,g,h} = ‘Fr3. ≤ is a partial relation: therefore it need
not be defined for all pairs of partitions: ir5 =

{a,b; c,d; e,f,g,h} and ‘Fr6 = {a,c,e; b,f; d,g,h} are not
related by ≤ since ‘Fr5 ‘Fr6 = {a,b; ~; e,f,g,h} {~~e;
b,f; d,g,h} = {a;b;c;d;e;f;g;h} = I.

Given M = (I,O,X), let ii~ be a partition on I and let ‘~

be a partition on 0. (IT1, IT0) is an 1-0 partition pair if

and only if VAEir1X(A)CC, CEir0 (where: X(A)
{X(x)IxEA}) ; i.e (irs, m-~) is an 1-0 partition pair if and
only if each block of ‘Fr1 unambiguously determines the
block of ‘Fr0 in which the output is contained. If (IT5, ‘rr0)

is a partition pair then it1 is called the first partition of the
pair and ir0 is called the second partition of that pair. Let
‘~ be a partition on I. The minimal second partition
which forms an 1-0 partition pair with ‘n~ as a first
partition will be denoted m10(’Tr1). The maximal first
partition which forms an 1-0 partition pair with ‘rr0 as a
second partition will be denoted M10(it0). It can be
proved [19] that:

m10(’rr1) = II {‘rr~i(’rr1,ir~) is a 1-0 partition pair}

M~0(ir0) = 2 {‘rr~I(IT~,’Fro) is a 1-0 partition pair}

For a given ‘ni, m(’rr1) describes the largest amount of
information which can be computed about the output of
M knowing the block of ‘n~ which contains the input.
M(it0) describes the least amount of information which
must be known about the input of M, in order to be able
to compute the information about the output with preci
sion to ITS. ‘rr~ is an input partition induced by an
output partition ITc~’ (notation: ‘rr~ = indQrr~)) if and
only if: Vx,yel: if [X(x)j’rr~ = [X(y)]’rr~ then [x]’rr~
[y]it~. In other words, if ‘rr~ is an input partition induced
by an output partition it0’ and, if it is known that the
present output y of M is contained in a block CE’rr~, then

TABLE I
Boolean function for example 1

x1x,x3 y1y2 0

x
z
w

y
y
z
w
w



MULTIPLE LEVEL LOGIC SYNTHESIS 277

i~ ~own that current input I of M is contained in a
J3 &rr~, where block B is unambiguously indicated

i,i,ock C. It is possible to prove that ‘n~ is an input
‘~rtition induced by an output partition rrb if and only if

z M1,.~Qrro’), i.e. the smallest input partition induced
a certain ‘rrb is ‘rr~: ir~ = M~0(ir01).

~or the purpose of a bit decomposition (in which the
~bits are appropriately distributed instead of
,tiie inputloutput symbols), the concepts of bit partitions
bas been introduced [251. Let B = {b1,b2 bIBI) be a set
0f(jnput or output) bits. Let T = {t1,t2,. . ~ be a set of
~input or output) symbols. Each input/output bit bkEB,
~t±oduces a two-block partition itT(bk) on the set of
qmbols (bit value patterns) T (in the case of incom
pletely specified machines on the subset of T for which
the value of this bit is specified). One block of itT(bk)
contains the symbols for which bit bk has the value 0 and
~he other block contains the symbols for which bk has the
~aiue 1. The product of the partitions itT(bk) for all the
bits bk: bk EB will unambiguously define the set of all
input/output symbols, i.e. it will be a zero partition. A
partition ira on the set of bits B ira = {b1,b2 bk,
(bk÷ ~,. . . ,b~1) } is called a bit-partition. In a bit-partition
the important bits (for distinguishing between certain
symbols) b1 bk are kept in separate blocks and the
don’t care bits bk÷ 1 b1~1 are kept in a single block
called a don’t care block (denoted by dcb(itB)). The
product (~) and sum (+) operations as well as the
ordering relations (≤) for bit partitions are defined in the
same way as for “normal” partitions with the following
supplement: the product of a block (important or don’t
care) with important blocks is an important block in the
product partition; whereas the sum of a block (important
or don’t care) with a don’t care block is a don’t care
block in the sum partition. The zero bit-partition is
defined as a bit partition with an empty don’t care block.
The identity bit-partition is defined as a bit-partition
with all elements in the don’t care block. itT is a symbol
partition induced by a bit partition rrB (itT = indQrrB))
if and only if ‘~~T >~ itT(bk)~ 1T~ is a bit

bke(B- c (if8))

partition induced by a symbol partition ‘~T (ir~ =

indQrrT)) if and only if Vbk E(B — dcb(irB)):itT(bk) ≥

‘~T~ ‘~‘~T = ind(irB) then, having ira the blocks of itT can
be computed. If it~ ifld(’TTT) then, having the block of

‘~T the values of all the important bits from ‘rrB can be
computed.

Example (continued)
The function from Table I and its associated machine

description M(I,O,X) is again used. Given the partition
IT1; {a,c; b,f; d,e; g,h} on set I and partition it0 = {w,x;
y,z} on set 0. (‘ni, m-~) is a 1-0 partition pair and this can
be easily checked by_checking all blocks of it1 following
the definition (e.g. X{a,c} = {x,w} which is a subset

of a block of ‘~r~ etc.). m1o(ir1) = {w,x; y; z} repre- sents
the maximal information about the output of M
that can be calculated using it1. Similar M1o(it0)
= {a,c,g,h; b,d,e,f} represents the minimal input
information that is necessary as a input to calculate ‘no.
Let__rr~ = {~; y; z} then {a,c,g,h; b,d,e,f} and
{a,c,g,h; b~; ~i~} are both induced input partitions of ir~,.
The function from Table I as a binary function instead as
a symbolic function will now be considered. Bit-parti
tions on the inputbits can be made. The set with the input
bits is called X, i.e. X = {x1, x2, x3}. 1n fact, an input bit
represents, a symbolic partition which contains in the first
block all symbols for which this bit is 0 and in the second
block, all symbols for which this bit is 1: it~(x1) =

{a,b,c,d;e,f,g,h}, ir4x2) = {a,b,e,f;c,d,g,h} etc. A bit
partition on X is the partition ‘rr~ = {x1, x2, (x3)}. Given
any partkion ‘r, r is a symbol partition induced by ‘rrx if
and only if: 7 ≥ H rrx(b~), which can be calcu

bke(X-dcb(’rr,))
lated as follows: T ≥ it~(x1) . it~(x~) =~ ~ ≥ {a,b,c,d;
e,f,g,h} {a,b,e,f,c,d,g,h} =* ‘r ≥{~;c,d;e,f;g,h}. Simi
larly, an example_of a bit partition induced by the symbol
partition {a,c,e;b,d,f,h;g} is the partition Tx = {x3,
(x~,x2)}. In this case ‘TX is the only possible bit partition.

3.2 General Full-Decomposition

A theory of general decomposition of sequential ma
chines is presented in [29]. In this paper we are con
cerned with the synthesis of combinational logic how
ever, a combinational machine is merely a special case of
a sequential machine with one state and a trivial next-
state function. Therefore, the general decomposition
theory can also be applied to our problem. A special case
of the general full-decomposition theory [29j related to
combinational circuits is presented below.

In a general full-decomposition of a combinational
machine M = (I,0,X) we need to find a composition of n
cooperating partial machines M~ = (I~,O~,X~) as well as the
mappings ~I’ : I—* XI~ and 0: X Or-*O in order that the
composition of M1 together with the mappings ‘I’ and 0
realize machine M. The implementation of the general
decomposition model requires three components: the
input coder (pre-processor) P, the simultaneously work
ing communicating component machines (main proces
sors) M. and the output decoder (post-processor) 0. The
component machines, input coder and the output decoder
are implemented as combinational circuits. The model is
general and it contains all elements necessary for the
construction of circuit networks which implement com
binational circuits: parallel processing elements with
possibilities for information exchange between them;
divergent pre-processing elements for abstracting and
splitting information and representing it in the appropri
ate form; and convergent post-processing elements for



278 F. VOLF, L. JOZWIAK AND M. STEVENS

joining and combining information from parallel proces
sors and representing it in the appropriate form. The
full-decomposition can be characterised by the type of
connections between the component machines and by the
type of input/output encoding/decoding. In a general
composition, each partial machine can use (partial)
output information from another in order to compute its
own output. However, two special cases of a general
composition are possible: a parallel and a serial compo
sition. In a parallel composition, no connections exist
between the partial machines. Each partial machine is
able to compute its own output independently. In a serial
composition, machines are ordered and only the compo
nent machines M~, i ≥ j, can use information from the
machines M3 in order to compute its own output. The
formal definition for a general composition is given
below.

A general composition of n combinational machines
M~: GC({M~}, {Con1}), consists of the following objects:

(1) {M~=(I*~, O~, K1) I*~ = I~ X I’~, 1 < i ≤ n}, a set
of machines referred to as component machines

(2) {Con1:XO~—*I~, 1 ≤ i,j ≤ n}, a set of surjective
functions referred to as connection rules of the
component machines.

A general composition is said to be in canonical form
if and only if the connections rules Con1 compute the
vector values and have the following form: Con1
(y1 y~) = (Con1~(y1) Con~ (y~)), i.e a (partial)
output information j, 1 ≤ j ≤ n, is separately transmitted
to the input of a certain machine i, 1 ≤ i ≤ n, i.e. without
combining it with a (partial) output information from
other partial machines k, 1 ≤ k ≤ n, k ~ j. A general
composition is said to be in maximally pre-processed
form, if the connection rules Con1 compute the scalar
values i.e. information transmitted from various partial
machines to a certain machine is combined prior to
connection to the input of this machine. Of course, the
compositions in partially pre-processed form lying
between the two above extremes, are also possible. A
general composition GC of n combinational machines
defines the general composition machine MGC(GC) =

MGC({Mj}, {Con1}) = ~ °GC’ XGC) with I~ = X I~,
°GC ~ 0j~ Xc~c: ~ XGC = X X~(x~, Con1
(Yi y~)). We will not distinguish between the general
composition and the composition machine it defines,
unless this can lead to misunderstanding.

The combinational machine str(MGC) is a general
full-decomposition of machine M if and only if the
general composition machine MGC realizes M (see Fig
ure 3 for the case of two partial machines). In a similar
way, formal definitions for parallel and serial composi
tions and decompositions can be introduced. In [29] the
following theorem has been proved.

Theorem 5 A combinational machine M has a gener~~
full-decomposition if and only if n partition doubles (~ I

iT1*’) exist and they satisfy the following conditions: “

(1) ‘ir’1 ‘rr” ≤ iT~11, where: ‘rr” ≥ II IT*11
i~I...n

(2) [I TT11 <

(3) (.11~is an 1-0 partition pair.

\11...fl /

A special case of theorem 5 for two combinational
machines is presented below. For simplicity in presenta
tion we will use this vase in the sequel of the paper.

Theorem 6 A combinatrOnal machine M has a general
full-decomposition with two partial machines and
without local connections if and only if two partition
doubles (ir1, ir*1) and (i~, ~r*1) exist that satisfy the
following conditions:

(1) ~ and Tj.~~≤T*1, where
and ‘r~ ≥ T*

(2) ~1.T1<,~*1and~~.T1.<T*1
(3) (~*~ . T~1, it0(O)) is an I-U partition pair.

Proof
There follows only an outline of the proof in order to

show how to construct a decompositional realization
structure that is based on partition doubles (rr1, ~r*1) and
(r1, r*1). Let M1 = (IT1 X T~, i~1, K’) and M2 = (r1 X

~r~~’1 K2) be the two machines for which the following
conditions are satisfied:

(4) (IT,, rr*,) and (‘r,, r*,) satisfy the conditions of
Theorem 6,

(5) VA1EIT, VB2’ &r~: K’(Al, B2’)
[{xIxEAlAxEB2’}JIT*,

0

‘2 M

FIGURE 3 General full-decomposition of machine M~ into two
component machines M1 and M, without local connections.



MULTIPLE LEVEL LOGIC SYNTHESIS 279

~6) VA2ET1 YB1’ Eir~: X2(A2,B1’) =
[{xIxEA2AXEB1’}IT*I

since conditiOn (1) of theorem 6 is satisfied, X’(Al,B2’)
and >~2(A2,B 1’) are unambiguously defined, i.e. M1 and

are two well-defined deterministic combinational
machines which are able to compute their outputs from
their inputs. Let Con1,2 and Con21 be two functions
defined as follows: Con1,2: ~ and Con2,1:T*1_~T~.
~o~i2(Bl) = [Bl]i~ and Con2 1(B2) = [B2]’r~. Since

~ and ‘r~ ≥ ~r*1, Con12 and Con21 are two well

defined functions which are able to unambiguously
compute their values from their arguments. It is clear that
the above-detailed construction of machines M1 and M2
and functions Con1,2 and Con2,1 is a general composition
of machines M1 and M2 without local connections. Since
condition (2) is satisfied, it is possible to construct the
general composition of M1 and M2 as a legal composi
don, i.e. the exchanged information can be computed
(directly or indirectly) from the primary input informa
tion of partial machines.

Let ~Ir: I —~ IT1 X ‘r~ be a function, O:,rr*x X ~ be a
suijective partial function, and

(7) ‘I’(x): ([x]’rr1,[x]-r1), and

(8) O(Bl,B2) = B1flB2 if B1flB2 ≠ 0.

Since, (IT*1 . ‘r’~’1, ir0(O)) is an 1-0 partition pair (3), the
output of the original machine M can be unambiguously
computed by 0 from the outputs of the partial machines
M1 and M2. ~I’(x) unambiguously computes the inputs of
M1 and M2. Therefore, the general composition of the
machines M1 and M2 as defined above, realizes the
output behaviour of machine M. Construction of the
decompositional realisation structure following theorem
6 is strictly analogous. By repeated use of the general
full-decomposition model or its special cases, all func
tionally correct combinational circuit structures can be
constructed.

Example
In Table II, the specification of a completely specified

function f is given. Our goal is to implement the function
using a minimum number of look-up tables with two
inputs and one output. All three factorisation algorithms
described in Section 2 find the following implementation
f1 of f: f1 = x2x3x4 + x2(x3x4 + x1x~). These functions
must then be mapped on two-input one-output gates. The
only possible technology mapping that can be performed
without repeating the synthesis, i.e. without destroying
the structure obtained from the factorisation process, is
presented in Figure 4a. It results in a circuit with 7
look-up tables. The prototype of an algorithm that is
currently being developed by the authors is able to find

the solution with 4 look-up tables as presented in Figure
4b. Since, inputs symbols are already binary encoded, we
have chosen to use an input coder which achieves a direct
distribution of a subset of the input bits to each machine
C and E (see Figure 4c). Because one-output gates, are
used, we can only implement ‘rr’~ and IT*E when they
only have two blocks. The following two partition
doubles satisfy theorem 6: (ITC, ~~F*C) and (ITs, IT*E),

where ~tV*~D = {O,1,2,3,4,5,6,7,8,10,12,14;9,11,13,l5} and
= {O,5,6,7,8,13,14,15;1,2,3,4,9,lO,11,12}. ITc is the

input symbol partition induced by the inputs x1 and x4,
i.e. ITc~ = ind({~1;x4;(x2,x3)}) = {O,2,4,6;l,3,5,7;
8,l0,12,14;9,l1,13,l5}. Similarly: ir~=ind({x2;x3;x4;
(x1)}) = {0,8;1,9;2,lO;3,l1;4,l2;5,13;6,14;7,15}. Since
the decomposition ia Figure 4c is a parallel decomposi
tion, conditions (1) and (2) in theorem 6 are satisfied
trivially (there is no information flow from one machine
to the other) and hence ‘w~ and T~ are identity partitions.
We then need to show that the partition doubles satisfy
condition (3) of theorem 6. This is relatively easy:

= {O,5,6,7,8,14;l,2,3,4,lO,12;13,15;9,1l}, in
spection of Table II for the blocks of this product
partition, shows that the product indeed forms an 1-0
partition pair with ‘n~0(O). In a second iteration of the
algorithm, block E is further serially decomposed into
two blocks (Figure 4d). The partition doubles (ITA, P.~*A)

and (‘rr~, ~1r*B) where, ‘~A = ind(x3;x4;(x1,x2)) =

{O,4,8,12;1,5,9,13;2,6,lO,l4;3,7,ll,15 },

ITA = {O,4,8,12;1,2,3,5,6,7,9,lO,ll,13,14,15},

= ind(x2;(x1,x3,x4)) = {O,l,2,3,8,9,lO,ll;
4,5,6,7,12,13,14,15}, and

~fl~* = {O,5,6,7,8,13,14,15;1,2,3,4,9,lO,1l,12} re

alize the behaviour of block E.

TABLE II
Boolean function for example 2

x1 x2 x3 x4

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

I

0

2
3
4
5
6
7
8
9

10
11
12
13
14
15

f

0
0
0
0

0
0
0
0
0

0



280

(B)

F. VOLF, L. JO~WIAK AND M. STEVENS

(D)

FIGURE 4 Comparison of division-based and general full-decomposition based realisations for function f. (a) Division-based gate-network (b)
General-full decomposition based gate-network (c) Step 1 of the General-full decomposition based algorithm (d) Step 2 of the General-full
decomposition based algorithm

I

Since machine B uses output information from machine
A, but machine A does not use any output information
from machine B, theorem 6 is slightly simplified:

(1) ‘~A ~ ~*A ‘~B ‘~A ~ ~*B where ir~ ≥

(2) ~A ‘~B ~ ~fl~*A and ~A ‘~B ~ IT*

(3) IT* . IT* ≤ IT*

It should be noted that condition (3) is slightly modified.
Since we are building a subfunction for implementing
~1T*E the partitions 1T*A, ~Tr*B and i~’~ are all partitions on
I and the partition pair property is reduced to the ≤

property. It must be shown that the partition doubles
satisfy all these conditions. As a result of the fact that

each block of ‘rrA is included in a block of ~Tr*p~:
s ‘rr~. Since all output information of machine A is

used as input information for machine B, it can be
assumed that ‘rr~ = ir~ and condition (1) is then satisfied
whenever condition (2) is also satisfied. For condition (2)
we need to first calculate the product IFA

{O,8;1,9;2,1O;3,11; 4,12;5,13;6,14; 7,15). Using these
results, it is easy to see that condition (2) is then satisfied.
Finally, for condition (3) we need to calculate ~t.r*A .

~;;1,2,3,9,lO,1l; 5,6,7,13,14,15}. With this
product partition, it is obvious that condition (3) is
satisfied and hence the decomposition is correct. In Table
III, the function tables for the different logic blocks of the
implementation off2 of fare presented. It is interesting to
note that this approach uses different gates: OR, NAND,

(A) (C)



MULTIPLE LEVEL LOGIC SYNTHESIS 281

EXOR and the gate ab. All these gates are innately and
directly obtained from decomposition without the use of
~uon-trivial) technology mappings.

3.3 Special Cases of General Full-Decomposition

Today, none of the methods that have been published
have been able to produce near optimal solutions for a
multiple general full-decomposition. All the published
results relate to special cases of the presented model. In
this section, a number of special cases will be discussed.

3.3.1 Input-bit parallel full-decomposition

In parallel decomposition, no information flows between
the partial machines, and therefore the partitions it~.~) and
‘rb in theorem 5 are reduced to im(I). In input-bit
decomposition, the input decoder ~I’ is reduced to the
appropriate distribution of the input bit lines and this

~results in the replacement of the input partitions i~ and T1
by the bit-partitions ‘~m and TIB. In this way, the
following theorem was obtained from theorem 5.

Theorem 7 A combinational machine M has a non-trivial
input-bit parallel full-decomposition with two compo
nent machines (see Figure 5) if and if only two partition
doubles (‘~xB~ rr*1) and ~ 7*~) exist that satisfy the
conditions:

(1) ii~ ≤ IT’~’J and ‘r1 ≤ ‘r~ where ‘irs = indQrrju) and
= ind(’rIB).

(2) (~*~ . r*1,~0(O)) is an 1-0 partition pair.

A well-known and extensively studied special case of
the input-bit parallel full-decomposition is the input-
encoder problem. In this case, the output decoder 0 is
implemented as a PLA and the input encoders M~ have
multiple exclusive sets of input bits. The problem is often
modelled using multiple-valued logic [43][44][46j. The
concept of multipre-valued logic is in fact very similar to
that of partition theory. The general function of two-bit
encoders is to replace the inputs a, a, b and b of the PLA
with the signals a ÷ b, a + b, a + b and ~ + b. It can
be proved that the size of the new PLA (without the size

X3X4 A Ax, B(E)

00 0 00 0 00 1 00 0
01 1 01 1 01 1 01 1
10 1 10 1 10 I 10 0
11 1 11 0 11 0 11 0

D (f2)

of the two-bit encoders which generate these signals
from a and b) cannot be larger than the size of the
original PLA. However, the total size (the size of the new
PLA and the encoders) can be larger. Fortunately in
many practical cases, considerable gain in the total area
can be obtained. The major problem with this method is
the choice of pairs of inputs. In [431[46] a heuristic
algorithm is presented which tries to find sub-optimal
pairs of inputs. The drawback of this method is that it
ignores interactions between pairs of inputs.

A similar, but more sophisticated and general way to
solve the input-encoder problem was presented by
Ciesielski et al. [15][521. He implements the input
encoders using PLAs. The encoders can have any num
ber of input signals and some of the input bits may be
directly fed to the output decoder. Characterisation:

o In the first step, a set of inputs is partitioned into a
number of disjoint subsets. Two heuristic ap
proaches are presented for these: the first is based on
integer programming whereas the second is based
on a modified mm-cut algorithm.
Benchmark results from a large and varied set of
machines show that the integer programming ap
proach is better, but the graph-partitioning approach
is faster.

o A classical multiple-valued minimization is then
used to find the best implementation of the PLA 0.

• The results that have been presented (in the form of
benchmarks) are very promising, the only drawback
of this approach is that the input sets may not
intersect.

Another special case of the input-bit parallel decom
position was considered by W. Wan et al. [51]. Given a
certain incompletely specified multiple output function
f(x1,. . . ,x,~), the method presented in [51] searches for
two disjoint subsets A and B of all inputs of f (i.e.
A,BC{x1 x~}), a multiple output function F and k
single output functions g1,. . .,g~ in order that the function
F (g1(A),g2(A) g~(A), B) realizes the “care” behav
iour of f. This approach differs from the input encoder
problem presented earlier in this section because the
input sets used for the encoder blocks g~ are not required
to be mutually disjoint. The decomposition is targeted
towards Xilinx FPGAs. The input set A is limited to 4
elements hence the functions g~ have no more than 4
inputs. Because g~ can implement any function of 4
variables with the same cost, the goal of the decompo
sition is to implement as much functionality as possible
into the function g~ and make the function F as simple as
possible. If the number of inputs of F is too large, the
decomposition algorithm can be iteratively applied to F.
Unfortunately, it has been impossible to characterise and
evaluate this method more precisely, because further

TABLE III
Functions tables for the blocks inFigure 4b

x1x4 C BC



282 F. VOLF, L. JO~WIAK AND M. STEVENS

0

details of the method, other than the outline sketched in
[511, were not available to us. However, the benchmark
results presented in [51] show that the method performs
well compared to previous methods that have been
presented for synthesis on Xilinx logic blocks.

Luba et al. introduced yet another special case (see
Figure 6) [311, where one of the component machines
(M2) is replaced by an identity function, The first step of
this algorithm is to find the inputs TB2 which have to be
fed directly to output decoder 0. The search algorithm tries
to find the best set of inputs, so that the number of inputs
of output decoder 0 does not exceed a user specified
bound (for Xilinx cibs this bound is set to 4). The
algorithm then tries to find an implementation for machine
M1 using a minimum number of possible inputs (i.e.
TB2UIB3 contains a minimum number of elements). First
a disjoint decomposition is used (i.e lB3 has no elements).
If this fails, inputs from lB2 are added to TB3 until machine
M1 can be constructed. Unfortunately, no heuristics are
described and no results on large benchmark sets are
presented, therefore it is impossible to estimate the effi
ciency of this method for large circuits. However, the
results that are presented are very promising.

In recent years, a number of methods for the more
general input-bit parallel decomposition problem have
been presented. In [221[231[241, the set of input bits is
partitioned in two disjoint subsets. The goal of this
method is to minimize the number of bits needed for
conmiunication between M1 and M2 and output decoder
0. Although this method does not explicitly use the
partition theory it can be easily formulated with this
theory. The strength of this method is that it allows the
estimation of communication complexity without having

to construct the machines M1 and M2 and the output
decoder 0. Characterisation:

• Good heuristic solutions for the calculation of
communication complexity without the actual need
to construct the blocks. This algorithm can have a
linear complexity for circuits with low communica
tion complexities.

• Heuristic procedures for the partitioning of the input
sets exist.

• Benchmark results on large examples are relatively
good.

3.3.2 Bit-~arallel full-decomposition

In the bit-parallel full-decomposition, both the input
decoder and the output decoder are reduced to the
appropriate distribution~ of the input/output bit lines (see
Figure 7). The theorem for this type of decomposition
can be obtained from theorem 7 by replacing the output
partitions m-~ and ‘r0 with bit-partitions ‘~o~ and TOB.

Theorem 8 A combinational machine has a non-trivial
bit parallel full-decomposition with two component
machines (see Figure 7), if two partition doubles (‘rrj~,

~ and (TIB, T0B) exist that satisfy the conditions:

(1) O~,OB~b~O,(” TrO(obk)) are I-U partition pairs,
where it1 = ind(1rJB).

(2) ~,OB’~’b (T1, To(obk)) are I—U partition pairs,
where T1 = ind(’rIB).

(3) itOB ‘‘1~OB = itoB(O).

Solutions to this decomposition problem have been
presented independently in [271, [301 and [201. in [271
the problem is called the output decomposition problem.
An output decomposition consists of partitioning the set
of Boolean functions (outputs) into a number of disjoint
subsets, each implemented by a separate component

1B2=[ ib21,ib22 ib21]

FIGURE 5 Input-bit parallel full-decomposition of M into two
component machine M1 and M2.

FIGURE 6 Input-bit parallel de’ mposition as proposed by Luba
et al.



MULTIPLE LEVEL LOGIC SYNTHESIS 283

FIGURE 7 Bit-parallel full-decomposition.

machine. The output decomposition in ~27j aims at
partitioning a multiple-output function into a minimal
number of limited programmable logic building blocks
(such as PLAs, PALs, etc.) and in minimizing the number
of interconnections between the blocks. The problem is
modelled as a multi-dimensional constrained optimiza
don problem with constraints imposed on the number of
inputs, outputs and terms. It is solved by a special
multi-dimensional packing algorithm.

First, the information processing structure of the
original combinational machine and its relation to
the characteristics of building blocks are analyzed.
From information about the correlations between
the input, term and output variables as well as
information about the constraints, the expected
minimum number of building blocks and the ex
pected number of input bits, output bits and terms
per building block are computed. The expected
values show how difficult it is to satisfy each of the
constraints with a given number of blocks and
indicate the amount of attention that must be paid to
each of the constraints during the partitioning pro
cess. The active input bits and terms for each
single-output function are also computed. Based on
this information, affinities (from the viewpoint of a
certain partitioning problem) between each two
(single or multiple-output) functions can be com
puted.

• With the above information, a limited number of
near optimal solutions are constructed in parallel by
performing a multi-dimensional packing while us
ing a beam-search algorithm. Since the decision
making during the search is based on uncertain
information, the search is guided by the heuristic
elaborations of the rule of minimizing the uncer
tainty of choices. At each step, the decisions are
taken which ensure the highest certainty of achiev
ing the optimal solutions and, under this condition,

the decisions that minimize the uncertainty of infor
mation for the future choices. Information that is
used directly for decision making consists of rela
tions between the characteristics of single-output
functions and constraints imposed by (partially
constructed) building blocks and, correlations be
tween the single-output functions and functions in
(partially constructed) blocks.
Published experimental results show that the
method is very effective; in almost all cases it was
able to find the global optimum in reasonable time
even for very complex functions (e.g. a function
with 131 inputs, 253 terms and 91 outputs (cpio) or
a function with 45 inputs, 428 terms and 43 outputs
(apexi)). The search algorithm has a number of
parameters which enable a trade-off between the
quality of solutions and the required computation
time.

A similar method was published few months later in
[201. It uses less information about the original multiple-
output function than the method presented in [27] and
elaborates information less precisely. An interesting con
cept not present in the method published in [27] is that of
relaxing the term constraints and dynamically processing
the terms.

Another approach to bit parallel full-decomposition is
presented in [30]. In this paper the problem is referred to
as parallel decomposition. Characterisation:

• The actual parallel decomposition is preceded by
argument reduction. Argument reduction is a tech
nique which minimizes the number of inputs of a
Boolean function, as opposed to the classical mini
misation which aims at finding a minimum number
of product terms. It is used to find function repre
sentations which use minimum number of input
variables. This process is similar to term reduction
which finds the minimum number of product terms.

• A parallel decomposition algorithm uses the results
of the argument reduction and constructs two-block
parallel decompositions. Unfortunately in [30], only
the idea of parallel decomposition is presented with
no algorithms and heuristics. Only few results of
experiments are shown however, these are very
promising.

In a later paper [32], this decomposition method is
combined with the input-bit parallel decomposition
method mentioned in the previous section. This already
allows for the construction of complex networks of
blocks, but it is not yet a general full-decomposition in its
most complete form. In this paper, Luba stated that the
bit parallel full-decomposition should be used as a
preliminary step to the more general input-bit parallel
decomposition procedure. A heuristic is then presented

lB1 -[lb11 ib12 lblk~~j_OB~ -(ob11,ob12 ob~J

OB-[ob1.ob2 Obm]

lB2[ ib211b22 ib2~OB2=[ ob21,ob22



284 F. VOLF, L. JO~WIAK AND M. STEVENS

which shows how these two different decomposition
approaches should be alternated and which parameters
should be used to tune these algorithms. Some parts of
the method use exhaustive or greedy algorithms and the
selection of parallel or serial decomposition is empirical.
Results presented for quite small circuits show that this
algorithm works reasonably well for ACTEL cells and
very well for Xilinx cells. The question is, however,
whether the algorithm will work effectively and effi
ciently for complex circuits.

4. COMPARISON OF THE APPROACHES

In the previous two sections, we presented the concepts
of division-based and general decomposition-based mul
tiple-level logic synthesis and discussed a number of
synthesis algorithms that use these concepts. From this
discussion it should be clear that the division-based
approach is a very special case of the general decompo
sition approach, limited to decompositions with partial
machines and decoders exclusively implemented with
AND, OR and NOT or NAND or NOR gates. Therefore,
the methods which are based on division can easily be
transformed to equivalent decomposition methods. An
example is presented in [351 where division-based syn
thesis is used to preform a special input-bit parallel
decomposition. For special cases of logic implementa
tions in the form of exclusively AND-OR-NOT, NAND
or NOR networks, the solutions with division-based
synthesis may be appropriate, under the condition that
they take into account all the important objectives and
constraints and involve effective and efficient algorithms.

The general decomposition approach has a number of
advantages over the division-based approach. The main
advantage of general full-decomposition is its general
character. The general decomposition model and theorem
enable modelling and construction of all possible com
binational network structures, while the traditional logic
synthesis methods, including the division-based meth
ods, model circuits in terms of special minimum or
almost minimum functionally complete systems. Such a
functionally complete system is able to express each
function, but it models functions as networks composed
of exclusively special sub-functions which are included
in a certain functionally complete system (e.g. AND-OR
NOT, NAND, NOR, EXOR-AND, MUX), while the
general decomposition approach models them in terms of
all possible sub-functions. If a certain element library
includes more types of primitive gates than those in
cluded in a certain minimum functionally complete
system or includes look-up tables, technology mapping is
necessary. The network synthesized using exclusively
the gates from the minimal functionally complete system

must be mapped into the network composed of
elements from the library. If the repertoire of 8u13..
functions offered by a certain implementation technology
differs substantially from the set of gates provided by a
given minimal functionally complete system, the work
done by a traditional synthesis method is almost futile
Since the initial network is constructed without any
regard to future implementation, to guarantee a Possible
to implement or optimal solution, the technology map~
ping must again perform synthesis using the previously
synthesised network as only a functional specification
Using decomposition-based synthesis this problem does
not exist: the synthesis process constructs a network of
functional block’s, which are in one-to-one correspon
dence with physicai~.hardware blocks.

A further advantage of decomposition-based synthesis
is its total character. During the decomposition, attention
is paid not only to the activ’e elements (operators) but to
all the elements and aspects which can influence the
quality of the results (i.e. inputs, outputs, interconnects
and functionality) and to their interrelations. In the
division-based approach all these aspects, except for
active elements, are completely ignored. The only excep
tion is the lexicographical factorisation [45], which takes
the interconnections into account by accepting a pre
defined input ordering during synthesis. Of course, it is
possible to improve or further develop division-based
methods by taking into account all these elements and
their relations to the actual objectives and constraints, but
it will not enlarge their range of application to circuits
substantially different from AND-OR-NOT circuits.

Another important aspect is the use of don’t cares in
incompletely specified functions. In division-based syn
thesis, incompletely specified functions are first mini
mized using a two-level minimizer and then the actual
synthesis is performed. In this way all don’t cares are
removed and hence the design freedom is drastically
reduced. The synthesis problem is transformed to this of
finding an implementation of a completely specified
function (without considering influence of the don’t
cares on realisation of the actual design). These don’t
cares are lost for ever. Also, the multiple-level structure
itself can introduce don’t cares [5][l1]. It has been shown
that very complex and time-consuming techniques are
necessary to effectively use don’t cares in division-based
synthesis [4]. The decomposition approach does not
require prior two-level minimisation and innately uses
the freedom given by don’t cares in order to optimize the
resulting network structure (see for example [311).

In Table IV, some synthesis results are presented that
compare the division based synthesis with the general
decomposition based synthesis. The results are taken
from [34]. The goal of the experiments was implemen
tation with the minimum number of primitive logic



MULTIPLE LEVEL LOGIC SYNTHESIS 285

being 5-inputs, 2-outputs look-up tables. Table IV
,ares the number of cibs needed to implement a
~r of benchmalk circuits from the MCNC logic

~kesis benchmark-Set [53]. In the second column
irked Luba) the results of the general full decompo
ion method described in [34] are presented. The
0a~ning columns present the results of different divi
~ based algorithms. These algorithms use (modified
WsfoDs of) one of the factorisation algorithms presented
4ection 2 to minimise the two-level representation,
flowed by a technology mapping phase. The goal of the
~~-gy mapping phase is to transform the AND-OR-
yr network obtained by division into a feasible net-

with a minimum number of clbs. A feasible
,~k is a network where blocks are only used if they

not violate the constraints imposed on them (in our
eases: the blocks can implement any Boolean function

uses no more than 5 different input bits and 2
~fferent output bits). In the third column (labelled
)1~S-PGA) the results are presented for the method
4~cribed in [38][39]. This method heavily depends on
the classical kerne]Jco-kernel minimisation and tries to
map the minimum network to a feasible structure. In
column 4, the results for the same set of benchmarks are
presented for the ASYL system [48]. The ASYL system
implements, among others, the lexicographical factorisa

~ tion algorithm. In [48] a very simple but effective
~4j~J~q~ modification of the lexicographical factorisation algo
~ rithm is presented, and this is able to construct feasible
~ networks. The technology mapper Chortle [18] (column

5 of the table) presents a method for the technology

IT mapping of multiple AND-OR-NOT networks (obtained
using any division based synthesis algorithm) into a
network of cibs.

P As the table shows, the general decomposition ap
proach gives results, which are in all cases better than the
division based approaches. These dramatic improve
ments are obtained because of two major reasons:

TABLE IV
Experimental results for 5-input, 2-output lookup tables

MIS-PGA ASYL Chortle
[38] [481 [19]

AND-OR-NOT based functions. Therefore, the syn
thesis process automatically finds feasible networks
using the set of all available primitive logic blocks,
without the need of technology mapping.

o The general decomposition approach can handle
incomplete specified functions, whereas the division
based synthesis uses two-level minimised functions
(where the design freedom is removed a priori).

5. CONCLUSIONS

In this paper, we have discussed and compared multiple-
level logic synth,~sis methods based on division of
Boolean expressions, and logic synthesis methods based
on the theory of gen~l~al full-decompositions. It is clear
that the synthesis based on division can be considered as
a special case of a general decomposition-based synthe
sis. To date, more research work has been done in the
field of division-based synthesis, but preliminary results
obtained from the general decomposition-based methods
show their large potential and have revealed a number of
very promising properties. In section 2, we also showed
that the known division-based algorithms have a number
of weaknesses which can be improved without leaving
the division paradigm. In section 4, we showed that
division-based synthesis has a number of fundamental
weaknesses which require a more general solution, i.e. a
general full-decomposition. Recently, substantial
progress has been made in developing algorithms for
many special cases of the general decomposition. How
ever, a lot of work has still to be performed in order to
.efficiently exploit the opportunities created by modem
microelectronic technology.

[1] P. Abouzeid, K. Sakouti, G. Saucier, F. Poirot: Multilevel
synthesis minimizing the routing factor, 27th ACMJIEEE Design
Automation Conference, June 1990, PP. 365—368.

[2] P. Abouzeid, G. Saucier, F. Poirot: Lexicographical Factorisation
Minimizing the Critical Path and the Routing Factor for Multi
level Logic, in: Logic and Architecture Synthesis, Proceedings
of the IFIP TC1OIWG 10.5 Workshop, P. Michel and G. Saucier
(editors), Elsevier Science Publishers, Amsterdam, 1991, pp.
2 19—228.

[3] P. Abouzeid, L. Bouchet, K. Sakouti, G. Saucier, P. Sicard:
Lexicographical Expression of Boolean Function for Multilevel
Synthesis of High Speed Circuits, in: VLSI Logic Synthesis and
Design, R.W. Dutton (red.), lOS, Amsterdam, 1991, pp. 31—39.

• In the general
with partitions
certain number

decomposition approach, we deal
representing any function with a
of inputs and outputs and not with

I

ACKNOWLEDGEMENTS

We would like to thank Wil Brant and Ad Chamboné for preparing the
figures.

Xilinx is a registered trademark of Xilinx, Inc.

References

Benchmark Luba
Name [35]

rd84 5 10 17 35
rd73 4 6 30 16

misexi 7 11 13 11
z4 3 5 4 3

Sxpl 8 18 24 24
9sym 4 7 8 51



286 F. VOLF, L. JOZWIAK AND M. STEVENS

[4] K.A. Bartlett, R.K. Brayton, G.D. Hachtel, R.M. Jacoby, CR.
Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang:
Multilevel Logic Minimization Using Implicit Don’t Cares,
IEEE transactions on computer-aided design, vol. 7, no. 6, June
1988, pp. 723—740.

[5] G. Bode: An Investigation of the Laws of Thought, Dover
Publications, New York, 1854.

[6] KS. Brace, R.L. Rudell, R.E. Bryant: Efficient Implementation
of a BDD Package, proceedings 27th ACM/IEEE Design Auto
mation Conference, 1990, pp. 40—45.

[7] R.K. Brayton, C. McMullen: The decomposition and factorisa
tion of Boolean expressions, proceedings international sympo
sium on circuits and systems, 1982, pp. 49—54.

[8] R.K. Brayton, J.D. Cohen, G.D. Hachtel, B.M. Trager, D.Y.Y.
Yun: Fast recursive boolean function manipulation, proceedings
international symposium on circuits and systems, 1982, pp.
58—62.

[9] R.K Brayton, G.D. Hachtel, C.T. McMullen, A.L. Sangiovanni
Vincentelli: Logic Minimization Algorithms for VLSI Synthesis,
Kiuwer Academic Publishers, Dordrecht, 1984.

[10] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli: MIS: A
Multiple-Level Logic Optimization System, IEEE Transactions
on computer-aided design, vol. 6, no. 6, november 1987, pp.
1062—1081.

[11] R.K. Brayton, F. Somenzi: Boolean Relations and the Incom
plete Specification of Logic Networks, in: VLSI 89, G. Musgave
and U. Lauther (editors), Elsevier Science Publishers, North-
Holland, 1990, pp. 23 1—240.

[12] R.K. Brayton, G.D. Hachtel, A.L. Sangiovanni-Vincentelli:
Multilevel Logic Synthesis, Proceedings of the IEEE, vol. 78,
no. 2, February 1990, pp. 264—300.

[13] R.E. Bryant: Graph-based Algorithms for Boolean Function
Manipulation, IEEE Transactions on computers, vol. C-35, no.
8, August 1986, pp. 677—691.

[14] R.E. Bryant: Symbolic Boolean Manipulations with Ordered
Binary Decision Diagrams, Carnegie Mellon University, School
of Computer Science, CMU report: CMU-CS-92-160.

[15] M.J. Ciesielski, S. Yang: PLADE: A Two-Stage PLA decompo
sition, IEEE transactions on computer-aided design, vol. Ii, no.
8, August 1992, pp. 943—954.

[16] M. Damiani, G. De Micheli: Observability Don’t Care Sets and
Boolean Relations, IEEE International Conference on Com
puter-aided Design, November 1990, pp. 502—505.

[17] B.J. Falkowski, I. Schafer, M.A. Perkowski: Effective Computer
Methods for the Calculation of Rademacher-Walsh Spectrum for
Completely and Incompletely Specified Boolean Functions,
IEEE transactions on computer-aided design, vol. 11, no. 10,
October 1992, 1207—1226.

[18] R. Francis, J. Rose, Z. Vranesic: Chortle-crf: Fast Technology
Mapping for Lookup Table-Based FPGAs, 28th ACM/IEEE
Design Automation Conference, 1991, pp. 227—233.

[19] J. Hartmanis, R.E. Stearns: Algebraic Structure Theory of
Sequential Machines, Prentice-Hall, Englewood Cliffs, N.J.,
1966.

[20] Z. Hasan, D. Harrison, M. Ciesielski: A Fast Partitioning
Method for PLA-Based FPGAs, IEEE Design & Test of Com
puters, September 1992, pp. 34—39.

[21] E.V. Huntington: Sets of Independent Postulates for the Algebra
of Logic, Transactions of the American Mathematical Society,
vol. 5, 1904, pp. 288—309.

[22] T. Hwang, R.M. Owens, M.J. Irwin: Multi-level logic synthesis
using communication complexity, 26th ACM/IEEE Design Au
tomation Conference, 1989, pp. 215—220.

[23] T. Hwang, R.M. Owens, M.J. Irwin: Exploiting Communication
Complexity for Multilevel Logic Synthesis, IEEE transactions

on computer-aided design, vol. 9, no. 10, October 199~
1017—1027. ‘

[24] T. Hwang, R.M. Owens, M.J. Irwin: Efficiently Computin
Communication Complexity for Multilevel Logic Synthesi~
IEEE transactions on computer-aided design, vol. 11, no.
October 1992, pp. 545—554.

[25] L. Jd~wiak: The Bit Full-Decomposition of Sequential Ma
chines, EUT Report 89-E-223, Eindhoven University of Tech..
nology, The Netherlands, 1989.

[26] L. Jó~wiak, J.C. Kolsteren: An Efficient Method For the Seque~
tial General Decomposition of Sequential Machines, Micropro
cessing and Microprogramming, North-Holland, vol. 32, 1991

pp. 657—664.
[27] L. Jd~wiak, F. VoIf: An Efficient Method for Decomposition of

Multiple Output Boolean Functions and Assigned Sequentia’
Machines, EDAC—The European Conference on Design Auto
mation, March 1992, pp. 114—122.

[28] L. Jdfwiak : An Efficient Method for State Assignment of Large
Sequential Machines, Journal of Circuits, Systems, and Com
puters, vol. 2, no. 1, 1992, pp. 1—26.

[29] L. JO~wiak: General Decomposition and Its Use in Digital
Circuit Synthesis, acceptedfor publication in the special issue of
VLSI Design Journal on Decompositions in VLSI Design.

[30] T. Luba, J. Kalinowski, K. Jasiiiski: PLATO—a CAD tool for
logic synthesis based on decomposition, EDAC—The European
Conference on Design Automation, 1991, pp. 61—69.

[31] T. Luba, J. Kalinowski, K. Jasitiski, A. Kraniewski: Combining
serial decomposition with topological partitioning for effective
multi-level PLA implementations, proceedings IFIP working con
ference on logic and architectures synthesis, June 1990, in P.
Michel, G. Saucier (ed.): Logic and Architecture Synthesis, Elsevier
Science Publishers B.V. (North-Holland), 1991, pp. 243—252.

[32] T. Luba, M. Markowski, B. Zbierzchowski: Logic Decomposi
tion for Programmable Gate Arrays, proceeding EURO
ASIC’92, 1992, pp. 19—24.

[33] T. Luba, H. Selvaraj, A. Kraniewski: A new approach to
FPGA-based logic synthesis, Workshop on Design Methodolo
gies for Microelectronics and Signal Processing, October 1993,

pp. 20—23.
[34] T. Luba, H. Selvaraj: A general approach tq boolean function

decomposition and its application in FPGA-based synthesis,
accepted for publication in the special issue of VLSI Design
Journal on Decompositions in VLSI Design.

[35] A.A. Malik, D. Harrison, R.K. Brayton: Three-level De
composition with Application to PLDs, IEEE international
conference on computer design, 1991, pp. 628—633.

[36] 5. Malik, L. Lavagno, R.K. Brayton, A. Sangiovanni- Vincen
telli: Symbolic Minimization of Multilevel Logic and the Input
Encoding Problem, IEEE transactions on computer-aided de
sign, vol. 11, no. 7, July 1992, pp. 825—843.

[37] Y. Matsunaga, M. Fujita: Multi-level Optimization Using Binary
Decision Diagrams, IEEE international conference on computer-
aided design, November 1989, pp. 556—559.

[38] R. Murgai, Y. Nishizaki, N. Shenoy, R.K. Brayton, A. Sangio
vanni-Vincentelli: Logic Synthesis for Programjii~ble Gate Ar
rays, 27th ACMJIEEE, Design Automation Conference, 1990,

pp. 620—625.
[39] R. Murgai, N. Shenoy, R.K. Brayton, A. Sangiovanni-Vincen

telli: Performance Directed Synthesis for Table Look Up Pro
grammable Gate Arrays, IEEE International Conference on
Computer-Aided Design, 1991, pp. 572—575.

[40] 5. Muroga, Y. Kambayashi, H.C. Lai, J.N. Culliney: The
Transduction Method—Design of Logic Networks Based on
Permissible Functions, IEEE transactions on computers, vol. 38,
no. 10, October 1989, pp. 1404—1424.

)

1



MULTIPLE LEVEL LOGIC SYNTHESIS 287

j. Rajski, J. Vasudevamurthy: Testability Preserving Transfor
rnation~ in Multi-level Logic Synthesis, proceedings interna
tional test conference, 1990, pp. 265—273.
J. Rajski, i. Vasudevamurthy: The Testability-Preserving Con
current Decomposition and Factorization of Boolean Expres
sjon5, IEEE transactions on computer-aided design, vol. 11, no.
6, june 1992, pp. 778—793.

f43] EL. Rudell: Multiple-valued logic minimization for PLA syn
thesis, Ph.D. thesis University of California, Berkeley, memo
randum no. UCBIERL M86/65, 1986.

144] EL. Rudell, A. Sangiovanni-Vincentelli: Multiple-Valued Mini
~ mization for PLA Optimization, IEEE Transactions on com

puter-aided design, vol. 6, no. 5, September 1987, pp. 727—750.

1451 G. Saucier, J. Fron, P. Abouzeid: Lexicographical Expressions of
Boolean Functions with Application to Multilevel Synthesis,
IEEE Transactions on computer aided design of circuits and
systems, vol. 12, no. 11, November 1993, pp. 1642—1654.

f46] T. Sasao: Input Variable Assignment and Output Phase Optimi
zation of PLA’s, IEEE transactions on computers, vol. c-33, no.
10, October 1984, pp. 879—894.

1471 C.E. Shannon: A Symbolic Analysis of Relay and Switching
Circuits, Transactions of the American Institute of Electrical
Engineering, vol. 57, 1938, pp. 713—723.

f48] P. Sicard, M. Crastes, K. Sakouti, G. Saucier: Automatic
synthesis of boolean functions on Xilinx and Actel Program
mable devices, proceedings EURO ASIC’91, May 1991, pp.
142—145.

149] 5. Trimberger: Guest Editor’s Introduction: Field-Programmable
Gate Arrays, IEEE design & test of computers, special issue on
FPGA’s, September 1992, pp. 3—5.

150] J. Vasudevamurthy, J. Rajski: A method for Concurrent Decom
position and Factorization of Boolean Expressions, proceedings
international test conference, 1990, pp. 510—513.

[51] W. Wan, M.A. Perkowski: A New Approach to the De
composition of Incompletely Specified Multi-Output Functions
Based on Graph Coloring and Local Transformations and Its
Application to FPGA Mapping, EURO-DAC’92—European
Design Automation Conference, Hamburg, September, 1992, pp.
230—237.

[52] 5. Yang, M.J. Ciesielski: PLA Decomposition with Generalized
Decoders, IEEE international conference on computer-aided
design, 1989, pp. 312—315.

[531 5. Yang: Logic Synthesis and Optimization Benchmarks User
Guide, Version 3.0, Microelectronics Center of North Carolina,
P.O. Box 12889, Research Triangle Park, NC 27709. This
document and the benchmarks can be obtained by anonymous
ftp from mcnc.org:/publbenchmark.

[54] The Programmable Logic Data Book, Xilinx Inc., 1993.

Biographies

FRANK VOLE received his M. Sc. degree in information technology,
from the Faculty of Electrical Engineering, Eindhoven University of
Technology, the Netherlands, in 1991. He is currently working towards
his Ph. D. in the Section of Digital Information Systems at the same
university. His Ph. D. work involves research in the field of multiple
level logic synthesis.’~I4is primary research interests include all aspects
of the automatic synthesis and verification of digital circuits, compiler
techniques and the design of operating systems. He is a co-author of
several scientific papers.

LECH JOZWIAK received his M. Sc. and Ph. D. degrees in
Electronics from the Warsaw University of Technology, Poland, in
1976 and 1982, respectively. From 1976 to 1979, he worked at the
Faculty of Electronics of this University. From 1979 to 1986, he was a
chief of the project team in the Research Institute of Computers in
Warsaw. From 1986 till now, he is an associate professor in the
Department of Digital Information Systems, Eindhoven University of
Technology, the Netherlands. His research interests include design
theory, circuit and system theory, design theory and artificial intelli
gence in design and correctness verification. He is an author of
numerous research reports and papers.

MARIO P.J. STEVENS received his M. Sc. degree in telecommuni
cation from the Faculty of Electhcal Engineering, Eindhoven Univer
sity of Technology, the Netherlands, in 1971. From 1971 to 1986, he
worked as a researcher and lecturer at this Faculty. From 1986 he is a
professor at the same Faculty and chairman of the Section of Digital
Information Systems. His scientific interests include computer archi
tecture, design methodologies for digital systems, data communication
and system software. He is an author of a number of papers and books
and advisor in microelectronics and information technology at the
Dutch Ministry of Economic Affairs.I


