243 research outputs found

    Seismic anisotropy of Precambrian lithosphere : Insights from Rayleigh wave tomography of the eastern Superior Craton

    Get PDF
    The seismic data used in this study are freely available from the CNDC (Canadian National Data Centre for Earthquake Seismology and Nuclear Explosion Monitoring) and IRIS DMC (Data Management Center) via their data request tools. The Leverhulme Trust (grant RPG-2013-332) and National Science Foundation are acknowledged for financial support. L.P. is supported by Janet Watson Imperial College Department Scholarship and the Romanian Government Research Grant NUCLEU. F.D. is supported by NSERC through the Discovery Grants and Canada Research Chairs program. We also thank two anonymous reviewers and the Associate Editor for insightful comments that helped improve the manuscript.Peer reviewedPublisher PD

    Quark-antiquark pair production in space-time dependent fields

    Full text link
    Fermion-antifermion pair-production in the presence of classical fields is described based on the retarded and advanced fermion propagators. They are obtained by solving the equation of motion for the Dirac Green's functions with the respective boundary conditions to all orders in the field. Subsequently, various approximation schemes fit for different field configurations are explained. This includes longitudinally boost-invariant forms. Those occur frequently in the description of ultrarelativistic heavy-ion collisions in the semiclassical limit. As a next step, the gauge invariance of the expression for the expectation value of the number of produced fermion-antifermion pairs as a functional of said propagators is investigated in detail. Finally, the calculations are carried out for a longitudinally boost-invariant model-field, taking care of the last issue, especially.Comment: 32 pages, 8 figures, revised versio

    Hertz-to-infrared electrodynamics of single-crystalline barium-lead hexaferrite Ba1-xPbxFe12O19

    Get PDF
    Broadband electrodynamic response of single-crystalline lead-substituted barium hexaferrite Ba1-xPbxFe12O19 is studied at temperatures from 5 to 300 K in the range from 1 Hz to 240 THz that includes radio, sub-terahertz, terahertz and infrared frequencies and altogether spans over 14 frequency decades. Discovered phenomena include relaxational radio-frequency dynamics of domains and domain walls, temperature-unstable terahertz excitations connected with electric dipoles induced by off-center displacements in the ab-plane of the lead ions, narrow terahertz excitations associated with electronic transitions between the fine-structure components of the Fe2+ground state, dielectric gigahertz resonances presumably of magneto-electric origin and polar lattice vibrations

    Mid-mantle deformation inferred from seismic anisotropy

    Get PDF
    With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties—in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D" region. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga–Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region

    Self-control is associated with health-relevant disparities in buccal DNA-methylation measures of biological aging in older adults

    Get PDF
    Self-control is a personality dimension that is associated with better physical health and a longer lifespan. Here, we examined (1) whether self-control is associated with buccal and saliva DNA-methylation (DNAm) measures of biological aging quantified in children, adolescents, and adults, and (2) whether biological aging measured in buccal DNAm is associated with self-reported health. Following preregistered analyses, we computed two DNAm measures of advanced biological age (principal-component PhenoAge and GrimAge Acceleration) and a DNAm measure of pace of aging (DunedinPACE) in buccal samples from the German Socioeconomic Panel Study (SOEP-G[ene], n = 1058, age range 0–72, Mage = 42.65) and saliva samples from the Texas Twin Project (TTP, n = 1327, age range 8–20, Mage = 13.50). We found that lower self-control was associated with advanced biological age in older adults (PhenoAge Acceleration β = − .34, [− .51, − .17], p < .001; GrimAge Acceleration β = − .34, [− .49, − .19], p < .001), but not young adults, adolescents or children. These associations remained statistically robust even after correcting for possible confounders such as socioeconomic contexts, BMI, or genetic correlates of low self-control. Moreover, a faster pace of aging and advanced biological age measured in buccal DNAm were associated with self-reported disease (PhenoAge Acceleration: β = .13 [.06, .19], p < .001; GrimAge Acceleration: β = .19 [.12, .26], p < .001; DunedinPACE: β = .09 [.02, .17], p = .01). However, effect sizes were weaker than observations in blood, suggesting that customization of DNAm aging measures to buccal and saliva tissues may be necessary. Our findings are consistent with the hypothesis that self-control is associated with health via pathways that accelerate biological aging in older adults

    Collective Deceleration of Ultrarelativistic Nuclei and Creation of Quark-Gluon Plasma

    Get PDF
    We propose a unified space-time picture of baryon stopping and quark-gluon plasma creation in ultrarelativistic heavy-ion collisions. It is assumed that the highly Lorentz contracted nuclei are decelerated by the coherent color field which is formed between them after they pass through each other. This process continues until the field is neutralized by the Schwinger mechanism. Conservation of energy and momentum allow us to calculate the energy losses of the nuclear slabs and the initial energy density of the quark-gluon plasma.Comment: 11 pages in revtex, 2 eps figure

    A kinetic approach to eta' production from a CP-odd phase

    Full text link
    The production of (eta,eta')- mesons during the decay of a CP-odd phase is studied within an evolution operator approach. We derive a quantum kinetic equation starting from the Witten-DiVecchia-Veneziano Lagrangian for pseudoscalar mesons containing a U_A(1) symmetry breaking term. The non-linear vacuum mean field for the flavour singlet pseudoscalar meson is treated as a classical, self-interacting background field with fluctuations assumed to be small. The numerical solution provides the time evolution of momentum distribution function of produced eta'- mesons after a quench at the deconfinement phase transition. We show that the time evolution of the momentum distribution of the produced mesons depend strongly on the shape of the effective potential at the end of the quench, exhibiting either parametric or tachyonic resonances. Quantum statistical effects are essential and lead to a pronounced Bose enhancement of the low momentum states.Comment: 10 pages, latex, epsfig, 6 figure
    corecore