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The growth of sufficiently large single crystals of Cu(tn)Cl2 (tn=1,3-diaminopropane) enabled specific heat
and susceptibility studies in various field orientations. The nearly invisible broad hump in zero-field specific heat
at 0.6 K coincides with the change in the characteristic parameters of zero-field muon relaxation spectra. The
lack of oscillations in the time spectra and their exponential character preserved down to 40 mK suggest the
coexistence of static and fluctuating local fields associated with the prevalence of low-dimensional correlations.
The extreme two-dimensionality is also manifested by the nonmonotonous character of the magnetic phase
diagram. First-principle calculations of exchange couplings introduced a concept of a quasi-two-dimensional
magnetic lattice with many couplings within the magnetic layers. The strongest ones lead to the model of a
rectangular lattice with the intrachain coupling J/kB = 4.3 K and the interchain coupling J ′/J = 0.46, which
provides excellent agreement with the zero-field specific heat. However, the susceptibility data suggest the
importance of other weaker interactions in accord with first-principle studies. Significant broadening of field-
induced specific heat anomalies may be ascribed to potential intrinsic partial magnetic disorder associated with
the gradual modulation of tn positions in the crystal structure.

DOI: 10.1103/PhysRevB.108.214432

I. INTRODUCTION

The model of the spin-1/2 Heisenberg antiferromagnet
(HAF) on the square lattice with the nearest-neighbors (NN)
coupling J became a paradigmatic model of low-dimensional
magnetism [1]. Introducing spatial anisotropy and/or addi-
tional couplings leads to a variety of quantum states. The
so-called J-J′ model or spatially anisotropic triangular lat-
tice which can be derived from the square lattice by adding
one diagonal coupling J′, has been studied for many years
[2–9]. The model interpolates between the chain (J = 0),
triangular lattice (J = J ′), and the square lattice (J ′ = 0).
Most of the theoretical studies of the model have been fo-
cused on the quasi-one-dimensional region (J ′/J > 1) due
to the possibility of rich experimental response. The iconic
Cs2CuCl4 compound with J′/J≈3 has become a famous can-
didate for the realization of the spin liquid state [10–12].
Theoretical studies of the magnetic phase diagram of the J-J′
model in the one-dimensional limit revealed the stabilization
of collinear antiferromagnetic order succeeded by spin den-
sity wave (SDW) and cone phases in higher magnetic fields
[6]. Some deviations from the proposed theoretical diagram

*alzbeta.orendacova@upjs.sk

observed in Cs2CuCl4 were ascribed to the effect of spin
anisotropy and additional couplings [7]. Recently, an incom-
mensurate SDW phase and its locking into an up-up-down
magnetization plateau state was observed in Cs2CoBr4, the
S′ = 1/2 spatially anisotropic triangular antiferromagnet [13].

Ground-state studies of the J-J′ model in the two-
dimensional region (J ′/J < 1) found for J ′/J < 0.7 stabiliza-
tion of the collinear Néel order [2,3,14]. In this Néel phase the
increase of the frustrated J′ coupling leads to the gradual re-
duction of the order parameter down to zero value. As a result,
for J′/J between 0.7 and 0.9, no magnetic order is expected
[2,15]. First-principle studies of magnetic interactions in bis-
ethylendithio-tetrathiafulvalene and Pd(dmit)2 salts [16,17]
revealed that the ground states of these triangular magnets
can be determined by additional effects (ring exchange, elastic
coupling, second neighbor interaction) which become cru-
cial if the J′/J ratio belongs to the interval 0.7–0.9. On the
other hand, experimental studies [18,19] of Ba8CoNb6O24

and Ba3CoSb2O9 showed that the systems are close to the
realization of a triangular magnet with J ′/J = 1.

Theoretical studies of the generalized spatially anisotropic
triangular lattice characterized by three different nearest-
neighbor couplings J-J′-J′′ revealed that the additional spatial
anisotropy keeps the main features of the ground-state phase
diagram of the J-J′ model [20]. Besides that, the studies
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suggest that the separation of collinear and spiral order by a
nonmagnetic phase seems to be a universal feature of frus-
trated two-dimensional systems with continuous symmetry
[20]. Another modification of the J-J′ model was theoretically
investigated [21] by involving next-nearest-neighbor (NNN)
coupling J2. The increase of the NNN coupling stabilizes Néel
order while it reduces spiral order leaving room for spin liquid
phases separating the Néel and spiral order. In the special
case J ′/J = 1, the involving NNN J2 coupling leads to the
appearance of gapless Dirac spin liquid [22]. However, as
was shown in Ref. [23], the effect of inherent disorder in
the triangular magnets can lead to the observation of spin
liquid behavior. Recent experimental studies of the triangu-
lar Heisenberg magnet on the single-crystal Cu2(OH)3NO3

revealed the coexistence of short-range resonating valence
bond correlations and long-range order as a result of many
competing exchange interactions on the spatially anisotropic
triangular lattice [24]. This study showed that structurally
disorder-free magnetic materials with spatially anisotropic ex-
change interactions represent a possible arena for realization
of spin liquid states.

Previous studies [25] of powdered Cu(tn)Cl2 (tn =
C3H10N2 = 1,3-diaminopropane) identified the compound as
a candidate for the spin-1/2 HAF J-J′ model with J ′/J < 0.6.
The effective intralayer coupling has been estimated Jeff/kB ∼
3 K. The extreme weakness of interlayer interactions has
been manifested by the absence of the specific heat λ-like
anomaly associated with the phase transition to magnetic
long-range order (LRO) down to 60 mK. The predomi-
nance of two-dimensional magnetic correlations at lowest
temperatures become apparent in the quadratic dependence
of low-temperature specific heat as well as in the reentrant
character of magnetic phase diagram carrying features of
Berezinskii-Kosterlitz-Thouless phase transition [25–27].

Recent thermodynamic and structural studies of Cu(tn)Cl2

revealed a structural phase transition at about 160 K asso-
ciated with the removing of the carbon disorder in tn rings
present in the high-temperature phase with Pnma symmetry.
The low-temperature structure is characterized by modula-
tion of tn rings with the symmetry of the Pnma(0β0)s00
superspace group [28]. The growth of sufficiently large single
crystals together with first-principle studies of a magnetic
subsystem triggered further investigation of this unusual ma-
terial. Present work involves single-crystal study of specific
heat and susceptibility. The thermodynamic data are analyzed
within magnetic models based on the results of first-principle
calculations. The studies are completed by the spectra of
muon spin relaxation. By combining these techniques, we
can investigate the effects of many competing interactions in
this triangular quantum magnet that manifest in significant
suppression of interlayer correlations and preserve features of
the two-dimensional behavior, even in the magnetically static
low-temperature phase.

This paper is organized as follows. Experimental details
are described in Sec. II. First-principle studies of exchange in-
teractions and Monte Carlo simulations of finite-temperature
properties of two-dimensional lattices are presented in
Sec. III. Section IV is focused at the discussion of the strong
two-dimensionality in Cu(tn)Cl2 based on the analysis of
experimental results including specific heat, susceptibility,

FIG. 1. (a) Drawing of the Cu(tn)Cl2 molecule with two posi-
tions of tn ligand. Hydrogen atoms are omitted for clarity. (b) View
of the ladderlike structure of Cu(tn)Cl2 running along the crystallo-
graphic b axis. Hydrogen and carbon atoms are omitted for clarity.

and muon spin relaxation. The summary of results and some
concluding remarks are presented in Sec. V.

II. EXPERIMENTAL DETAILS

The room-temperature structure is orthorhombic, space
group Pnma, a = 18.0056(5) Å, b = 5.7572(2) Å, and c =
6.9392(2) Å. Carbon atoms of tn rings are disordered over two
positions related by a mirror plane [28] [Fig. 1(a)]. Such disor-
der was also observed in a similar compound [29] Cu(en)Cl2

(en = C2H8N2=ethylenediamine) with monoclinic symmetry
P21/m. Both materials are built of the same basic units: cova-
lent zigzag Cu(II) ladders running along the b axis [Fig. 1(b)]
and packed to a three-dimensional (3D) structure via a system
of hydrogen bonds.

The structural phase transitions in both compounds did
not influence the structure of ladders but led to the remov-
ing of the tn/en disorder. In Cu(en)Cl2 the two different
en configurations are homogeneously distributed occupying
fixed positions in the separate legs of the ladders related to
each other by the gliding operation, reflected by P21/c sym-
metry [30]. The structural change in Cu(tn)Cl2 was not so
significant, which is also manifested by a much weaker and
rather broad specific heat anomaly spreading through a tem-
perature interval from 150 to 170 K [28]. Since the anomaly
is very broad, previous structural studies at 150 K were
able to catch only the features of the high-temperature phase
which was described within the orthorhombic Pna21 sym-
metry [26] with the unit cell parameters a = 17.9560(1) Å,
b = 6.8590(2) Å, and c = 5.7100(5) Å. In this work the par-
tial disorder in tn rings was characterized by two tn positions
with occupancy factors 0.63 and 0.37. As was shown by
recent studies [28], the transition in Cu(tn)Cl2 occurs when
the disordered high-temperature tn positions become modu-
lated with two conformations. The low-temperature structure
determined at 120 K is orthorhombic with unit cell parame-
ters a = 17.9290(7) Å, b = 5.7022(5) Å, and c = 6.881(2) Å,
but with a modulation vector q=0.1012b* resulting in the
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(3+1)-dimensional superspace group Pnma(0β0)s00 (see
Fig. S1 in the Supplement of Ref. [28]).

Following a method reported in Ref. [28], Cu(tn)Cl2 single
crystals were prepared in the form of blue-green flat plates
with typical dimensions a′ × b′ × c′ = 2.5 × 1.5 × 0.5 mm3.
Using x-ray study the longest crystal edge a′ was identified
with the crystallographic b axis, the b′ edge is parallel to the c
axis, and the shortest crystal edge c′ is parallel to the a axis.

Magnetic susceptibility measurements were performed in
a commercial Quantum Design superconducting quantum in-
terference device magnetometer equipped with a 3He insert.
Standard field-cooling (FC) and zero field-cooling (ZFC)
regimes were applied. Samples with a typical mass of 0.2 mg
were used for the bulk measurements. To increase the signal,
temperature scans of magnetic moment were performed in the
field B(≡ μ0H ) 0.5 T. The comparative data were recorded
in analogical experiments with powdered samples with typi-
cal mass 50 mg to avoid errors introduced by tiny samples.
Using standard Pascal constants, the susceptibility data were
corrected for the core diamagnetism.

Specific heat measurements were performed using a com-
mercial Quantum Design physical property measurement
system equipped with a 3He insert. The contribution of ad-
denda was measured in separate runs. To exclude potential
errors due to the low sample mass of single crystals, reference
zero-field specific heat measurements were recorded on pow-
dered samples pressed to pellets with mass 3 mg.

Muon spin relaxation (μSR) measurements were per-
formed using the MuSR instrument at the ISIS facility in a
dilution refrigerator at temperatures from 40 mK up to 4 K in
zero field and longitudinal magnetic fields up to 0.2 T. Pressed
polycrystalline pellets were contacted onto a Ag plate with
Apiezon N and covered in thin Ag foil, which was bolted to
the cold finger. The thickness of the pellets was about 1.5 mm
and the total weight of the sample was 3 g. The data were
analyzed using the WIMDA program [31].

III. SPATIAL ANISOTROPY OF EXCHANGE
COUPLINGS IN Cu(tn)Cl2

A. First-principle studies

Incorporation of the aforementioned modulated structure
into ab initio studies is not straightforward. Therefore, to catch
the main features of the magnetic subsystem, we considered
two distinct crystal structures (A and B) with Pna21 symmetry
assuming no structural disorder in tn positions. In the first
system denoted as A, all tn rings occupy one position of
a chairlike conformation, which in Ref. [26] has occupancy
factor 0.63. In structure B, all tn rings belong to the second
position with the occupancy factor 0.37.

The electronic structures of both modified systems were
obtained by density functional theory (DFT) calculations as
implemented in the plane-wave based QUANTUM ESPRESSO

(QE) suite [32,33], where the projector-augmented wave [34]
pseudopotentials with electron exchange and correlation ef-
fects were treated by parametrized Perdew-Burke-Ernzerhof
[35] approximation. The calculations were performed with a
(4 × 10 × 12) k mesh within the unit cell assuming a kinetic
energy cutoff of 240 Ry for charge density and a 60 Ry cutoff

FIG. 2. (a) Exchange couplings within the bc magnetic layer
determined for structure A. (Within the Pna21 symmetry the ladders
run along the c axis; see text). Hydrogen and carbon atoms are
omitted for clarity. (b) The interlayer coupling J6 couples the bc
layers. Hydrogen atoms and hydrogen bonds are omitted for clarity.
The color code is the same as in Fig. 1.

for wave functions. van der Waals corrections of Grimme’s
DFT-D3 type [36] were included. The calculated electronic
structures were used to evaluate the magnetic exchange inter-
actions by means of maximally localized Wannier functions
[37]. They were obtained by the WANNIER90 package [38,39]
and its module implemented in QE. We assumed the projec-
tions on the Cu (sp3 d2; dxy; dxz; dyz), Cl (sp3), and N (sp3)
orbitals. Due to computational demands, the Wannierization
was performed on a reduced (3 × 8 × 8) Monkhorst-Pack
k grid. Finally, the magnetic pair exchange interactions Ji j

were evaluated by the TB2J PYTHON package [40] based on
the Liechtenstein-Katsnelson-Antropov-Gubanov formalism
[41,42]. First-principle studies revealed a minimal impact
of spin-orbit coupling on the values of isotropic exchange
interactions [43]. Therefore we employed collinear calcula-
tions without spin-orbit coupling H = ∑

i �= j Ji jeie j providing
isotropic exchange interactions Ji j , where ei represents the
spin magnetization direction at the atomic site i. For the given
A and B geometries electronic structure calculations were per-
formed assuming ferromagnetically ordered Cu moments as
well as several antiferromagnetic (AF) configurations. Signif-
icant magnetic moments are localized only on the Cu atoms,
of 0.5 µB (Bohr magneton), and on Cl atoms, of 0.1 µB, regard-
less of the structure, the latter being always ferromagnetically
ordered with respect to the closest Cu atom. The calculations
revealed that the A geometry is about 80 meV more stable
than the B one irrespective of the magnetic structure.

Focusing on Cu atoms, we extracted dominant nearest-
neighbor Cu-Cu pair exchange interactions, neglecting those
smaller than 1 μeV. For clarity, the exchange interactions were
sorted by the radial distance and ascribed to nearest-neighbor
atomic shells containing exactly two elements by symmetry.
We considered 14 Cu NNs coupled to the central spin via
seven different exchange pathways with corresponding ex-
change couplings J1, …, J7. Twelve Cu atoms are within the
same bc layer and two neighbors (1+1) are in the adjacent bc
layers (Fig. 2).

For all tested ferromagnetic (FM) and AF configurations
over the A and B structures, the largest couplings within the
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TABLE I. Exchange couplings calculated for the A and B
structures with FM spin configuration and corresponding distances
between the central and NN spins. For clarity, the J/kB values are
rounded to two decimals.

Ji (meV) Ji
kB

(K)

Ji A B A B d (Cu0 − Cui )(Å)

J1 0.0782 0.0306 0.91 0.36 3.588
J2 0.0037 0.0017 0.04 0.02 5.710
J3 0.0118 ∼ 0 0.14 ∼ 0 5.744
J4 0.0392 0.0325 0.46 0.38 6.895
J5 0.0018 0.0026 0.02 0.03 8.952
J6 0.0244 0.0350 0.28 0.41 9.096
J7 0.0024 0.0035 0.03 0.04 9.372

bc plane are provided by J1 and J4 while the rather large J6

plays a role of interlayer interaction.
In the following text, the results related to a single unit

cell where FM magnetic ordering in DFT calculations was
applied, are discussed. Exchange interactions obtained for AF
configurations are reported in the Supplemental Material [43].

The exchange couplings calculated for individual A and
B structures are given in Table I. Here the central spin is
localized on the Cu(II) ion denoted as Cu0 while the NN spins
are localized on the copper atoms denoted as Cui (i = 1, …,7)
with corresponding Cu0 − Cui distances. All exchange in-
teractions are antiferromagnetic. As was already mentioned,
nearly all exchange couplings are realized within the bc layer
which can be treated as a magnetic layer [Fig. 2(a)]. There
is only one interaction, J6, which acts between the bc layers
[Fig. 2(b)].

To simplify the picture, first we will concentrate on the
strongest coupling J1 acting within the ladders forming the
zigzag chains. From the magnetic point of view, they can
be treated as linear antiferromagnetic Heisenberg chains with
intrachain coupling J1. The chains are coupled via the second
strongest coupling J4 forming a rectangular lattice. Assuming
the structure A, the third strongest intralayer coupling is J3

acting along one diagonal of the J1 − J4 plaquette, thus form-
ing a spatially anisotropic triangular lattice [Fig. 3(a)].

For completeness, much weaker coupling J7 acts along
the other diagonal of the aforementioned plaquette forming
spatially anisotropic square lattice with two different diagonal
couplings. When we return to the previous picture of the
chain, then the coupling J2 mediates the interaction between
next-nearest neighbors within the chains. Concerning the
weakest coupling J5, for clarity we can depict the distribution
of the corresponding pathways on the separate Fig. 3(b). This
interaction acts along one of the diagonals of the “superpla-
quette” created from two J1 − J4 plaquettes. The distribution
of J5 couplings forms a system of four penetrating square
lattices.

Concerning structure B, the corresponding schema of the
magnetic lattice is the same as in structure A, but without
the J3 coupling. Different values of exchange parameters cal-
culated for both structures indicate the important role of tn
configurations in the formation and effectivity of exchange
pathways.

FIG. 3. (a) Schematic visualization of a magnetic lattice formed
by exchange couplings within the bc plane. (b) The weakest
intralayer coupling J5 acts along the one diagonal of the “super-
plaquette” formed by two plaquettes J1 − J4 depicted in Fig. 3(a).
(c), (d) Dzyaloshinskii-Moriya vectors in the Cu(tn)Cl2 structure
allowed by the Pnma symmetry. (Mirror plane parallel to the ac plane
is perpendicular to the connector of A′ and B′ spins, and at the same
time the connectors of B′ and B spins and B′ and C spins lie within
the mirror plane.)

Since Cu(tn)Cl2 is a spin-1/2 system with one unpaired
electron in a nondegenerate orbital, it was shown [7] that the
Dzyaloshinskii-Moriya (DM) coupling will be present on the
bonds mediating exchange interactions. The description of
the crystal structure within the Pnma symmetry allows the
existence of three sets of DM interactions distributed along
the J2, J4, and J6 couplings [Figs. 3(c) and 3(d)].

B. Quantum Monte Carlo calculations

The most simplified approximation of the two-dimensional
(2D) magnetic lattice depicted in Fig. 3(a) is a rectangular
lattice or a spatially anisotropic square lattice described by
the spin-1/2 Heisenberg Hamiltonian

H =
[

J
∑
i, j

SiS j + J ′ ∑
k,l

SkSl

]
− gμBB

N∑
i=1

Sz
i (1)

The parameters J and J′ are positive and stand for the an-
tiferromagnetic intrachain and interchain exchange coupling,
respectively. The ratio r = J ′/J ranges from 0 to 1. The
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(a) (b)

FIG. 4. Temperature dependence of the susceptibility (a) and specific heat (b) of the spin-1/2 HAF on the rectangular lattice in zero
magnetic field calculated for r ranging between 0.3 and 0.6.

first and second summations involve the interaction between
nearest neighbors within the chain and between the nearest
neighbors from different chains, respectively. The third term
in Eq. (1) is the standard Zeeman’s term (g is Landé factor
and μB is Bohr magneton). The calculations were realized
using a directed loop algorithm in the stochastic series ex-
pansion representation of the quantum Monte Carlo (QMC)
method [46] from the Algorithms and Libraries for Physics
Simulations (ALPS) project [47]. The QMC simulations were
performed on finite-size lattices with a linear size L = 128
spins, which involve under the periodic boundary conditions
a total of N = L × L spins. The comparative studies with L =
32 and 64 found no finite-size effects. The adequate numerical
accuracy was achieved through 106 Monte Carlo steps used
for a statistical averaging in addition to 2.5 × 105 steps for
thermalization. Partial calculations of thermodynamic proper-
ties of the model (1) can be found in the work [48]. For the
requirements of the present analysis, corresponding calcula-
tions with finer r sampling were performed (Fig. 4).

IV. RESULTS AND DISCUSSION

A. Specific heat

Previous specific heat studies of polycrystalline materials
in zero magnetic field were not able to detect any phase
transition to a magnetically ordered state down to 60 mK [26].
On the other hand, a sharp λ-like anomaly was observed in
the aforementioned Cu(en)Cl2 single crystal at 0.7 K and the
comparison of magnetic phase diagrams of both compounds
suggested the potential phase transition also in Cu(tn)Cl2

somewhere below 0.7 K [48].
Growing sufficiently large single crystals of Cu(tn)Cl2

enabled specific heat studies. The material is an insulator,
thus only magnetic and lattice subsystems contribute to the
total specific heat. Magnetic specific heat Cmag in zero mag-
netic field was obtained after subtracting lattice contribution
Clatt = 2.43 × 10−3T 3−3.34 × 10−6T 5 + 2.59 × 10−9T 7 es-
timated from a standard fitting procedure (Fig. 5). The local
surrounding of the Cu(II) ion and 3D packing are nearly
the same as in Cu(en)Cl2 (Ref. [49]). Therefore, in the first
approximation, we analyzed the magnetic specific heat data

within the model of spin-1/2 HAF on the rectangular lattice
which was successfully applied for the description of the mag-
netic subsystem of Cu(en)Cl2. Besides that, as was already
mentioned in Sec. III A, first-principle calculations provide
the two strongest couplings within the bc plane which form
the rectangular lattice. Using the available numerical results
reported in Ref. [48], the best agreement was found for r =
0.4 and 0.6 [Fig. 5(a)]. Apparently, the data are closer to the
spatial anisotropy with r = 0.4. To improve the agreement,
QMC calculations were performed for the ratios between 0.4
and 0.6 (Fig. 4). Finally, the best agreement with the data
was achieved for r = 0.46 [Fig. 5(b)] with J/kB = 4.31 K
and rJ/kB = 1.98 K. Apparently, the ratio of both NN cou-
plings agrees well with the J4/J1 ratio calculated for the major
position A (Table I). In this respect, the spatial anisotropy
within the rectangular lattice estimated for Cu(en)Cl2 is much
stronger, r = 0.2, and intralayer couplings are much weaker,
J/kB = 2.35 K [48].

The comparison of low-temperature Cu(tn)Cl2 experimen-
tal data with theoretical predictions depicted in the inset of
Fig. 5(a) revealed a very weak and broad anomaly at about
0.60 ± 0.05 K which could be associated with the phase
transition to a magnetic ordered state as deduced from the
aforementioned comparison of magnetic phase diagrams [48].
As was shown in the work [50] the heat-capacity jump at
the transition temperature TC, �Cmag(TC), is expected to be
of order [Smag(TC)/Smag(∞)](M/M0)2�CMF, where �CMF is
the mean-field value (1.5R). The quantities R, Smag, and M/M0

represent universal gas constant, magnetic entropy, and rela-
tive staggered magnetization, respectively. Using the previous
estimate [26] of ultralow-temperature Cu(tn)Cl2 specific heat
Cmag = 1.35T 2 and current data, Smag(TC) was evaluated
[0.33 J/(K mol)]. Since for the spin 1/2, the maximal en-
tropy Smag(∞) = R ln(2) = 5.763 J/(K mol), the long-range
correlations can remove less than 6% from total spin entropy.
Such low contribution manifests extreme two-dimensionality
of the studied system. Further using the value (M/M0)2 ≈ 0.3
estimated for the HAF square lattice [51] (r = 1), the value
�Cmag(TC) was calculated to be about 0.2 J/(K mol). This
estimate is about four times higher than the real height of
the anomaly superposed on the two-dimensional background
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(a) (b)

FIG. 5. (a) Temperature dependence of magnetic specific heat of a single-crystal Cu(tn)Cl2 in zero magnetic field. The lines correspond
to the S = 1/2 HAF model on the rectangular lattice with ratio r = 0.4 and 0.6 calculated in Ref. [48]. Inset: Zoom of the main plot at low
temperatures. (b) The same experimental data as in (a); the line corresponds to the S = 1/2 HAF model on the rectangular lattice with r = 0.46
and J/kB = 4.31 K.

which indicates much stronger reduction of the staggered
magnetization. Theoretical studies of the S = 1/2 HAF on
rectangular lattice [52,53] revealed a significant reduction of
the order parameter only for r < 0.2. Apparently, the model
of the rectangular lattice provides a very good description
of zero-field specific heat within the region of short-range
order [Fig. 5(b)], but the low-temperature anomaly potentially
associated with the phase transition to magnetic long-range
order reflects the effect of other 2D correlations.

The response of the sample in three different orientations
of magnetic field is depicted in Fig. 6.

While along the b axis (parallel to ladders) only one
anomaly is formed, along the other two directions the field
induces two anomalies which merge in the field about 4 T. De-
spite the fact that all measurements were performed on single
crystals, the induced anomalies are very broad. The analogous
studies in Cu(en)Cl2 indicated much sharper field-induced
specific heat anomalies [48], similarly as in other quasi-2D
S = 1/2 HAF Cu(II) based systems where the combination of
a spatial and symmetric spin anisotropy led to the formation
of simple reentrant magnetic phase diagrams with a spin-flop
transition at lowest fields [54–56].

Concerning Cu(tn)Cl2, the mapping of the anomalies pro-
vided a magnetic B-T phase diagram with a pronounced
reentrant character manifesting weakness of interlayer in-
teractions [Fig. 6(d)]. While in the field applied along the
ladders, i.e., �B ‖ b, a simple one phase is observed, in the
other two field orientations, �B⊥b, the diagram consists of
two phases. The “high-temperature” phase is stable in the
relatively narrow temperature interval in the vicinity of the
critical temperature ∼0.6 K and persists in the fields up to
4 T, which is about 2/3 of the saturation field Bsat ≈ 6.5 T
estimated by previous powder studies [25]. At higher fields
only one phase is stable. To find the origin of such behavior,
the effect of spin anisotropies was theoretically investigated in
Ref. [43], considering the high-temperature Pnma symmetry.

The analysis of symmetric exchange anisotropies in
Cu(tn)Cl2 performed within the simplified two-sublattice
model (Supplemental Material Fig. S1 in Ref. [43]) ex-
pects the formation of a noncollinear ground-state spin

configuration within the ac plane already in zero magnetic
field if only the strongest intralayer couplings J1 and J4 are
considered and the b axis is not the easy axis of the system
[43]. In any case, the distribution of spin anisotropies guar-
antees that the development of the ground state under the
application of magnetic field �B⊥b differs from the situation
when �B ‖ b. Concerning the DM interaction, the distribution
of Dzyaloshinskii-Moriya vectors within the Pnma symmetry
[Figs. 3(c) and 3(d) and Figs. S6 and S7 in Ref. [43]] precludes
the formation of helimagnetism within the bc plane due to
much stronger intralayer antiferromagnetic coupling. On the
other hand, the extremely weak interlayer coupling observed
in the experiment prevents a DM interaction to induce spin
canting between adjacent bc layers.

The present experimental data are not sufficient for the
quantitative estimate of the symmetric spin anisotropies and
DM interactions. As was shown in Ref. [43], the ground-
state spin configuration depends on the hierarchy of the
spin anisotropies, DM interactions, isotropic exchange inter-
actions, and magnetic field. Thus, the determination of the
resulting spin configuration even within the simplified two-
sublattice model is beyond the scope of the present work.

The analysis of the low-temperature specific heat was
performed in the fields opening a gap in the excitation spec-
trum �a,b,c = ga,b,cμB(B−Ba,b,c

sat ) to estimate corresponding
saturation fields. Assuming a predominantly 2D character of
excitation spectrum, the data in 9 T were fitted by the relation
[57] Cmag ∼ exp(−�/T )/T . The fitting procedure provided
field-induced gaps �a,b,c/kB = 3.4 ± 0.2 K, 4.9 ± 0.2 K, and
3.6 ± 0.2 K, respectively. Using ga,b,c factors 2.03, 2.25, and
2.05 taken from previous X-band electron paramagnetic res-
onance (EPR) studies [58], corresponding saturation fields
Ba,b,c

sat = 6.5 ± 0.1 T, 5.8 ± 0.1 T, and 6.4 ± 0.1 T were
calculated from the aforementioned relation for the excitation
gap �a,b,c. Then the saturation fields were included in the B-T
diagrams at zero temperature [Fig. 6(d)]. These values were
compared with saturation fields calculated within mean-field
approximation for the S = 1/2 HAF on the rectangular lat-
tice [48] B2D

sat = 2J (1 + r)/(gμB). Using the aforementioned
ga,b,c factors and the parameters which provided a good

214432-6



EXTRAORDINARY TWO-DIMENSIONALITY IN THE … PHYSICAL REVIEW B 108, 214432 (2023)

(a) (c)

(b) (d)

FIG. 6. Temperature dependence of specific heat of a single-crystal Cu(tn)Cl2 in nonzero magnetic field applied along the a axis (a), c axis
(b), and b axis (c). For clarity, only the temperature region of a field-induced anomaly is shown. (d) Magnetic phase diagrams along the a and
c axes (B⊥ ladder) and b axis (B ‖ ladder).

description of the experimental specific heat in zero magnetic
field [Fig. 5(b)], the calculations yielded B(rect)a,b,c

sat = 9.25,
8.34, and 9.16 T, respectively. Apparently, these 2D fields are
much higher than the experimental values which contain also
the contribution of interlayer couplings J ′ from z′ neighbors
in adjacent layers [59], Bsat = B2D

sat + z′J ′/(gμB).
Similarly, like the aforementioned significant reduction of

the 3D anomaly at ∼0.6 K in zero field [inset of Fig. 5(a)], the
strong reduction of saturation fields suggests the influence of
other competing interactions.

B. Susceptibility

The temperature dependence of magnetic moment was
studied in the temperature range from 0.5 to 300 K in the field
0.5 T applied along the a, b, and c axes. The data obtained
in the FC and ZFC regimes are identical. The corresponding
single-crystal susceptibilities evaluated as χ = M/B together
with the powder susceptibility are depicted in Fig. 7(a). The
data in the field parallel to the ladders (b axis) show a sharp
change at about 0.7 K. This temperature corresponds well to
the field-induced transition temperature at 0.5 T as obtained
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(a) (b)

FIG.7. (a) Temperature dependence of susceptibility of Cu(tn)Cl2. (b) Temperature dependence of reduced susceptibility of Cu(tn)Cl2

compared with corresponding predictions for the model of the S = 1/2 HAF chain and the rectangular lattice with r = 0.46.

from the specific heat anomaly [Fig. 6(d)]. No difference
between FC and ZFC data below the phase transition indicates
the absence of weak ferromagnetism in accord with the Pnma
symmetry. The rising tendency below the minimum at 0.6 K
suggests that the b axis is not the easy axis as one would expect
from the g-factor anisotropy.

Theoretical studies of finite-temperature properties of the
S = 1/2 HAF on the square lattice revealed that the effect
of the weak exchange anisotropy should appear at low tem-
peratures kBT/J < 0.3 while isotropic behavior is preserved
at higher temperatures [60]. Therefore, to remove the effects
of g-factor anisotropy, using the ga,b,c factors 2.05, 2.27, and
2.08, respectively, the temperature dependence of reduced
susceptibility χ/g2 was calculated to obtain a universal curve.
The powder data were normalized by the average g value
2.12. The slight differences between the used g factors and
those obtained from EPR result from the errors in the mass
determination as well as in the possible deviations from the a,
b, and c orientations during magnetic experiment. At temper-
atures above the phase transition all normalized data fall on
the universal curve indicating g-factor anisotropy as the only
source of the anisotropy in the paramagnetic phase [Fig. 7(b)].
Since the powder data were recorded in the field 0.1 T, the
universal behavior excludes the nonlinear effects in low fields.
The universal curve was compared with the corresponding
prediction for the S = 1/2 HAF on the rectangular lattice with
the parameters r = 0.46 and J/kB = 4.31 K taken from the
specific heat analysis.

The deviations from the model could not be suppressed
by optimizing the J parameter for the position of the sus-
ceptibility maximum Tmax = 3 K for r = 0.46. Apparently,
considering only the two strongest exchange couplings pre-
dicted by first-principle studies forming a rectangular lattice
within the bc plane of Cu(tn)Cl2 is not sufficient for the
description of magnetic susceptibility [Fig. 7(b)].

Including J3, another strongest interaction within the bc
plane [Fig. 2(a)], leads to the formation of the spatially
anisotropic triangular lattice which can be described by the
J-J′-J′′ model. Besides the investigations of ground-state prop-
erties [20] we are not aware of finite-temperature studies of the
model. Concerning the simpler J-J′ model, high-temperature

series expansions were used to calculate the temperature
dependence of susceptibility in the wide region of spatial
anisotropies ranging from the square lattice to the chain limit
[4]. This simplified model provided the best agreement for its
chain limit, which contradicts the specific heat analysis. Ap-
parently, the susceptibility is more sensitive to the onset and
development of short-range correlations than to specific heat.
While at temperatures above 3 K the experimental suscep-
tibility data mimic one-dimensional (1D) behavior, at lower
temperatures the influence of additional couplings becomes
evident manifesting by the onset of huge deviations below
2 K, the temperature at which specific heat achieves max-
imum, corresponding to the largest changes of the internal
energy.

C. μSR

ZF μSR experiments were performed on a polycrystalline
sample at temperatures from 40 mK to 4 K. Over this tem-
perature range we do not observe oscillations in the muon
decay asymmetry spectra. The presence of oscillations would
indicate the onset of long-range magnetic order. It should be
noted that the oscillations were observed even in the quantum
magnets with reported strong two-dimensionality [61,62]. In-
stead of the oscillations, in Cu(tn)Cl2 the asymmetry spectra
are intermediate between Gaussian and exponential forms at
short times before a small recovery at longer times [Fig. 8(a)].

In the first step the raw data were fitted using the stretched
exponential form of the muon relaxation A(t ) = Abge−λbgt +
A0e−(λt )β with the background contribution involved. The
fitting procedure provided nearly temperature independent
baseline Abg ≈ 5% with λbg ≈ 0.02 MHz, consistent with
muons stopping in the Ag backing plate. The stretched ex-
ponent β ≈ 2 was obtained in the temperature range from 4 K
down to about 0.65 K indicating that muon spins are affected
predominantly by the nuclear dipolar field from the surround-
ing nuclei. At lower temperatures the parameter β changes
rapidly reaching β ≈ 1 at lowest temperatures. Such change
manifests the appearance of an additional component to the
nuclear dipolar field originating from the Cu(II) electronic
spin subsystem.
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FIG. 8. (a) Zero-field μSR spectra collected at various temperatures on the powdered sample of Cu(tn)Cl2. (b) Examples of fitting the
time spectra by Eq. (2). For clarity, only selected datasets are shown.

To separate the contribution of electronic and nuclear mag-
netic moments to the internal fields, the zero-field asymmetry
curves were fitted with the relation [63,64]

A(t ) = Abge−λbgt + A0e−λt fKT(σ, t ), (2)

where the second term is the product of two relaxation
functions; fKT is the static zero-field Kubo-Toyabe function
fKT(σ, t ) = 1

3 + 2
3 (1 − σ 2 t2)e(−σ 2 t2/2) reflecting the Gaus-

sian distribution of randomly oriented static local magnetic
fields at the muon site arising from the nuclear spins. The
parameter σ describes the width � = σ

γμ
of the Gaussian

distribution and γμ = 8.516 × 108 rad s−1 T−1 is the muon
gyromagnetic ratio. The other part of the product represents
the relaxation function arising from the dynamic magnetic
fields generated by fluctuating Cu(II) electronic spins. The pa-
rameter λ is the muon spin relaxation rate associated with the
fluctuating local fields of electronic spins. The multiplicative
combination of two relaxation functions is due to the convolu-
tion of two field distributions, Gaussian and Lorentzian, which
are primarily due to nuclear and electronic magnetic fields,
respectively [63,64]. In the fitting by Eq. (2), the background
parameter λbg was fixed using the values obtained from the
fitting by stretched exponential form. Examples of the fitted
spectra are shown in Fig. 8(b).

The fitting procedure provided the temperature dependence
of the λ and σ parameters (Fig. 9). The behavior of λ is quali-
tatively the same as that obtained from the fit by the stretched
exponential (not shown). As can be seen, the parameter σ ∼=
0.35 MHz corresponds to � ∼= 4 G and is temperature in-
dependent down to 2 K. The observed value is typical for
the relaxation governed by nuclear dipolar interaction [65].
The temperature 2 K coincides with the position of the round
specific heat maximum (Fig. 5). At lower temperatures the
parameter σ slightly grows achieving maximum 0.46 MHz
(� ∼= 5.3 G) at 0.57 K. This slight increase might be associ-
ated with the appearance of additional static fields resulting
from the critical slowing down in the electronic spin subsys-
tem. The sudden drop of σ below ≈ 0.57 K coincides well
with the rapid growth of λ. The fast change of both param-
eters suggests the phase transition at 0.57 ± 0.05 K, which

corresponds to the appearance of the subtle wide hump in the
specific heat [Fig. 5(a)].

Concerning the relaxation rate λ, in quasi-two-dimensional
magnets above the phase transition this quantity reflects the
behavior of 2D magnetic correlations characterized by the
correlation length ξ2D. As was shown in Ref. [65], the muon
spin relaxation rate corresponds to the correlation length,
λ(T ) ∝ ξ2D(T ). Since the main features of 2D magnetism
in Cu(tn)Cl2 can be approximated by the rectangular lattice,
the corresponding prediction for the correlation length [66]
ξ2D(T ) ∝ e[2πρs (r)/T ]

(1+0.5 T
2πρs (r) )

has been used for the fitting the relax-

ation rate. The spin stiffness ρs achieves maximal value 0.18J
for the spatially isotropic square lattice (r = 1). Since the
relaxation rate does not drop to zero values at higher tempera-
tures, the fitting procedure was performed with some constant
shift, λ(T ) = ξ2D(T ) + λ0. The best agreement was found for
2πρs(r) = 1.9 ± 0.15 K and λ0 = 0.165 MHz (Fig. 9).

At temperatures below 0.45 K the data deviate from the
fitting curve probably due to the onset of long-range order.
However, the static long-range order is not indicated in the

FIG. 9. Temperature dependence of the muon spin relaxation rate
(triangles) and parameter σ (squares). The line represents the fit
λ(T ) = ξ2D(T ) + λ0 (see text). Inset: Temperature dependence of
the parameter Abg [Eq. (2)] reflecting the behavior of the asymmetry
baseline.
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FIG. 10. LF μSR spectra collected at various constant temperatures.

current muon spectra by characteristic oscillations of asym-
metry. As was shown, the onset of LRO can be deduced only
from the correlated changes of σ and λ parameters which
coincide with subtle anomalies in specific heat and suscep-
tibility. The corresponding local symmetry breaking in the
magnetic fields the muons experience, results in the slight
increase of the asymmetry baseline in the long time window
at temperatures below 0.5 K (Fig. 8 and inset of Fig. 9).
The main reason for such weak manifestation of LRO can
be the prevalence of 2D correlations accompanied with the
previously observed T 2 dependence of magnetic specific heat
characteristic for good 2D magnets, persisting down to 60 mK
[25–27].

Considering the paramagnetic phase, the value 2πρs(r)
obtained from the fitting of the relaxation rate represents
about 50% reduction of 2πρs(r = 1) ≈ 3.5 K for the square
lattice as a reference model. The average intralayer coupling
Jav = J (1 + r)/2 ∼= 3.1 K was evaluated from the specific
heat analysis within the rectangular lattice model for r = 0.46
while susceptibility suggests a more complicated model with
a prevalence of 1D correlations and more than one sort of
additional coupling within the magnetic layer (Figs. 5 and 7).

Theoretical studies of the J-J′ model expect such strong
reduction of the spin stiffness in the vicinity of the phase
transition between Néel order and nonmagnetic ground state
[3,14]. As for the effective rectangular lattice, the increasing
spatial anisotropy towards 1D chains (r → 0) leads to a strong

reduction of the spin stiffness �⊥
s in the direction perpendicu-

lar to chains while that along the chains �‖
s slightly increases

above the reference square lattice value [53,67]. Using the
�‖

s and �⊥
s values derived in Ref. [53] for r = 0.4 and 0.5,

the �⊥
s

�
‖
s

ratio is between 0.2 and 0.3, which suggests rather

weak interchain correlations within the magnetic layer. In this
respect the fluctuations of weakly correlated chains could be
treated as the main source of dynamically fluctuating local
fields at low temperatures. As was shown in many theoret-
ical studies, despite the prevalence of 1D correlations, such
situation is completely different from a pure 1D case since
even infinitesimal small interchain coupling can introduce 2D
behavior.

The application of longitudinal field (LF) does not affect
the width of distribution of randomly oriented static local
magnetic fields at the muon site [68]. In the static case, the
longitudinal field which is sufficient to decouple the muon
spin from small static nuclear fields is in the order of distri-
bution width � while in the dynamic case the magnitude of
decoupling field is much larger [68,69]. Applying this crite-
rion for distinguishing dynamic and static relaxation the LF
μSR experiments were performed above the phase transition
at 1 K, in the vicinity of the phase transition at 0.5 K and far
below the transition at 50 mK (Fig. 10).

While above the phase transition the longitudinal fields
above 20 G can significantly flatten the muon time spectra
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achieving decoupling of muons above 50G ∼ 10�, the time
spectra at 0.5 K show in this field significant relaxation. Fi-
nally, the spectra at 50 mK show decoupling in fields above
∼ 40�, which suggests dynamic relaxation due to fluctuating
fields [68]. However, the aforementioned partial recovery of
the asymmetry in long times in ZF spectra at 50 mK [Fig. 8(b)]
points to some extent at the coexistence of static and dynamic
random fields.

V. CONCLUSIONS

The growth of sufficiently large single crystals enabled
the investigation of thermodynamic properties such as spe-
cific heat and susceptibility in various field orientations.
Unlike previous polycrystalline studies, a nearly invisible
broad hump in zero-field specific heat was observed and was
ascribed to the onset of magnetic long-range order some-
where below 0.6 K. This observation coincides well with
the behavior of the characteristic parameters of zero-field
muon relaxation spectra. The lack of oscillations in the time
spectra and the exponential character of the spectra preserved
down to lowest temperatures suggest the coexistence of static
order and fluctuating local fields associated with the strong
influence of low-dimensional correlations. Their prevalence
is also manifested by the previously observed T 2 dependence
of specific heat far below the aforementioned phase transition
and a nonmonotonous character of magnetic phase diagrams.
Besides the reentrant behavior resulting from the strong mag-
netic two-dimensionality, the observation of an additional
ordered phase appearing around the critical temperature in
two field orientations calls for experimental studies of spin
anisotropies which were already theoretically analyzed for
Pnma symmetry.

To understand the origin of the strong magnetic two-
dimensionality, first-principle calculations of exchange cou-
plings were performed based on the previously published as-
sumption of two different positions of the 1,3-diaminopropane
group in the structure. It was found that the tn positions
strongly affect exchange interactions. The first-principle cal-
culations introduced a concept of quasi-2D magnetic lattice
in Cu(tn)Cl2, comprising 2D arrays of magnetic chains with
relatively strong intrachain coupling and many weaker inter-
chain interactions spreading within the bc layer. The layers are
coupled via a relatively strong interlayer interaction. Interest-
ingly, the real interlayer coupling is a few orders of magnitude
weaker than its theoretically predicted counterpart. This dis-
crepancy may have its origin in the aforementioned use of
approximate crystal structure with neglected modulation of tn
position. Application of the quantum Monte Carlo technique
enabled one to test the reliability of the first-principle predic-
tions for the two strongest intralayer couplings presented by

the model of a rectangular lattice. While zero-field specific
heat is in excellent agreement with the model of a rectangu-
lar lattice, its failure in the description of the susceptibility
data suggests the importance of other weaker intralayer in-
teractions. It should be mentioned that the current analysis
of thermodynamic data suffered from the lack of theoretical
predictions for more complicated 2D systems.

Apparently, Cu(tn)Cl2 belongs to a few quantum mag-
nets with extremely weak interlayer interactions of the order
of dipolar coupling between nearly ordered magnetic lay-
ers. Unlike known examples in literature, the application of
magnetic field leads to inducing of phase transitions which,
despite monocrystalline samples, are accompanied with very
broad specific heat anomalies. Since the exchange coupling
parameters strongly depend on the position of the tn group,
the observed broadening may be associated with the gradual
modulation of tn positions in the structure leading to the de-
composition of the lattice into many sublattices with more or
less different exchange couplings. It can be a potential source
of intrinsic partial magnetic disorder manifested in the muon
relaxation spectra. Recently, various origins of the coexistence
of the static a dynamic order have been reported, ranging from
the unconventional character of the frustrated magnetic lattice
with well-defined exchange constants [70] to the presence
of structural defects [71]. Cu(tn)Cl2 does not belong to any
group since the structural disorder was already removed by
the high-temperature structural phase transition and expected
variability of exchange coupling parameters results from an
intrinsic property of the perfectly ordered crystal structure.
This conjecture calls for direct studies of magnetic ordering as
well as for experiments clarifying the role of spin anisotropies
in the ordering process in Cu(tn)Cl2.
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V. Kravchyna, J.-H. Park, M. Orendáč, A. G. Anders, A.
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