16 research outputs found

    Potassium Dependent Regulation of Astrocyte Water Permeability Is Mediated by cAMP Signaling

    Get PDF
    Astrocytes express potassium and water channels to support dynamic regulation of potassium homeostasis. Potassium kinetics can be modulated by aquaporin-4 (AQP4), the essential water channel for astrocyte water permeability regulation. We investigated whether extracellular potassium ([K+]o) can regulate astrocyte water permeability and the mechanisms of such an effect. Studies were performed on rat primary astrocytes and a rat astrocyte cell line transfected with AQP4. We found that 10mM [K+]o caused an immediate, more than 40%, increase in astrocyte water permeability which was sustained in 5min. The water channel AQP4 was a target for this regulation. Potassium induced a significant increase in intracellular cAMP as measured with a FRET based method and with enzyme immunoassay. We found that protein kinase A (PKA) could phosphorylate AQP4 in vitro. Further elevation of [K+]o to 35mM induced a global intracellular calcium response and a transient water permeability increase that was abolished in 5min. When inwardly rectifying potassium (Kir)-channels were blocked, 10mM [K+]o also induced a calcium increase and the water permeability increase no longer persisted. In conclusion, we find that elevation of extracellular potassium regulates AQP4 and astrocyte water permeability via intracellular signaling involving cAMP. A prolonged increase of astrocyte water permeability is Kir-channel dependent and this response can be impeded by intracellular calcium signaling. Our results support the concept of coupling between AQP4 and potassium handling in astrocytes

    In Vitro Antiophidian Mechanisms of Hypericum brasiliense Choisy Standardized Extract: Quercetin-Dependent Neuroprotection

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The neuroprotection induced by Hypericum brasiliense Choisy extract (HBE) and its main active polyphenol compound quercetin, against Crotalus durissus terrificus (Cdt) venom and crotoxin and crotamine, was enquired at both central and peripheral mammal nervous system. Cdt venom (10 mu g/mL) or crotoxin (1 mu g/mL) incubated at mouse phrenic nerve-diaphragm preparation (PND) induced an irreversible and complete neuromuscular blockade, respectively. Crotamine (1 mu g/mL) only induced an increase of muscle strength at PND preparations. At mouse brain slices, Cdt venom (1, 5, and 10 mu g/mL) decreased cell viability. HBE (100 mu g/mL) inhibited significantly the facilitatory action of crotamine (1 mu g/mL) and was partially active against the neuromuscular blockade of crotoxin (1 mu g/mL) (data not shown). Quercetin (10 mu g/mL) mimicked the neuromuscular protection of HBE (100 mu g/mL), by inhibiting almost completely the neurotoxic effect induced by crotoxin (1 mu g/mL) and crotamine (1 mu g/mL). HBE (100 mu g/mL) and quercetin (10 mu g/mL) also increased cell viability in mice brain slices. Quercetin (10 mu g/mL) was more effective than HBE (100 mu g/mL) in counteracting the cell lysis induced by Cdt venom (1 and 10 mu g/mL, resp.). These results and a further phytochemical and toxicological investigations could open new perspectives towards therapeutic use of Hypericum brasiliense standardized extract and quercetin, especially to counteract the neurotoxic effect induced by snake neurotoxic venoms.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundo de Apoio ao Ensino, a Pesquisa e Extensao (FAEPEX)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES [063/2010

    Glutamate-induced transient modification of the postsynaptic density

    No full text
    Depolarization of rat hippocampal neurons with a high concentration of external potassium induces a thickening of postsynaptic densities (PSDs) within 1.5–3 min. After high-potassium treatment, PSDs thicken 2.1-fold in cultured neurons and 1.4-fold in hippocampal slices compared with their respective controls. Thin-section immunoelectron microscopy of hippocampal cultures indicates that at least part of the observed thickening of PSDs can be accounted for by an accumulation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) on their cytoplasmic faces. Indeed, PSD-associated gold label for CaMKII increases 5-fold after depolarization with potassium. The effects of high-potassium treatment on the composition and structure of the PSDs are mimicked by direct application of glutamate. In cultures, glutamate-induced thickening of PSDs and the accumulation of CaMKII on PSDs are reversed within 5 min of removal of glutamate and Ca(2+) from the extracellular medium. These results suggest that PSDs are dynamic structures whose thickness and composition are subject to rapid and transient changes during synaptic activity

    Mass of the postsynaptic density and enumeration of three key molecules

    No full text
    The total molecular mass of individual postsynaptic densities (PSDs) isolated from rat forebrain was measured by scanning transmission EM. PSDs had a mean diameter of 360 nm and molecular mass of 1.10 ± 0.36 GDa. Because the mass represents the sum of the molecular masses of all of the molecules comprising a PSD, it becomes possible to derive the number of copies of each protein, once its relative mass contribution is known. Mass contributions of PSD-95, synapse-associated protein (SAP)97, and α-Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) were determined by quantitative gel electrophoresis of PSD fractions. The number of PSD-95 molecules per average PSD, contributing 2.3% of the mass of the PSD, was calculated to be 300, whereas the number of SAP97 molecules, contributing 0.9% of the mass of the PSD, was 90. The α-CaMKII holoenzymes, which contribute 6% of the mass when brains are homogenized within 2 min of interrupting blood flow, have 80 holoenzymes associated with a typical PSD. When blood flow is interrupted 15 min before homogenization, the average mass of PSDs increases by ≈40%. The additional α-CaMKII associated with PSDs accounts for up to 20% of this mass increase, representing the addition of 100–200 α-CaMKII holoenzymes
    corecore