168 research outputs found

    Effects of heat release on triple flames

    Get PDF
    Heat release effects on laminar flame propagation in partially premixed flows are studied. Data for analysis are obtained from direct numerical simulations of a laminar mixing layer with a uniformly approaching velocity field. The structure that evolves under such conditions is a triple flame, which consists of two premixed wings and a trailing diffusion flame. Heat release increases the flame speed over that of the corresponding planar premixed flame. In agreement with previous analytical work, reductions in the mixture fraction gradient also increase the flame speed. The effects of heat release and mixture fraction gradients on flame speed are not independent, however; heat release modifies the effective mixture fraction gradient in front of the flame. For very small mixture fraction gradients, scaling laws that determine the flame speed in terms of the density change are presented. © 1995 American Institute of Physics

    Triple flame structure and diffusion flame stabilization

    Get PDF
    The stabilization of diffusion ñames is studied using asymptotic techniques and numerical tools. The configuration studied corresponda to parallel streams of cold oxidizer and fuel initially separated by a splitter píate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter píate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distanees downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat reléase may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their re-sistance to turbulence is investigated by subjecting triple flames to different vortical configurations

    Scalar flux modeling in turbulent flames using iterative deconvolution

    Get PDF
    In the context of Large Eddy Simulations, deconvolution is an attractive alternative for modelling the un-closed terms appearing in the filtered governing equations. Such methods have been used in a number of studies for non-reacting and incompressible flows, however their application in reacting flows is limited in comparison. Deconvolution methods originate from clearly defined operations, and in theory can be used in order to model any un-closed term in the filtered equations including the scalar flux. In this study, an iterative deconvolution algorithm is used in order to provide a closure for the scalar flux term in a turbulent premixed flame by explicitly filtering the deconvoluted fields. The assessment of the method is conducted a priori using a three-dimensional direct numerical simulation database of a turbulent freely-propagating premixed flame in a canonical configuration. In contrast to most classical a priori studies, the assessment is more stringent as it is performed on a much coarser LES mesh which is constructed using the filtered fields as obtained from the direct simulations. For the conditions tested in this study, deconvolution is found to provide good estimates both of the scalar flux and of its divergence

    Model Equation for the Dynamics of Wrinkled Shockwaves: Comparison with DNS and Experiments

    No full text
    International audienceA model equation for the dynamics and the geometry of the wrinkled front of shock waves, obtained for strong shocks in the Newtonian limit, is tested by comparison with direct numerical simulations and a shock tube experiment

    Pdf modeling for premixed turbulent combustion based on the properties of iso-concentration surfaces

    Get PDF
    In premixed turbulent flames the presence of intense mixing zones located in front of and behind the flame surface leads to a requirement to study the behavior of iso-concentration surfaces defined for all values of the progress variable (equal to unity in burnt gases and to zero in fresh mixtures). To support this study, some theoretical and mathematical tools devoted to level surfaces are first developed. Then a database of direct numerical simulations of turbulent premixed flames is generated and used to investigate the internal structure of the flame brush, and a new pdf model based on the properties of iso-surfaces is proposed

    Structure of turbulent non-premixed flames modeled with two-step chemistry

    Get PDF
    Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number

    Effect of finite-rate chemistry and unequal Schmidt numbers on turbulent non-premixed flames modeled with single-step chemistry

    Get PDF
    The interaction between a quasi-laminar flame and a turbulent flowfield is investigated through direct numerical simulations (DNS) of reacting flow in two- and three-dimensional domains. Effects due to finite-rate chemistry are studied using a single step global reaction A (fuel) + B (oxidizer) yields P (product), and by varying a global Damkoehler number, as a result of which the turbulence-chemistry interaction in the flame is found to generate a wide variety of conditions, ranging from near-equilibrium to near-extinction. Differential diffusion effects are studied by changing the Schmidt number of one reactive species to one-half. It is observed that laminar flamelet response is followed within the turbulent flowfield, except in regions where transient effects seem to dominate

    Measurement and kinetics of elemental and atomic potassium release from a burning biomass pellet

    Get PDF
    Combining polarizing-filtered planar laser-induced fluorescence (PLIF) with simultaneous laser absorption, quantitative laser-induced breakdown spectroscopy (LIBS) and two-color pyrometry, the potassium release during the combustion of biomass fuels (corn straw and poplar) has been investigated. The temporal release profiles of volatile atomic potassium and potassium compounds from a corn straw show a single peak. The woody biomass, poplar, produces a dual-maxima distribution for potassium and potassium compounds. For both biomass samples, the highest concentrations of released atomic potassium and potassium compounds occur in the devolatilization stage. The mass ratios between volatile atomic potassium and potassium compounds in the corn straw and poplar cases are 0.77% and 0.79%, respectively. These values agree well with chemical equilibrium predictions that 0.68% of total potassium will be in atomic form. A two-step kinetic model of potassium release has been developed, which gives better predictions during the devolatilization stage than the existing single-step model. Finally, a map of potassium transformation processes during combustion is developed. Starting with inorganic and organic potassium, there are eight proposed transformation pathways including five proposed release pathways that occur during the combustion. The pathways describe the transformation of potassium between the fuel volatile matter, char, and ash. Potassium release during the devolatilization stage is due to pyrolysis and evaporation; during the char burnout stage, potassium release is due to char oxidation and decomposition; and during the ash cooking stage, potassium release is caused by reactions between the ash and H2O in the co-flow
    corecore