300 research outputs found

    Lee-Yang theory of the two-dimensional quantum Ising model

    Full text link
    Determining the phase diagram of interacting quantum many-body systems is an important task for a wide range of problems such as the understanding and design of quantum materials. For classical equilibrium systems, the Lee-Yang formalism provides a rigorous foundation of phase transitions, and these ideas have also been extended to the quantum realm. Here, we develop a Lee-Yang theory of quantum phase transitions that can include thermal fluctuations caused by a finite temperature, and it thereby provides a link between the classical Lee-Yang formalism and recent theories of phase transitions at zero temperature. Our methodology exploits analytic properties of the moment generating function of the order parameter in systems of finite size, and it can be implemented in combination with tensor-network calculations. Specifically, the onset of a symmetry-broken phase is signaled by the zeros of the moment generating function approaching the origin in the complex plane of a counting field that couples to the order parameter. Moreover, the zeros can be obtained by measuring or calculating the high cumulants of the order parameter. We determine the phase diagram of the two-dimensional quantum Ising model and thereby demonstrate the potential of our method to predict the critical behavior of two-dimensional quantum systems at finite temperatures.Comment: 10 pages, 6 figure

    Lee-Yang theory of quantum phase transitions with neural network quantum states

    Full text link
    Predicting the phase diagram of interacting quantum many-body systems is a central problem in condensed matter physics and related fields. A variety of quantum many-body systems, ranging from unconventional superconductors to spin liquids, exhibit complex competing phases whose theoretical description has been the focus of intense efforts. Here, we show that neural network quantum states can be combined with a Lee-Yang theory of quantum phase transitions to predict the critical points of strongly-correlated spin lattices. Specifically, we implement our approach for quantum phase transitions in the transverse-field Ising model on different lattice geometries in one, two, and three dimensions. We show that the Lee-Yang theory combined with neural network quantum states yields predictions of the critical field, which are consistent with large-scale quantum many-body methods. As such, our results provide a starting point for determining the phase diagram of more complex quantum many-body systems, including frustrated Heisenberg and Hubbard models.Comment: 10 pages, 6 figures, 1 tabl

    Rhodolith Beds Are Major CaCO3 Bio-Factories in the Tropical South West Atlantic

    Get PDF
    Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the world's four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2°N - 27°S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16°50′ - 19°45′S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km2. Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO3 production was estimated from in situ growth assays at 1.07 kg m−2 yr−1, with a total production rate of 0.025 Gt yr−1, comparable to those of the world's largest biogenic CaCO3 deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades

    B7 costimulation and intracellular indoleamine-2,3-dioxygenase (IDO) expression in peripheral blood of healthy pregnant and non-pregnant women.

    Get PDF
    BACKGROUND: B7 costimulatory molecules are expressed on antigen presenting cells (APCs) and are important regulators of T cell activation. We investigated the role of the B7 family of costimulatory molecules in the development of the systemic maternal immune tolerance during healthy pregnancy (HP). We also aimed to investigate the intracellular expression of indoleamine-2,3-dioxygenase (IDO) and plasma levels of tryptophane (TRP), kynurenine (KYN) and kynurenic acid (KYNA), important molecules with immunoregulatory properties, in order to describe their potential contribution to the pregnancy-specific maternal immune tolerance. METHODS: We determined the frequency of activated (CD11b+) monocytes expressing B7-1, B7-2, B7-H1, and B7-H2, and that of T cells and CD4+ T helper cells expressing CD28, CTLA-4, PD-1, and ICOS in peripheral blood samples of healthy pregnant (HP) and non-pregnant (NP) women using flow cytometry. We also examined the intracellular expression of IDO applying flow cytometry and plasma levels of TRP, KYN and KYNA using high-performance liquid chromatography. RESULTS: A significant increase in the prevalence of CD28+ T cells was observed in HP compared to NP women. At the same time a decrease was shown in the expression of CTLA-4 on these cells. The frequency of CD80+ monocytes was lower in HP women. The prevalence of IDO-expressing T cells and monocytes was higher in HP compared to NP women. Plasma KYN, KYNA and TRP levels were lower, while at the same time, the KYN/TRP ratio was higher in HP than in NP women. CONCLUSIONS: Costimulation via CD28 may not contribute to the immunosuppressive environment, at least in the third trimester of pregnancy. The development of the pregnancy-specific immune tolerance in the mechanism of B7 costimulation may be more related to the altered expression of B7 proteins on APCs rather than that of their receptors on T cells. The elevated intracellular IDO expression in monocytes and T cells, as well as higher plasma enzymatic IDO activity are likely to contribute to the systemic immunosuppressive environment in the third trimester characteristic for healthy gestation

    Non-Celiac Gluten Sensitivity: The New Frontier of Gluten Related Disorders

    Get PDF
    Non Celiac Gluten sensitivity (NCGS) was originally described in the 1980s and recently a “re-discovered” disorder characterized by intestinal and extra-intestinal symptoms related to the ingestion of gluten-containing food, in subjects that are not affected with either celiac disease (CD) or wheat allergy (WA). Although NCGS frequency is still unclear, epidemiological data have been generated that can help establishing the magnitude of the problem. Clinical studies further defined the identity of NCGS and its implications in human disease. An overlap between the irritable bowel syndrome (IBS) and NCGS has been detected, requiring even more stringent diagnostic criteria. Several studies suggested a relationship between NCGS and neuropsychiatric disorders, particularly autism and schizophrenia. The first case reports of NCGS in children have been described. Lack of biomarkers is still a major limitation of clinical studies, making it difficult to differentiate NCGS from other gluten related disorders. Recent studies raised the possibility that, beside gluten, wheat amylase-trypsin inhibitors and low-fermentable, poorly-absorbed, short-chain carbohydrates can contribute to symptoms (at least those related to IBS) experienced by NCGS patients. In this paper we report the major advances and current trends on NCG

    The rs13388259 Intergenic Polymorphism in the Genomic Context of the BCYRN1 Gene Is Associated with Parkinson’s Disease in the Hungarian Population

    Get PDF
    Parkinson's disease (PD) is a common neurodegenerative disorder characterized by bradykinesia, resting tremor, and muscle rigidity. To date, approximately 50 genes have been implicated in PD pathogenesis, including both Mendelian genes with rare mutations and low-penetrance genes with common polymorphisms. Previous studies of low-penetrance genes focused on protein-coding genes, and less attention was given to long noncoding RNAs (lncRNAs). In this study, we aimed to investigate the susceptibility roles of lncRNA gene polymorphisms in the development of PD. Therefore, polymorphisms (n = 15) of the PINK1-AS, UCHL1-AS, BCYRN1, SOX2-OT, ANRIL and HAR1A lncRNAs genes were genotyped in Hungarian PD patients (n = 160) and age- and sex-matched controls (n = 167). The rare allele of the rs13388259 intergenic polymorphism, located downstream of the BCYRN1 gene, was significantly more frequent among PD patients than control individuals (OR = 2.31; p = 0.0015). In silico prediction suggested that this polymorphism is located in a noncoding region close to the binding site of the transcription factor HNF4A, which is a central regulatory hub gene that has been shown to be upregulated in the peripheral blood of PD patients. The rs13388259 polymorphism may interfere with the binding affinity of transcription factor HNF4A, potentially resulting in abnormal expression of target genes, such as BCYRN1

    Caribbean-wide decline in carbonate production threatens coral reef growth

    Get PDF
    This a post-print, author-produced version of an article accepted for publication in Nature Communications. Copyright © 2013 Nature Publishing Group . The definitive version is available at http://www.nature.com/ncomms/journal/v4/n1/full/ncomms2409.htmlGlobal-scale deteriorations in coral reef health have caused major shifts in species composition. One projected consequence is a lowering of reef carbonate production rates, potentially impairing reef growth, compromising ecosystem functionality and ultimately leading to net reef erosion. Here, using measures of gross and net carbonate production and erosion from 19 Caribbean reefs, we show that contemporary carbonate production rates are now substantially below historical (mid- to late-Holocene) values. On average, current production rates are reduced by at least 50%, and 37% of surveyed sites were net erosional. Calculated accretion rates (mm year(-1)) for shallow fore-reef habitats are also close to an order of magnitude lower than Holocene averages. A live coral cover threshold of ~10% appears critical to maintaining positive production states. Below this ecological threshold carbonate budgets typically become net negative and threaten reef accretion. Collectively, these data suggest that recent ecological declines are now suppressing Caribbean reef growth potential
    corecore