227 research outputs found

    Eculizumab is a safe and effective treatment in pediatric patients with atypical hemolytic uremic syndrome

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is caused by alternative complement pathway dysregulation, leading to systemic thrombotic microangiopathy (TMA) and severe end-organ damage. Based on 2 prospective studies in mostly adults and retrospective data in children, eculizumab, a terminal complement inhibitor, is approved for aHUS treatment. Here we prospectively evaluated efficacy and safety of weight-based dosing of eculizumab in eligible pediatric patients with aHUS in an open-label phase II study. The primary end point was complete TMA response by 26 weeks. Twenty-two patients (aged 5 months-17 years) were treated; 16 were newly diagnosed, 12 had no prior plasma exchange/infusion during current TMA symptomatology, 11 received baseline dialysis, and 2 had prior renal transplants. By week 26, 14 achieved a complete TMA response, 18 achieved hematologic normalization, and 16 had 25% or better improvement in serum creatinine. Plasma exchange/infusion was discontinued in all, and 9 of the 11 patients who required dialysis at baseline discontinued, whereas none initiated new dialysis. Eculizumab was well tolerated; no deaths or meningococcal infections occurred. Bone marrow failure, wrist fracture, and acute respiratory failure were reported as unrelated severe adverse events. Thus, our findings establish the efficacy and safety of eculizumab for pediatric patients with aHUS and are consistent with proposed immediate eculizumab initiation following diagnosis in children

    Assessment of nutritional status in children with kidney diseases-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce

    Get PDF
    In children with kidney diseases, an assessment of the child’s growth and nutritional status is important to guide the dietary prescription. No single metric can comprehensively describe the nutrition status; therefore, a series of indices and tools are required for evaluation. The Pediatric Renal Nutrition Taskforce (PRNT) is an international team of pediatric renal dietitians and pediatric nephrologists who develop clinical practice recommendations (CPRs) for the nutritional management of children with kidney diseases. Herein, we present CPRs for nutritional assessment, including measurement of anthropometric and biochemical parameters and evaluation of dietary intake. The statements have been graded using the American Academy of Pediatrics grading matrix. Statements with a low grade or those that are opinion-based must be carefully considered and adapted to individual patient needs based on the clinical judgment of the treating physician and dietitian. Audit and research recommendations are provided. The CPRs will be periodically audited and updated by the PRNT

    Nutritional management of the infant with chronic kidney disease stages 2-5 and on dialysis

    Get PDF
    The nutritional management of children with chronic kidney disease (CKD) is of prime importance in meeting the challenge of maintaining normal growth and development in this population. The objective of this review is to integrate the Pediatric Renal Nutrition Taskforce clinical practice recommendations for children with CKD stages 2-5 and on dialysis, as they relate to the infant from full term birth up to 1 year of age, for healthcare professionals, including dietitians, physicians, and nurses. It addresses nutritional assessment, energy and protein requirements, delivery of the nutritional prescription, and necessary dietary modifications in the case of abnormal serum levels of calcium, phosphate, and potassium. We focus on the particular nutritional needs of infants with CKD for whom dietary recommendations for energy and protein, based on body weight, are higher compared with children over 1 year of age in order to support both linear and brain growth, which are normally maximal in the first 6 months of life. Attention to nutrition during infancy is important given that growth is predominantly nutrition dependent in the infantile phase and the growth of infants is acutely impaired by disruption to their nutritional intake, particularly during the first 6 months. Inadequate nutritional intake can result in the failure to achieve full adult height potential and an increased risk for abnormal neurodevelopment. We strongly suggest that physicians work closely with pediatric renal dietitians to ensure that the infant with CKD receives the best possible nutritional management to optimize their growth and development.Peer reviewe

    Assessment of nutritional status in children with kidney diseases-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce

    Get PDF
    In children with kidney diseases, an assessment of the child's growth and nutritional status is important to guide the dietary prescription. No single metric can comprehensively describe the nutrition status; therefore, a series of indices and tools are required for evaluation. The Pediatric Renal Nutrition Taskforce (PRNT) is an international team of pediatric renal dietitians and pediatric nephrologists who develop clinical practice recommendations (CPRs) for the nutritional management of children with kidney diseases. Herein, we present CPRs for nutritional assessment, including measurement of anthropometric and biochemical parameters and evaluation of dietary intake. The statements have been graded using the American Academy of Pediatrics grading matrix. Statements with a low grade or those that are opinion-based must be carefully considered and adapted to individual patient needs based on the clinical judgment of the treating physician and dietitian. Audit and research recommendations are provided. The CPRs will be periodically audited and updated by the PRNT.Peer reviewe

    Coulomb excitation of 68^{68}Ni at safe energies

    Get PDF
    The B(E2;0+2+)B(E2;0^+\to2^+) value in 68^{68}Ni has been measured using Coulomb excitation at safe energies. The 68^{68}Ni radioactive beam was post-accelerated at the ISOLDE facility (CERN) to 2.9 MeV/u. The emitted γ\gamma rays were detected by the MINIBALL detector array. A kinematic particle reconstruction was performed in order to increase the measured c.m. angular range of the excitation cross section. The obtained value of 2.81.0+1.2^{+1.2}_{-1.0} 102^2 e2^2fm4^4 is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low 0+2+0^+\to2^+ transition probability.Comment: 4 pages, 5 figure

    Assessment and management of obesity and metabolic syndrome in children with CKD stages 2-5 on dialysis and after kidney transplantation-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce

    Get PDF
    Obesity and metabolic syndrome (O&MS) due to the worldwide obesity epidemic affects children at all stages of chronic kidney disease (CKD) including dialysis and after kidney transplantation. The presence of O&MS in the pediatric CKD population may augment the already increased cardiovascular risk and contribute to the loss of kidney function. The Pediatric Renal Nutrition Taskforce (PRNT) is an international team of pediatric renal dietitians and pediatric nephrologists who develop clinical practice recommendations (CPRs) for the nutritional management of children with kidney diseases. We present CPRs for the assessment and management of O&MS in children with CKD stages 2-5, on dialysis and after kidney transplantation. We address the risk factors and diagnostic criteria for O&MS and discuss their management focusing on non-pharmacological treatment management, including diet, physical activity, and behavior modification in the context of age and CKD stage. The statements have been graded using the American Academy of Pediatrics grading matrix. Statements with a low grade or those that are opinion-based must be carefully considered and adapted to individual patient needs based on the clinical judgment of the treating physician and dietitian. Research recommendations are provided. The CPRs will be periodically audited and updated by the PRNT.Peer reviewe

    Airway structural cells regulate TLR5-mediated mucosal adjuvant activity

    Get PDF
    Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin’s mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.Fil: Van Maele, Laurye. Institut Pasteur de Lille. Lille; Francia. Univ Lille Nord de France. Lille; Francia. Institut National de la Santé et de la Recherche Médicale; FranciaFil: Fougeron, Delphine. Institut Pasteur de Lille. Lille; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Janot, Laurent. University of Orléans. Orléans; Francia. Institut de Transgenose. Orleans; FranciaFil: Didierlaurent, A.. Imperial College of London. Londres; Reino UnidoFil: Cayet, D.. Institut Pasteur de Lille. Lille; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Tabareau, J.. Institut Pasteur de Lille. Lille; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Rumbo, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Corvo Chamaillard, S.. Institut Pasteur de Lille. Lille; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Boulenoir, S.. Institut Pasteur de Lille. Lille; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Jeffs, S. Imperial College of London. Londres; Reino UnidoFil: Vande Walle, L. Department of Medical Protein Research. Ghent; Bélgica. University of Ghent; BélgicaFil: Lamkanfi, M.. Department of Medical Protein Research. Ghent; Bélgica. University of Ghent; BélgicaFil: Lemoine, Y.. Univ Lille Nord de France. Lille; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Institut Pasteur de Lille. Lille; FranciaFil: Erard, F.. Institut de Transgenose. Orleans; Francia. University of Orléans. Orléans; FranciaFil: Hot, D.. Univ Lille Nord de France. Lille; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Institut Pasteur de Lille. Lille; FranciaFil: Hussell, Tracy. Imperial College of London. Londres; Reino Unido. University of Manchester; Reino UnidoFil: Ryffel, B.. Institut de Transgenose. Orleans; Francia. University of Orléans. Orléans; FranciaFil: Benecke, Arndt G.. Institut des Hautes Études Scientifiques and Centre National de la Recherche Scientifique; FranciaFil: Sirard, J.C.. Univ Lille Nord de France. Lille; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Institut Pasteur de Lille. Lille; Franci
    corecore