29,329 research outputs found

    Observation of a cascaded process in intracavity terahertz optical parametric oscillators based on lithium niobate

    Get PDF
    Cascaded difference frequency generation has been observed in intracavity optical parametric oscillators based on bulk lithium niobate and producing nanosecond pulses of terahertz radiation. Two idler waves are generated, namely: the primary idler wave associated with the parametric down conversion process itself; and a secondary idler wave, due to difference frequency generation. Experimental investigations of the frequency, temporal evolution, propagation direction, intensity, phase matching and oscillation threshold of the generated down-converted waves are reported. The overall generation efficiency for the terahertz radiation is enhanced, thereby overcoming the Manley-Rowe limit. Advantages of the present approach over schemes based on periodically poled lithium niobate are identified.Publisher PDFPeer reviewe

    House Flies: Manure, Media, and Microbes

    Get PDF
    This study was conducted to determine if there is a difference in bacterial abundance in house flies based on sex and rearing environment (manure versus artificial media) for house flies. This is important in determining the effectiveness of the facilities where the flies are being raised. Although, previous studies have shown differences in bacterial abundance between male and female house flies, it still remains unknown whether there is a discrepancy in bacterial abundance between rearing environments in the lab. We hypothesized that there would be a greater abundance of bacteria in females than males and a greater bacterial abundance in the manure environment than the artificial media. We determined that there was no significant difference between house fly sex or the environments in which they were raised. These results are meaningful because they introduce evidence of forced interaction that could skew the bacterial counts. In the future, the results would be more telling with a larger sample size.

    Feedback methods for inverse simulation of dynamic models for engineering systems applications

    Get PDF
    Inverse simulation is a form of inverse modelling in which computer simulation methods are used to find the time histories of input variables that, for a given model, match a set of required output responses. Conventional inverse simulation methods for dynamic models are computationally intensive and can present difficulties for high-speed applications. This paper includes a review of established methods of inverse simulation,giving some emphasis to iterative techniques that were first developed for aeronautical applications. It goes on to discuss the application of a different approach which is based on feedback principles. This feedback method is suitable for a wide range of linear and nonlinear dynamic models and involves two distinct stages. The first stage involves design of a feedback loop around the given simulation model and, in the second stage, that closed-loop system is used for inversion of the model. Issues of robustness within closed-loop systems used in inverse simulation are not significant as there are no plant uncertainties or external disturbances. Thus the process is simpler than that required for the development of a control system of equivalent complexity. Engineering applications of this feedback approach to inverse simulation are described through case studies that put particular emphasis on nonlinear and multi-input multi-output models

    Chronic pain assessments in children and adolescents : a systematic literature review of the selection, administration, interpretation, and reporting of unidimensional pain intensity scales

    Get PDF
    Background. Advances in pain assessment approaches now indicate which measures should be used to capture chronic pain experiences in children and adolescents. However, there is little guidance on how these tools should best be administered and reported, such as which time frames to use or how pain scores are categorised as mild, moderate, or severe. Objective. To synthesise current evidence on unidimensional, single-item pain intensity scale selection, administration, interpretation, and reporting. Methods. Databases were searched (inception: 18 January 2016) for studies in which unidimensional pain intensity assessments were used with children and adolescents with chronic pain. Ten quality criteria were developed by modifying existing recommendations to evaluate the quality of administration of pain scales most commonly used with children. Results. Forty-six studies met the inclusion criteria. The highest score achieved was 7 out of a possible 10 (median: 5; IQR: 4–6). Usage of scales varied markedly in administrator/completer, highest anchors, number of successive assessments, and time referent periods used. Conclusions. Findings suggest these scales are selected, administered, and interpreted inconsistently, even in studies of the same type. Furthermore, methods of administration are rarely reported or justified making it impossible to compare findings across studies. This article concludes by recommending criteria for the future reporting of paediatric chronic pain assessments in studies

    Sensitivity-analysis method for inverse simulation application

    Get PDF
    An important criticism of traditional methods of inverse simulation that are based on the Newton–Raphson algorithm is that they suffer from numerical problems. In this paper these problems are discussed and a new method based on sensitivity-analysis theory is developed and evaluated. The Jacobian matrix may be calculated by solving a sensitivity equation and this has advantages over the approximation methods that are usually applied when the derivatives of output variables with respect to inputs cannot be found analytically. The methodology also overcomes problems of input-output redundancy that arise in the traditional approaches to inverse simulation. The sensitivity- analysis approach makes full use of information within the time interval over which key quantities are compared, such as the difference between calculated values and the given ideal maneuver after each integration step. Applications to nonlinear HS125 aircraft and Lynx helicopter models show that, for this sensitivity-analysis method, more stable and accurate results are obtained than from use of the traditional Newton–Raphson approach

    Laser Doppler velocimeter system simulation for sensing aircraft wake vortices. Part 2: Processing and analysis of LDV data (for runs 1023 and 2023)

    Get PDF
    A data analysis program constructed to assess LDV system performance, to validate the simulation model, and to test various vortex location algorithms is presented. Real or simulated Doppler spectra versus range and elevation is used and the spatial distributions of various spectral moments or other spectral characteristics are calculated and displayed. Each of the real or simulated scans can be processed by one of three different procedures: simple frequency or wavenumber filtering, matched filtering, and deconvolution filtering. The final output is displayed as contour plots in an x-y coordinate system, as well as in the form of vortex tracks deduced from the maxima of the processed data. A detailed analysis of run number 1023 and run number 2023 is presented to demonstrate the data analysis procedure. Vortex tracks and system range resolutions are compared with theoretical predictions
    • …
    corecore