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A data analysis program has been constructed to assess

the SLDV (Scanning Laser Doppler Velocimeter) system per-

i formance, to validate the simulation model, and to test vari-

ous vortex location algorithms. The program takes either real 	 ux.	 x
or simulated doppler spectra versus range and elevation,

I	 calculates the spatial distributions of various spectral

moments (mean velocity, variance, skewness,, kurtosis) or

other spectral characteristics (V, V	 , V	 I	 I	 )peak max width , peak , sum
and presents these in a 3-D display (coordinate range.and

angle) so that spatial correlations and patterns can be

identified. The format of these displays is identical to

i'	 that used for the simulation output. These data (either real

or simulated) are then subjected to various processing pro-

cedures  designed to enhance the patterns and determine vorg

tex locations.

Each of the real or simulated scans can-be processed

by one of three different procedures: simple frequency or

g	 filtering,wavenumber filtering, matched 	 and deconvolution

filtering. The final output is displayed as contour plots x

in an x-y; coordinate system, as well as in the form of vortex

tracks deduced fzom the maxima of the processed data.

In order that two LDV systems may be compared, data

from either system is first converted to a common Cartesian

r



coordinate system.	 This is !done for each of the spectral

moments in turn. 	 Vortex tracks can either be obtained by

'cross correlation of data from both systems or by a triangu-

lation method. 	 _-

A detailed analysis of run number 1023 and run

number 2023 is presented to demonstrate the data analysis

procedure.	 Vortex tracks and system range resolutions are

is

compared with theoretical predictions.
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INTRODUCTION

Y

777

z

Analyses of a-particular flight test (Runs 1023 and 2023,

flyby of a B737) have been carried out. A detailed presen-

tation of the results is given in this report. The format

has been chosen to match that of the simulation code; ; to

facilitate detailed comparisons. Since vortex location is
F

a prime objective, emphasis is placed upon the spectral

distribution of the return signal and the effects of thees-

I

	

	 holding (both of intensity and velocity) upon it. Vortex 	 -

location algorithms using data from either one or two LDV

systems are tested against the simulation results.

The LDV return signal is in the form of a spectrum

(intensity versus velocity) at a large number Qf points in

}	 space. The positions of these mints are given in terms of
k	

_

range R and elevation angle 0 for each system. Values of

F	 the following derived variables are computed for each spec-=	 f

trum:
f

	

	 ^'

t 1) average velocity, V
s

2) variance, a

3) skewness,

3

I

The objectives of the data analysisstudy are:

1) to identify the parameters affecting the detection

capabilities of the LDV system, and

2) to define and optimize vortex location algorithms.



4) kurtosis, K

5)	 velocity (above threshold) at which the inten-

sity (above threshold) is maximum, Vnax

6)	 maximum recorded velocity, Vpeak
t

7)	 difference between maximum and minimum non-zero

velocity after thresholding, width

8)	 sum of the intensity in all velocity channels,

Isum€ r:'

r	 9)	 maximum intensity, Ipeak a

These variables are plotted both as functions of range at

constant elevation angle and as contour plots in Cartesian'
H

coordinates.	 The R-6 plot shows range-angle correlations,'
wa	

-while the contour plot shows the spatial variation in the

scan plane.

The effects of applying intensity and velocity

thresholds to the spectra have been examined.	 The optimal

intensity threshold I th is found by successive approximation,

increasing Ith until a clear contrast is achieved between 3

the localized vortex return and the distributed background

return.	 The results of this process can be summarized as

follows

1)	 A low intensity threshold results in'a noisy "vortex" "A

signature broadly distributed in space for all of the

variables derived from the spectrum, except higher

order moments of velocity which show localized signatures.

4
a
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2) Medium intensity thresholds result in Isum (and also

Ipeak' for non-zero velocity thresholds) being localized

near the vortex core. Other variables are noisy and

broadly distributed.

3)	 High intensity thresholds result in 'localized distri-
1

butions for all variables; I sm is most localized.

Only	 wo velocity thresholdy	 y	 s Vth (3.815 and 20.165 m/sec)

have been examined, and no systematic investigations of the

effects of the value of Vth have been carried out.	 All

variables (and especially Ipeak) are affected by Vth'
1

The sensitivity of the results to the values of the

thresholds is reduced by averaging the spectra.	 The averag-

ing process redistributes the signal intensity in a given

channel to its nearest neighbors according to a prescribed
-a

distribution formula. 	 Averaging was found to be helpful in

removing noise from either atmospheric turbulence or the
y

i

LDV system itself.	 Three filtering procedures (simple

frequency, matched filter, and deconvolution filtering) can

also be used to enhance the maxima of the contour plots and

to reduce the effects of noise.

The simulation studies show that the core location

is that of the maxima of 'V, a, 5,:, and K. 	 Applying, this z
criterion to the contour plots from the data tapegives

the vortex core location for the flyby case.	 The vortex

5 ;



track obtained by plotting the positions of the maxima in	 {

Isum derived from the data tape versus time can be analyzed

to yield values of descent rate, vortex separation, and

circulation. These values agree well with predicted values.

Simultaneously obtained data from two LDV systems

can also be used to determine the vortex track. Two dif-

ferent procedures have been examined. In the first, the

vortex location is prescribed as that of the maximum in the

product of a derived variable for one system with that of

-the same variable for the second system (e.g., V1 V2). In	 a
E d

the second, the vortex system is located by triangulation

using the values of Vpeak from both systems. The way in 	 -

which Vpeak information is used depends upon range. At

long range, the elevation angle of the vortex core was shown
i

by the simulation studies to coincide with that of the maxi-

mum in Vpeak' At short range (S 70 m), Vpeak is a minimum	 j

at the vortex core, and maximum to either side in elevation

angle. These criteria define a vortex core elevation angle

for each system, and the core position is at the intersection

of lines drawn.from each system at the determined angle.
4
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DATA REDUCTION AND ANALYSIS

Smoothing Procedure for the Signal Intensity Spectrum:'

A typical spectrum is shown below: the abscissa is

the velocity or channel numbers (the channel width is equal

F	 to .545 m/sec) and the ordinate is signal intensity. The

high velocity channels have little signals, the low velocity

channels contain wind information, and all channels contain

fluctuations.- Even after thresholds are applied, there remain

fluctuations which make it difficult to identify the vortex

location.

We have implemented a smoothing scheme which redis-

tributes the intensity level I(n o) of the original data to

its neighboring channels according to the relation5

I (no ) -2	 1
I (n) 2	 _	 2 a

In-no J<5 l+n	 l+mm_-5

The signals at channels below zero velocity are reflected

back to channels above zero velocity.	 The result is a much

smoother spectrum and contours . obtained are also smoother.

The horizontal line represents the intensity threshold Ith'

The left figure shows the original spectrum,, - while the right

figure shows the same spectrum after smoothing.
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The variation is much'smoother and gradual than the

original spectrum.	 All variables derived from this

_smoothed spectrum should also exhibit similar smoothness.
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Determination of Intensity Thresholds

Since both the LDV system mechanisms and the atmos-

pheric turbulence generate a certain amount of noise, the

'
d

output from raw data without applications of intensity

thresholds appear irregular and bear no similarity to the

^.:
{

simulation results.	 It is therefore important to determine

the noise level from the data.	 The noise level in general

{ is a function of both channel number and time t. 	 In princi-

ple, one could block the laser beam window and obtain the

^ystem noise spectrum as a function of channel number at a

given time and use this in reducing the data for a subse-

quent scan.	 In practice, this is not done; a-constant

noise level is specified for all channels. 	 Applying this
j

noise level to the data is straightforward. 	 However, if
a

the noise level is set too high, valuable signals will be

lost, and if too low, the desired signature can still be

indistinguishable from the background noise.	 A second
•

method we have adopted is to look through the entire scan

frame and select tho lowest signal intensity for each channel

: as the noise level.
e

Different intensity threshold levels can be then

applied above the noise level determined by either method to

study the effects.

I
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• Construction of the Contour Plots: e

Since data are only available at the focal points
depicted by the fan beam configuration, it is convenient

to redistribute the data on a rectangular mesh to obtain

the contour plots. The separation between data points is

large near the long range end of the fan, and it is desir-

able to find a way which can fill up the void space between

each range scan smoothly.

The procedure we have implemented here is to dis-

tribute the quantity carried by the focal point. P (see

sketch) onto a square having the same dimensions as that

of the desired mesh. Then a weighted value (proportional

to the shaded overlapping area) of that quantity is assigned

to each of the neighboring cells A, B, C and D. The mesh

dimension should be comparable or smaller than the largest

separation between points in the fan beam. The void space

outside the fan was assigned a value equal to the minimum

of the quantity to be contour-plotted. This was found effec-

tive in removing the large number of contours which would

otherwise appear near the edge of the fan.

A_,	
• B

C



• Filtering Procedures:

Techniques commonly used in the analysis of radar

data to maximize the signal-to-noise ratio can also be applied

to the LDV returns.	 Detailed descriptions are given by
k,

Skolnik	 (1970) .

The return signal s(x) can be considered as consist-

ing of two parts, f(x) which is due to the vortex at the

unknown location x	 (which is to be determined) and n(x)o

which is due to noise.	 Then

s (x)	 = cf (x-x)	 n (x)o

where c is an arbitrary constant.	 The Fourier transform

of this equation , is

ik•xo
sk = cfk e	 + nk

f

Dividing both sides by fk, we bave
r i

sk	 ik•xo	 nt
P-k= fk =ce	 +fk

In general, filtering involves applying a weighting functionk

wk to the Fourier components pp and then retransforming to
r

the physical plane,

11
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1	 =
ik •x	 -ik •x	 n-^w-^o	 -1	 f^kdk(Pkwk)	 c wk a	 e	 + F•

k

The object of the filtering procedure is to enhance the first

term with respect to the second. 	 Different forms of the

weighting or filter function wk produce transformed signals

with different properties.

Deconvolution filter: 	 Here we set wk = 1, so that

}
OD

_1	 ik• (Xo-X) 1
f	 (pkwk) = c	 e	 dk +	 (nk/fk)A

cS (x-x ) + G (x) k
o

6

In the absence of noise, this filter produces a delta

function at xo .	 When substantial noise is present, G(x)

can be appreciable at some values of x, and it becomes

difficult to identify the delta function.

Matched filter:	 This is the optimum filter when
}

y

` the signal is observed in the presence of white noise

(n- independent of k).	 The weight function is wk = 1fz1'

l
and

12
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ik xF -1 (pkwk) _ c'	 fkfk a	 o e-1 *x dk + F-1(nkfk)
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00	 00

r

^a

x

c	 e-ik•x	 f (x) f* (x xoj eik•x dx dk	 5
¢

f

	

00	 foo

 (nkfk) 3

r

z

The underlined integral is a correlation and can be shown_ 	 !

to have a maximum at x	 Then the inverse transformo
F- 1 (pkwk) will also be a maximum at xo.

Simple frequency filter: In this case, the weight

function is wk = exp(-Ikl 2 )	 This filter only smooths out 	 L

the noise.

The 'filters described above have been incorporated

1 in the LDVDA code. The usefulness of filtering procedures

has not been explored to any great extent and deserves-

further study._

	

t	 Data Reduction Procedures

The basic set-up is described*in; the Appendix. The

data tapes from NASA/MSFC are first converted into 60-bit

binary word tapes to be analyzed on the CDC 7600 computer.'

The data reduction program LDVDA is then, applied to study'

these tapes.

	

a	
13
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In 'general, each range scan is composed of approximately

50 points, and about 25 -lines of sight for a complete angle

scan so that there are approximately_ 1250 range points in

each frame.	 Assuming each focal point is separated by .008

secondsin time, one complete scan will cover about 5 seconds.

Each tape covers about 50 seconds of data so that there

should be 12,500 data points altogether.	 For each focal

point in space, there are six numbers to record its frame

sequential number, x,y coordinates, range r, angle 0 and

the clock time plus ;one number to record the signal intensity

for each of the _104 velocity channels.	 The ,computer cannot

store all this information in the memory core at once, and

therefore only 1295 data points are read and stored in the

large memory core (LCM) at any one time. 	 Since the record-
ing of the data does not always start at the range maximum

or minimum, portions of the 1295 data points are discarded

w before the beginning'of the range scan is found. 	 If the

total number of data points in one complete scan frame to

be read exceeds what is left in the LCM, the subroutine

PUSHUP will discard data points which have already been used

and will read another 1295 points into the LCM.	 The noise

level is found, and various intensity and velocity thresholds

are applied to calculate V, Vpeak' max 	 width'

Isom	 and Ipeak*

14
3



IV. RESULTS AND DISCUSSION

The data reduction program is capable of analyzing

both flight and simulation data tapes. 	 The first output

of both data tapes is the fan beam configurations. 	 These

are Shown in Figures la and lb, where Figure la is the

Run 1023 data and Figure lb is the simulation data.	 Both

horizontal and vertical coordinates are of the same scale	
y

in meters.	 The caption near the top of the fan describes

the lowest and the highest elevation angles, as well as

the initial and final clock times 'in seconds. 	 The jittering

of the angle and _range scan of the LDV system can be assessed
k

from this plot.	 The simulation data (Figure lb) uses a fan

of lines-of-sight separated by a constant angle of 1.5 0 and

is extended from the aperture all the way to the outer	 •
n,

boundaries of the computation mesh.	 The higher density of_.

range points near the vortex locations is a result of finer

integration steps to resolve the higher velocity gradient

there.

Due to the large volume of output for each data tape

r
e and the large number of data tapes processed, we will con-

centrate on discussion of only the best representative cases,

i.e., Runs 1023 and 2023, throughout this report.-

Run 1023 (run 2023 represents output from the second

LDV system) was conducted at MSFC/NASA on July 20, 1974, at
4
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north to south. The first LDV system was located at 61.11

meters to the west, and the second__system was at 240 meters

to the east.
,

Fi ure 2-shows four typical spectra.. 	 Figure 2a isg

a spectrum of the ambient wind; Figure 2b is that of the

vortex.	 Notice the peak intensity is shifted toward higher
Y

velocity channels.	 When there is no noise, defining the

noise as the minimum intensity in each channel should yield

"noise" which is identically zero. 	 Since there is.no noise

 procedure didgenerated is the simulation data, thisproduce9	 P	 -P

a zero noise level.	 Figure 2c shows a real spectrum due

to ambient wind, and Figure 2d shows a spectrum slue to the

vortex, which brings Vnax nearly to 7 m/sec from the ambient
3

wind of 1.63 m/sec.

Figure 3 shows the applications of the noise threshold

schemes to the real data spectra.	 The abscissa is the velocity

in m/sec or is equivalent to the filter channel numbers.

The ordinate is the intensity level.	 Figures 3a and 3b show

the first intensity threshold scheme being applied to two

typical vortex signatures, and Figure 3c and 3d show the second

noise threshold scheme as applied to the same spectra. 	 The

dotted lines are the recorded spectra; the undotted lines are

the noise.	 From Figure 3b, it is expected that"the constant.

intensity threshold of 51 is too low due to the spurious spike

. 17
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at a velocity equal to 18.64 m/sec. From Figures 3c-and 3d,

it can be seen that the second scheme should subtract out

the ambient wind signature and leave the vortex signature

intact.; One might conclude that the second scheme should

be a better scheme to achieve maximum clarity for the vortex

signature. However, as it will be shown later, if the

threshold of the first scheme is high enough, the results

are very close to that of the second scheme at lower inten-

t	 sity thresholds.

Figure 4 shows the results of applying two different

constant intensity thresholds to a set of spectra. 	 Figure 4a q

shows a typical spectrum and a threshold level of 51.	 The
x

values of V and Vwidth which result are shown for all 'R and a.

s	 e in Figure 4b and 4c (left column). 	 In the right column,
G

Figures 4d, 4e, and 4f, the threshold is set at 60. 	 The
E

abscissa of each plot is range along the line-of-sight in

meters.. The ordinates are indicated by the captions; all

have units of m/sec.	 Each curve represents the variable

versus the range, and each is displaced vertically by a

constant distance proportional to the difference in elevation j

angle._	 The location of the LDV system, the lowest and high-

est angle and the clock time recorded for the beginning and

end of the frame are written on the plot. 	 The minimum and

maximum values of the variable appearing in the frame are also
x
x;	 indicated.	 Vertical spacing between each curve represents
w;a

20 
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half-of the difference between the maximum and minimum of

x'.
T

` the variable plotted.	 Due to the appearance of several

spikes at higher velocity channels in Figure 4a, it is

expectexpected that the V and V	 in the left column will bewidth g`,

?-' less smooth than those in the right column. 	 This is found

when one compares Figure 4b to 4e and Figure 4c to 4f.

t Figures 4e and 4f show the localized bumps at elevation

- angles of .43 and .32 radian and at ranges near 109 meters

and 127 meters, respectively.

Figure 5 shows the effects of the same pair of

3

thresholds on Vpeak 	 max' and variance.	 The Vpeak shown

in Figure 5a is very noisy, while Figure 5d shows well

localized vortex signatures. 	 This indicates that Vpeak is C

very sensitive to the intensity thresholds. 	 On the other

hand, Vmax (Figures 5b and 5e) shows no dependence upon the

intensity thresholds, as is expected.	 Therefore, we believe

nnax should be a better. quantity to work with than Vpeak

as far as the sensitivity to the intensity thresholds is con-

earned.	 Figures 5c and 5f show the effects of different

thresholds upon the variance a in (m/sec)2.	 They show the

f
same trend as appeared in Vpeak' but the degree of sensitivity

.is lessened	 Figure 5f shows well localizedg	 Patterns at

angles of .43 and	 31 radians and at ranges near 136 meters.
s;

From 'the simulation outputs which were discussed by Thomson

c{ and Meng(1974), it is known that if the line-of-sight passesr

^^ 2 2

k
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•' directly through the vortex core there is no signal. 	 one

may ask whether the signatures in-'Figure 5f are due to one

or two vortices.	 The separation between bumps at angles

of .43 and .31 can be calculated to be approximately 13.6

meters and the horizontal separation 	 distance is 12.7 meters, 4

which is shorter than the initial vortex separation (,,j18
_ s

• meters) predicted for the B737, but longer than.the predicted`

vortex core diameter of four meters. 	 Figures 6a and 6b show
a

the skewness (in (m/sec)3) and kurtosis (in (m/sec) ` ) at an _	 {

intensity threshold of 51. 	 They appear quite noisy. 	 Figures

6d and 6e show the skewness and kurtosis for I th = 60.	 Both x

show well-localized maxima at an angle of .31 radians andi

have sharper angle resolution than that of the variance in

Figure 5f.	 Figures 6c and 6f show almost identical results

I of the Isum , which is virtually independent of the value of
I,

the intensity threshold.	 Isom has maxima near the vortices
9

{
and varies.smoothly with both angle and range.

Y
: Figures 7a and 7b show IPeak.	 This is not a good

. indicator for vortex location when there is no velocity
threshold but 	 as will be shown later, it is a good indicator
if a velocity threshold is applied.	 Figures 7c and 7d show

k the maximum Vpeak in m/sec for each line-of-sight (that is,
the highest Vpeak for one complete range scan) versus the

k elevation angle in radians. 	 Because of the low intensity

threshold, the maximum Vpeak in Figure 7c is as high, as

24
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21 m/sec and the curve does not -reveal the vortex location.

Figure 7d shows two well localized peaks at angles of .32

and .43 radians.	 These angles are consistent with all

previous plots. $

No velocity threshold is applied on the spectrum'

shown in Figure 8a.	 The vertical line indicates the ;zero a

velocity channel, the lower undctted line represents the

Imn level determined by the second scheme, and the higher
a

undotted line represents an intensity threshold of three

added onto the Imin level.	 Figure 8b shows the same spectrum

with velocity threshold at 7.63 m/sec. 	 The 'a' series of t

Figure 9 through Figure 17 are the results for "no velocity

threshold" cases, and the `b' series are those for the

P	 "velocity threshold" cases. t

Figure 9a shows V is broadly distributed.	 It becomes
p

a minimum at vortex locations, while Figure 9b, in which V
a

ismore localized, shows the same trend. 	 Figure 10a shows

that Vnax is well localized without _a velocity threshold,

and Figure 10b indicates that at this low intensity threshold
' _

level, velocity threshold produces a very noisy plot of Vmax

o

Figures lla and llb are identical, since at low intensity

thresholds Vpeak will not depend upon the velocity thres-
E

hold.	 Vw	in Figures 12a and 12b is almost identi cal,€	 i.dth	 ^	 5

r	 and both figures show the same trend observed in V

(Figure 9).	 Figures 13a and 13b show slightly improved

localization. for /over that shown in Figure 9. 	 The _same`
-r	 27
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trend that the velocity threshold brought about in Figure 9

is again observed in Figure 13..

The coefficient of skewness now as

v(v_—) 3 1 (v)	 2/(Y3

is shown in Figure 14.	 This quantity is always positive,

It s location of maxima coincides with the minima of a.

Both Figures 14a and 14b show good vortex signatures, and

velocity threshold further improves the localization of

vortex signatures.	 The coefficient of kurtosis defined as j

K	
[j(v

is shown in Figure 15.	 Both Figures 15a and 15b show good

signa tures.	 The plots of skewness and kurtosis as do-fined

previously appear quite different from those shown in

Figures 14 and 15.	 Both skewness and kurtosis plots were

found to be similar to the variance shown in Figure 13, but

were quite noisy.	 The redefined coefficients-of skewness

-and kurtosis seem to yield clearer signatures.

Figure 16 shows that I is maximum at the vortexsum

location, while the velocity threshold case in Figure l6b

shows the opposite trend. 	 Finally, Ipeak is shown in

Figure 17.	 The velocity threshold is seen to be able to

improve the angular resolution in Ipeak significantly.	 The

Vpeak versus angle plot for this low intensity threshold case

is not informative since peak is equal to the constant velo-

city at the highest channel for all angles.
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F

F
j

I	 ^;

'i

• r

YE
j Figure 18 shows the effects of different variable

r
intensity thresholds above the noise level, determined by

z

{
the second scheme.	 Figures 18a and 18d show the recorded

spectrum as the dotted line. 	 The undotted line is the
,a

threshold spectrum obtained by adding a constant value

(20 or 25) to the noise level derived from the minimum in-

tensity in each level. The threshold spectrum shown was used

in analyzing the data; although the data spectrum shown lies

mostly below the threshold spectrum, other spectra do not,

and these are responsible for the signals. 	 One might expect
a

to find the same effect as was found in the first scheme.

r However, the average velocity in Figure 18b shows 	 a single 3

peak at a location totally unrelated to the vortex locations.

This was because of a very high intensity return at that x

range point, which	 was obviously a noise return.	 Due to

that very high signal, all the rest of the variation is

suppressed.	 Figure 18e shows maxima in V, but it is hard

to identify a localized vortex signature. 	 Figures 18c and =,

18f, showing width' are almost identical, except for the

noise point which appeared in the V plot. 	 Because of the
r

lower intensity threshold, Figure 19a shows several peaks

appearing in the plot of Vpeak' while Figure 19d shows only

one peak.	 Figures 19b and 19e showVmax' and Figure 19e

appears to be similar to Figure	 5e.	 Figures 1'9c and 19f,

together with 18b and 18e, ",show that plots of the variance
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a and of V depend in a similar fashion upon the intensity

threshold.. -Figures 20a and 20c, and 20b and 20d, show

that skewness and kurtosis alsobehave similarly. Figures

20e and 20f show the maximum Vpeak versus elevation angle.

Figure 20e has the higher maximum value of Vpeak and shows

three peaks at angles of .25, .35, and .45 radians. (These

are also found in Figure 19a.) Figure 20f shows the highest

Vpeak at 17 m/sec, with three peaks atangles of .28, .34,

and .40 radians.

Results from applying a higher intensity threshold

are shown in the a, b, and c portions of Figures 21 through

24.	 These plots exhibit a behavior very similar to the

series shown in the d' 	 a	 and f portions of Figures . 	4 throughP	 g

7.	 The second 'noise determination scheme (minimum intensity)

does not produce clearer vortex signatures than the first

scheme (constant noise level), and requires more effort to

apply.	 However, the second scheme should be less sensitive

i
to arbitrary assumptions in setting the intensity threshold.

Figures 21 through 24 show the effects of velocity

thresholds.	 The vertical lines (at V = 0 in Figure 21a

f
and V = 7.3 m/sec in Figure 21d) show the threshold values.

F

A constant value of'30 is added to the minimum-signal noise

level in all cases.	 All signals below the velocity threshold

are dropped.	 This will subtract all wind information for

4 the right column plots, so that signals will be due to the
I	 ^`

L	 '
vortex. only.
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` Figures 2le and 21f show signals which a_	 g	 g	 re better
f
s a

isolated than those in Figures 21b and 21c. 	 Figures 22d

^. and 22e show almost identical results as those in Figures

2le and 21f.	 However, Figures 22f and 23 d,e,f reveal

only one peak instead of the four peaks which appeared

F in the Vpeak (Figure 22d) and Vwidth (Figure 21f) plots.

The most remarkable effect of a velocity threshold is on

Ism (Figures 23c and f) and Ipeak (Figures 24a and b);

Ipeak is a good indicator of vortex location if velocity

thresholding is applied.	 Figures 24c and 24d both show

two peaks at angles of .30 and .43, and the velocity

magnitudes are the same.	 The gradual drop off on both
i

k, sides of the peak shown in Figure 24c disappears when

velocity thresholding is applied.

Figures 25 through 32 show a series of contour plots

z
of V, V	 ,__ V	 , 6, 5	 K, I	 , I	 A constant inten-max	 peak	 sum	 peak

sity threshold of 60 is applied and there is no velocity

threshold.

; c The method of preparing the contour plots was dis-

cussed in Section III.	 The grid size is 200 m x 200 m.

Values of the quantity on the contours are indicated near

the top'of each plot.	 An auxiliary cross-sectional plot

is given below each contour plot to demonstrate the vari-

ation versus both x and y distances.	 The time of the scan

is recorded on both the contour and the cross-sectional

48
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1

plots.	 The quantity being plotted is indicated hear the

upper left corner of each contour plot.	 The highest and

lowest value of the quantity are written out in the cross-

sectional plots.

Figure	 25 shows contours of V in meters/sec. 	 The

separation distance between the two maxima in the contour

plot is approximately 25 meters, which is quite close to
a

the theoretical prediction of 28 meters. 	 The vertical

dimension of each maximum is about 25 meters, which is

also reasonable when compared to the simulation results.	 j

Figure 26 shows the contour plot for max'	 It is quite

similar to that of V, and the maxima are closely correlated

to those of V.	 Figure 27 shows the contour plot for Vpeak`

Due to the high intensity threshold, it seems that the

left vortex signature has been lost in this plot. 	 All higher

moments of the spectrum seem to give well localized signatures, 	 a

but they also dose the weaker signature at high intensity

thresholds.

Figure 28 shows the variance a in (m/sec)2. 	 It shows

only one peak at (125, 40); the other peak is almost com-
4i

pletely' lost. 	 Similarly, in Figures 29 and 30, the .contours

for S and K are shown to have one peak only.	 Finally,

Figures 31 and 32 show the contours of Ism and Ipeak'	 Isom

shows well-defined maxima which correlate with those in Y

and Vmax 
but disagree with the position of the maxima of

E
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i

i 	 Y

all other quantities. The reason for the discrepancy is
1	

D

unknown and deserves further study. Locations of the

maxima in Ipeak (Figure 32) are difficult to determine
z

unambiguously; they become fewer and more sharply defined Y

j
when a velocity threshold is applied.

Summarizing the discussion so far, we can conclude

that the results from both noise level determination schemes

appear to be similar. The choice of the intensity thresholds

is very important for all variables, but it is less critical

for I	 and II	 is a good vortex locator; Isum	 peak* sum	 peak

is a good vortex locator if a velocity threshold is applied.

At high intensity thresholds, the low order velocity moments

yield spatially-distributed, but smooth, contours. The

high order velocity moments are very localized but lose

the weaker signals completely.

A series of contours for I	 are shown in Figuresum

33abcd. It is known from simulation studies that maxima of	 a,

V, a, , and K are identified with the vortex location if-	 gyp,

range is above 100 meters. On the other hand, the data

output shows the locations of maxima in V are closely a
correlated to those for I sum . Therefore, one could identify 	 3

a maximum in Isum as the vortex core. Plotting the maxima

of ISM as functions of time, we can obtain the vortex tracks

f depicted in Figure 34 It' can'be seen that there: are two

vortices moving from left to right at a rate of about 1.84 m/sec

58
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3

and descending at ti1.08 m/sec.	 The average vortex separa-

tion is about 30 meters, so that the total circulation

contained in the vortex is about 204 m2 	 2/sec (2205 f t /sec) ,

which is also close to the theoretical prediction of 2360
ft2/sec.	 The entire content of a seven track data tape

can be represented by these nine points.

The actual range resolution of the LDV system can x

also be assessed from the contour plots of I sm in Figure?:.

33.	 If we define the range resolution As as the half width

of I	 along the beam, we can determine the dependence ofsum

As upon r;an a s.	 Figure 35 shows As (meters) versus rangep	 g	 g

(meters)obtained this way.	 Also shown is the predicted

value As = 2f	 (R) 2 , where f = 2.1, A	 10.6u and R	 15.24 cm. #	 `'7r

The range resolution is poorer than predicted value.

Vortex tracks can also be obtained by analyzing

data from two LDV systems scanning simultaneously over

generally the same area. 	 One procedure is to multiply the

variable defining the vortex track (say V) from one system
T`

by its value given by the other system, and to then plot

contours of this product. 	 The positions of the maxima are

then identified as the vortex positions.	 A second procedure-
.
t is to apply triangulation, as discussed in Section II.

configuration.Figure 36 shows - an overlapped fan beam-confi g

The first system (deft) is located at -61.11 meters; the

second system (right) is at 240.33 meters.-	 The contour
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plots for V from both systems are plotted separately in

Figure 37a and b. Both show elongation characteristic
j

of the LDV system. The contour for their product is given

in Figure 37c, which is well defined over a reasonable

dimension, and the noisy contours elongated along the range

appearing in Figure 37a and b are eliminated. 	 Doing this
r

for each time step will produce the desired vortex track.

If the same process as described above is repeated

for the quantity Ism, smoother and clearer vortex tracks

can be expected.	 This was not done, but simple comparisons a

of Ism from outputs of these LDV systems were performed.

The contour plots of I from both Runs 1023 andsum

2023 at approximately the same time are shown in Figures

38 and 39.	 The intensity threshold was set at 50 in s	 j

Figures 38a and 39a, and at 25 in Figures 38b and 39b_. 	 The

run numbers are indicated in each plot; ground level is

marked in Figures 38a and 39a. 	 The cross symbols are used

to identify the maxima in each plot. 	 Range in meters is

measured from each LDV system and can be converted to a

`	 common frame.	 Figure 38a shows two maxima, while Figure 38b

shows only one.	 The location of maxima when converted tot

the common frame are not closely correlated. 	 Figure 39a

shows the maxima at (53,35) and (76,25), while Figure 39b

shows the maxima at (70,25)_ and (88,27) when converted to
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a common frame. There are considerable deviations. The

discrepancy could be attributed to range resolution and

different thresholding conditions.

A series of plots of Vpeak vs. angle for both LDV systems

are given in Figures 40 through 42. The 'a' series is from

the first system; the 'b' series is from the second system.

From each of these plots, the angle at which the Vpeak is

a maximum can be read. Then a ray can be drawn at that

angle from the location of the corresponding system. Inter

section of the rays will determine the vortex locations.

The accuracy of the vortex track determined: this way in 	 3

Figure 43 is not very clear. The onlyguidance is to com-

pare the simulation results of Vpeak versus angle to actual

vortex location. It appears difficult to determine the

vortex track from Vpeak information alone.

r
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V. CONCLUSIONS AND RECOMMENDATIONS

Two vortex detection modes were considered:- a

"soft target" mode which deduces the vortex track by assuming

the vortex is located at the maxima of a well-defined, smoothly

varying quantity such as ISM; a "hard target" mode in which

a triangulation method was applied to locate the center of

the peak velocity for both LDV systems. Several conclusions

and recommendations were drawn from examination of the data:

1) The two noise-determining schemes are successful and

both produce clear vortex signatures; the best value

of Ith must be evaluated by trial and error.

j	 2) The vortex wake appears as a spatially-distributed

target; the clarity of the signature depends critically

on the chosen thresholds, either I th or Vth'

3) The spatial dimensions of 	 Vmax Vpeak appear to be

larger than those for a, $, and K. However, the utility

of these variables in locating the vortex core deserves

further study.
I `,	

4) The variable which has the least dependence upon the

s

	

	 value selected for Ith is Ism, and the maxima of its

contour appear to define the vortex center satisfactorily.
f

5) Range resolution based on I SM of the LDV system appears

to be poorer than-theoretical prediction.

f	
Y:
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6) The best Vpeak versus angle plot is generated by the

data analysis code when no velocity threshold is

applied and only medium I th is applied. Too high an

Ith will eliminate the weaker vortex signal and too

low an Ith will yield unrealistically high Vpeak* if

a velocity threshold is applied, the angle dependence

near a vortex may be lost.

7) Certain ambiguities must be cleared up before the

triangulation method can produce reliable vortex tracks.

This is mainly because the V	 versus angle plot is

k

peak	 +

range dependent; that is, it appears very different

at long range from that at close range. in addition,:

it requires better coordination between the two LDV

systems to maximize the overlap in scanning.

8) The contour plot of the cross correlation of I sm from
i

two LDV systems should be a good vortex track generator.

Evaluation of Isum should also be easily adaptable in

the  present on-line system to yield the vortex track. 	 l

9) The noise level as a function of time should be recorded

on the high speed tape to eliminate the trial-and-error

procedure.

10) A translator should be included in the LDV system to

obtain the sense of velocity._' The velocity vector

obtained from the existing data is not meaningful.
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°	 Appendix: FLOW CHART FOR THE LDV DATA ANALYSIS PROGRAM

The basic program setup is described in the flow

chart. The data tapes are first converted into 60-bit

binary words in order to be analyzed on the CDC 7600

computer. The data reduction program LDVDA is then applied

to study these tapes.

Since the recording of the data does not always

start at the range maximum or minimum, the first range
r

maximum or minimum is used as the first point for data

processing. This is done in the subroutine RESET. Then

the stored data points are fetched and the spectrum plotted

for several space points. All the variables v, vwidth'

vpeak'_vmax GO- 	 K ` zsum' Ipeak are then computed as a

function of rangtG and elevation angle.

After one complete scan is obtained, the subroutine 	
r

DISPLAY is called to present various plots. The spatial j

pattern of data points is first displayed. The subroutine
A

3DPROFL is called to produce the r,9 plots for all the

variables: v, v	 , v	 , v	 , d, R• K, _	 , I	 •width peak -max	 sum__ peak

The highest velocity for each angle is also plotted versus
x

angle.
S

The filtering procedures are then applied to analyze

the data. First of all, the fan beam configuration is mapped

into a rectangular mesh. This is done by calling the sub-

routine SETUP; then CONMAP is called to generate the contour

PREGMING PAGE BLANK NOT F 	
A-1

_



plots for the array on the rectangular mesh. This is

valuable for comparing to the plots after the filtering

is applied. Subroutine MATCH then performs one of three

different filtering operations: matched filter, smoothing

or'deconvolution.

Subroutine CONMAP is again called to plot the

contours of the filtered data and all the variables v, vpeak'

vmax , vwidth. ,	 sum peakv, S, k, I	 I	 are again processed. 

through the same co topr plotting procedure.



4

II.	 Flow Chart for the LDV Data Analysis Program

The basic program setup is described in the flow
z

chart.	 The data tapes are first converted into 60-bit

binary words in order to be analyzed on the CDC 7600 	 -

computer.	 The data reduction program LDVDA is then applied

to study these tapes.

Since the recording of the data does not always x

start at the range maximum or minimum, the first range

maximum or minimum is used as the first point for data

processing.	 This is done in the subroutine RESET. 	 Then

the stored data points are fetched and the spectrum plotted

for several space points. 	 All the variables v, v width' -

., v v	 Or g, K, I	 I	 are then computed as apeak	 max	 sum	 peak

function of range and elevation angle.
v

After one complete scan is obtained, the subroutine

DISPLAY is called to present various plots.	 The spatial

pattern of data points is first displayed.	 The subroutine

3DPROFL is called to produce the r,6 plots for all the x

variables:	 v, v, v	 , v	 c,	 S, K, I	 Iwidth_	 peak	 max	 sum	 -peak'

The highest velocity for each `angle is also plotted versus

angle'.

The filtering procedures are then applied to analyze

the data.	 First of all, the fan'beam configuration is mapped

into a rectangular mesh.	 This is done by calling the sub-

-. routine SETUP; then CONMAP is called to generate the contour

i

6.;
A-3
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o convert the
ape to a 60-bit'
ord • tape to be
nalyzed on the
DC 7600

DISPLAY

generate the fan
beam configuration

Program LDVDA	 l	 CALL 3DPROFL

for R,8 plots for the
to analyze the	 ^V11P °peak' vmax^ c7,
data tape 	 sum of intensit

1peak intensityI

f

t^

	
1P	 ^

NASA DATA ANALYSIS FLOW CHART

LDVDA (MAIN PROGRAM) f

Read data tape up to 12Wi
points and store in the
large core memory

Set noise level for each
channel

CALL RESET
to find the beginning of

!the range scan

Fetch the data from the
1 arge core memory	 '•

CALL SPTRUM

(Compute the variables v, i

peak , vmax, G, R, K, sum i
sntensity, peak intensity

!Test: Is this the end
of the range scan? 	 !

No
Yes

}Test: Is this the end
of the angle scan? 	 i

i
!	 NO

3DPROFL	 I	 '

	

Yes'	 1

generate R,8	 h	 j-+	 CALL DISPLAYgenerate the peak 	 ,plots	 (velocity versus angle ..^^: for ° TV lots
;plots	 I	 p

CALL SETUP

set up a rectangular meshi
from the (r . 6) fan beam	 a

SETUP	 configuration	 I

to seed the fan beam :---►
,focal points on a	 r
;fixed x,y-plane mesh

CALL CONMAP
generate contour plot —^	 s

^-^	 CALL MATCH

r	 MATCH	 I'	 apply the matched filter
techniques

`: • ....__......._.._r._.. 	__y'^	
CALL CONriAPPUSHUP	 _

discard used data	 -	 CALL PUSHUP
points and read addi- 10--- push out used data and

y

tional data to'fill up— continue to read data
1295-point LCM storage
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