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ABSTRACT

Inverse simulation is a form of inverse modellingnhich computer simulation methods
are used to find the time histories of input vaealihat, for a given model, match a set
of required output responses. Conventional inveisgulation methods for dynamic
models are computationally intensive and can pteshfficulties for high-speed
applications. This paper includes a review of dstihbd methods of inverse simulation,
giving some emphasis to iterative techniques therewirst developed for aeronautical
applications. It goes on to discuss the applicatiba different approach which is based
on feedback principles. This feedback method isable for a wide range of linear and
nonlinear dynamic models and involves two distiatdages. The first stage involves
design of a feedback loop around the given simadathodel and, in the second stage,
that closed-loop system is used for inversion ef itiodel. Issues of robustness within
closed-loop systems used in inverse simulationnatesignificant as there are no plant
uncertainties or external disturbances. Thus tbegss is simpler than that required for
the development of a control system of equivalemexity. Engineering applications
of this feedback approach to inverse simulationdmscribed through case studies that
put particular emphasis on nonlinear and multi-tmpulti-output models.
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1. Introduction

An inverse dynamic model allows a time histofynput variables to be found which will allow
a given set of requirements in terms of output timstories to be satisfied. In some fields, such as
environmental science, “inverse modelling” is artersed to describe the process of fitting a model
to measurements or to field observations (essgntiaé process of system identification and
parameter estimation) but that is not the meaneiggoused here.

The significance of inverse models can be wstded from an example. If one were to define a
specific manoeuvre for an aircraft in terms of aeseof positions in three dimensions (in an earth-
based axis system) together with the correspontiings, inverse modelling techniques could be
used to find the required control surface deflewiand actuator movements to allow the aircraft to
follow the given manoeuvre. If, for the given cattsurface and actuator characteristics, it is
impossible to meet the requirements of this manaedke inverse model could also provide
information to allow design changes to be madentiight allow the specifications to be met.

Analytical methods, although applied successfuh some application areas, can present
difficulties in the case of nonlinear dynamic madeé\ number of simulation techniques have been
developed that can avoid the complexities of thailalle analytical approaches and the term
“inverse simulation” is used within this paper tesdribe any process of inverse modelling based
on simulation methods rather than analytical teghes.

1.1 Model inversion and the inverse simulation approach

The example given above involving aircraft maunaes is typical of how inverse models and
inverse simulations are used in engineering sysiesign. The inverse approach provides a
different view of the dynamics of a given systend aran lead to distinctly different forms of
investigation compared with conventional modellaryd simulation. Although this has relevance
for many dynamic problems and in system designe@ally where actuator and other limits are
important, inverse methods have proved to be pdatiky useful for investigations involving
systems in which a human operator has a central Etamples include piloting of fixed-wing
aircraft and helicopters, crane operation, shiprgtg and similar man-machine control tasks.

Military fixed-wing aircraft and helicopter alpgations stimulated much early research on
inverse modelling and simulation techniques sinaadhing-qualities are of vital importance in
these vehicles and inverse methods have been stwopnovide important additional insight (see,
e.g., [1],[2]). Other applications of inverse mduog and inverse simulation have been reported in
robotics and, more generally, in mechatronics apfibns and vehicle power-line models (see, e.g.,

[3D.

Although analytical techniques are of limitedpiortance for practical applications involving
nonlinear models, they are widely used for the lisio® of linear models. For example, linear
inverse models are commonly used in feed-forwamtrob systems and analytical methods can
provide useful information about the structure wferse models and possible errors in inverse
solutions.

For single-input single-output linear models,transfer function can be inverted directly,
provided we ensure that the inverse model is r&alis In other words, since poles and zeros of the
given transfer function are interchanged in theerse, additional factors may be needed in the



D.J. Murray-Smith
Mathematical and Computer Modelling of Dynamicadt®yns

denominator of the inverted transfer function tgwee that the number of poles is at least as great
as the number of zeros. These additional polesn@@r‘propering” poles by Bucholz and von
Grinhagen [4], [5]) must lie in the s-plane at p®ithat are far away from the poles and zeros of
the given transfer function.

In the case of multi-input multi-output lineaaodels inversion is also possible through simple
analysis, but practical application may preserfiatifties depending on the structure of the system
model. Some details of methods of inversion foedinsystems based on state-space descriptions
may be found in published work of Brockett [6], Btw [7] and Hirschorn [8].

These analytical approaches to model inverkiave been further developed by a number of
researchers including lIsidori [9], Hunt and Mey&0][and Zou and Devasia [11], especially for
applications involving the design of control systenSome of these approaches are applied to
nonlinear models through methods involving transi@tion of the nonlinear descriptions to linear
and controllable models using a nonlinear statdidaek control law. Such techniques can involve
concepts from differential geometry that are unfemito most design engineers, as are other
relevant mathematical techniques, such as regatemns theory. However, these analytical
methods, although successful in some applicatieasainvolving automatic control problems, have
not been applied widely in other fields. Methodsdzh on the numerical solution of differential
algebraic equations are also of interest (see, E.8]) but do not appear, so far, to have been
applied routinely to large and complex models eftype that arise in many design applications.

In Section 2 of the paper there is a brief eavpof established methods of inverse simulation,
giving emphasis to some widely-used iterative tempines developed initially for applications
involving fixed-wing aircraft and helicopters. Sect 3 provides an outline of methods for inverse
simulation that are based on the use of feedbastersyprinciples involving proportional control.
That section also goes on to present a systematioach that can be applied in the more general
case (allowing other feedback structures to be ubkexppropriate) and includes an example
involving a third-order single-input single-outputear model. Section 4 describes the successful
application of feedback principles to a single-inpingle-output nonlinear model of a fixed wing
aircraft, while Section 5 presents a multi-inputltiroutput case study involving a nonlinear model
of two coupled tanks of liquid. Section 6 providasne final discussion of the findings from the
applications and presents conclusions.

2. Established methods of inver se ssimulation

A number of inverse simulation methods havenbdeveloped for applications involving
nonlinear mathematical models and have been appigely because they avoid the mathematical
complexities of analytical methods of model inversiDifferent methods have been developed in
different application areas, such as fixed-wingraiit and helicopter applications, road vehicle
propulsion system applications and robotics.

Although some application areas, such as velddve-line modelling, have involved work on
inverse simulation tools that are quasi-staticeathan fully dynamic, the motivation in terms of
the use of the tools in design optimisation andyaiahas been essentially the same as in the other
areas. Most of the established dynamic inverselatmn methods involve iterative techniques and
there are two broad classes of approach that hese widely adopted — so-called “integration-
based” and “differentiation-based” methods whiclthboriginated in fixed-wing aircraft and
helicopter applications.
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The most widely-used approach is the integnabiased methodology. This involves repeated
solution of a conventional forward simulation mottefind the input needed to match the required
output using gradient information. Hess, Gao anch§Vd 3] published an account of research on
this type of approach in 1991 and similar methoalgehbeen described by Thomson and Bradley
and their colleagues (see e.g., [14], [2], [1]h the context of the aeronautical applications, for
which the methods were initially developed, thestfistep involves discretising a specified
manoeuvre using a sampling periddhat is relatively long compared with the integvatistep
length for forward simulation. In the approach addd, Gao and Wang [13] an estimate is made at
each time point of the amplitude of the step disgalaent needed in each input to move the vehicle
to the next point in the time history. The restiposition is calculated and the error between the
actual and required outputs is found. An iterafiwecedure then minimises the error and thus the
time history of inputs is found that will move tlaehicle to the required position. The fundamental
assumption in the integration-based method istti@inputs are constant over the time intefival
Clearly, the requirement that the output matchesréquired output can then be satisfied only at
exact multiples of the time stép

Although this technique is computationally dewhiag in that it requires repeated simulation
runs, it uses the forward model of the system wittu iterative loop and there is flexibility in
terms of the form of the model. No major reorgatisa of the program is required to
accommodate changes in the structure of the mdtiels any conventional forward model can be
incorporated within the appropriate iterative Idopprovide an inverse simulation. This gradient-
based iterative approach to inverse simulationbegs applied widely in the context of fixed-wing
aircraft and helicopter applications and, more médge in some marine engineering applications
(e.g., [14], [15], [16]).

The gradient-based approach conventionally usethe integration-based method involves
application of the Newton-Raphson algorithm. Sedrabed optimisation approaches such as the
Nelder-Mead algorithm have also been applied amé baen found to provide useful solutions in
cases where the Newton-Raphson algorithm fail®thverge (see, e.g., [16], [17], [18]). Additional
published iterative techniques involving the intgm-based approach include an approach based
on sensitivity analysis [19] and some other optatis-based techniques (see, e.g., [20]). With
currently-available personal computers these iterantegration-based methods are, unfortunately,
inappropriate for some real-time and other highedpapplications, or for other problems such as
design optimisation which necessitate the repegéedration of inverse solutions.

A two time-scale approach to inverse simufatieas developed by Avanzini and de Matteis
[21], [22]. It involves partitioning the state vables into two sub-vectors on physical groundss Thi
is also an integration-based approach.

It is interesting to note that, in the contextthe integration-based methods outlined above,
inverse simulation has a close link with concegtaanlinear model predictive control that have
been developed in recent years within the autoncatitrol community (see, e.g., [23], [24]). Both
the inverse simulation and model predictive contppbblems involve the development of
algorithms to force a nonlinear dynamic system adlov a prescribed trajectory. In model
predictive control a model is used to predict fatptant outputs based on past and current values of
outputs and proposed future control inputs. Cordiilons are calculated as a control sequence
based on optimisation of an objective functionha presence of constraints. The future output is
estimated from the model for a pre-determined thmzon involving a number of sample periods.
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The procedure is repeated at each sampling instardgnly the first control sequence calculated at
each time step is applied. The most obvious diffeeebetween the two approaches is that while
inverse simulation involves determining the conmgpleime history of the inputs that have to be
applied to a given model in order to ensure thgivan output time history is followed, the aim of
model predictive control is to ensure accurate robritf the plant in the presence of external
disturbances, measurement noise and plant undetain Similarities clearly exist at the
algorithmic level but the objectives and applicatoof the two techniques are significantly
different. Until relatively recently, there has hekttle meaningful cross-fertilisation of ideas,
experience or expertise between the two communkies/ever, the idea of the “receding horizon”,
which is of fundamental importance in model pradetcontrol, has been incorporated recently
into inverse simulation and a new approach invg\an“predictive inverse simulation algorithm”
has been applied successfullygmblems of helicopter flight control in aggressivanoeuvring
flight [25]. In this method, whenever inverse siatidn shows that a physical limit of the vehicle is
to be exceeded over some prediction horizon, aiSaectree” algorithm is used to find a new
control strategy that avoids the limit being ex@ekdrlhis approach thus involves a hybrid inverse
method which is based on conventional inverse stian, predictive control and decision tree
methods.

The “differentiation” approach, mentioned abovavolves transformation of the given
differential equations into a set of finite diffa® equations by replacing time derivatives ofestat
variables by equivalent finite difference approxiioas. These methods were developed in the
specific context of practical problems of helicopead fixed-wing aircraft flight mechanics. Much
of the initial work on this was by Thomson in theddie and late 1980s (see, e.g., [26], [27]) and
related to helicopter applications. About the sdmme Kato and Suguira [28] applied a similar
method to a fixed-wing aircraft problem. Althougls@implemented in an iterative fashion, the
differentiation-based approach provides an altereab the integration-based methodology and
has some possible advantages. For example, it é&s found that the iterative differentiation-
based approach of Thomson and Bradley [27] is amithr faster than the integration-based
methods and may therefore be more appropriateofoesapplications. However, it has not proved
as popular as the integration-based approach sihaages within the model tend to lead to
significant changes within the inverse simulationgsam, unlike the approach using integration
where the simulation model is separate and selfagoed.

An entirely different approach has been suggksly Buchholz and von Grinhagen ([4], [5])
who have pointed out that feedback principles mtevan alternative and potentially very fast
approach to inverse modelling of linear and nomimgynamic systems. It should be noted that this
principle was used very successfully for many ydarsthe generation of inverse functions on
analog computers (using electronic hardware withirfeedback loop) and there is relevant
information available on this type of approach éfbund within the simulation literature from the
period between the 1950s and 1980s. For exam@db&ek pathways applied to analog multiplier
hardware can be used to generate units to carrg olitision operation. Feedback principles can
also be used in the generation of inverse functfom® conventional analog function generators
(see e.g., [29], [30]). Known problems that mayebeountered in applying inversion methods such
as these, as implemented on general purpose amaloguter hardware, include issues of
instability. Dynamic performance limitations ares@limportant in applying these methods,
especially for applications requiring high speefisaution.

Essentially, the feedback approach to inveirselation involves the design and implementation
of a closed-loop system around the forward modeiMoich the inverse solution is required. The
desired form of output is used as the referencetifgr this closed-loop system and the exact
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inverse solution can, if the feedback system ialidee found from the signal generated at the input
to the model. The approach is closely linked tohoés$ for the design of model-following control
systems. In the case of inverse simulation theiredwutput is generated using a reference model
and the feedback structure provides the meansefoergting the inverse solution.

This paper provides an account of recent reke@volving the further development and
application of the feedback approach to inversaikition for linear and nonlinear problems. Issues
that are addressed include the generalisationeoafiproach to avoid some of the limitations that
may arise when using high-gain proportional feedlb#@an important aspect of this generalised
approach is the use made of control system anaiysis to guide the user in the selection of the
feedback structure and the values of feedback altertrparameters. The carefully selected case
studies that are presented involve physically-bassdinear single-input and multi-input multi-
output models of practical engineering systems. Wbk provides a useful extension to the earlier
published work of Buchholz and von Griinhagen [4].

3. Modd inversion using feedback system properties

3.1 Use of feedback involving proportional control

The use of feedback to generate an inversdi@olis based on the properties of closed-loop
systems. For a linear time-invariant single-inpuagke-output system with transfer functi@i(s)
the block diagram shown in Figure 1 provides a garmasis for this approach to model inversion.

For the single-input single-output case witkiraple gain factoK in cascade with the model
G(s), the transfer function relating the variabl§s) to the inputv(s) in Figure 1 is given by:

W(s) _ K
V() 1+KG(s)

(1)

_ 1
) 1 +G(9) (2)
K

For the case whel€is very large this gives:

L(CC

V(9 Gl )

Thus the inverse model f@& may be found by applying high-gain feedback arotihemodel
itself. The input tdG in that feedback structure forms the output ofitiverse model. It should be
noted that the order of both the numerator andié#mminator of the closed loop transfer function
is the same as the order of the denominat@.dfhe number of poles in the inverse model is thus
always the same as the number of zeros and there issue of realisability associated with an
excess of zeros. The variablén this representation is therefore the form ofpotithat we require
from the model whilew is the input to the model (under open-loop condgjothat will produce
this model output.
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While there are obvious similarities betweea diesign of feedback systems for model inversion
and the design of feedback control systems thexgeaar the other hand, a number of important
differences, most of which relate to the feedbag#tesn design requirements which are not the
same as those commonly used in control system ridebig external disturbances or issues of
measurement noise apply in designing a feedbaderayfor model inversion. Also, since the
requirement is to invert a given model, there cawven be any modelling error or uncertainties. This
means that some methods of closed-loop systemrdédsag are seldom used for practical control
system applications due to issues associated vatr gdisturbance rejection, susceptibility to
measurement noise, or lack of robustness in tefmmaaoalel uncertainties, can be used without

difficulty for model inversion.

One previously published application of feedbpdnciples to inverse simulation has involved
the development of validation tools for helicoptikght mechanics models. This application is
discussed in detail in a paper by Gray and von kagan [31]. The approach adopted in that work
involved an adaptation of an explicit model-follogiapproach to control system design and was
closely linked to problems of helicopter flight ¢mi system design and evaluation. In that
approach techniques of inverse simulation were iegpptiogether with a so-called “open-loop”
simulation procedure to identify weak areas of a-lwear multi-input multi-output helicopter
model. The overall conclusion of the work describefB1] is that the combination of these open-
loop methods and inverse simulation techniques igesvvaluable tools for gaining insight into
physical sources of coupling behaviour and defwes within simulation models. The use of
feedback methods of inverse simulation in this tgpapplication is clearly important in matching
the time-scales of the computational tools to theught processes of the investigators and
compares favourably with the slower techniques daseterative methods.

Model

Input
— -
Reference Error >
Tnput Model
v + Output
N Model
L L K L G >

Figure 1. Block diagram illustrating the feedbackution to the model inversion problem showing
the required output andthe inverse simulation time histowy. With a large gain factoK, the
variablew obtained from simulation of this system, is tol@ase approximation, the input to the
model G required to produce a model outplidt matches the reference signahlso shown is the
error signal, which is the difference between tlesitd output and the model output when
subjected to the signal. Although the single-input case is presented is tliagram the approach
is also applicable to multi-input situations.
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3.2 The general case of feedback-based model inversion

While simple proportional high-gain feedbaclkwdes acceptable solutions in many cases and
has provided the basis for much previous workis tield [4],[5], the principle of feedback-based
model inversion applies also to other forms of ek structure and the approach is not limited to
proportional control methods. For example, stedadieserrors in the inverse model that can arise
with proportional control may be eliminated by thdroduction of proportional plus integral
feedback, although this may introduce additionabiity problems.

Classical feedback systems analysis techniqaesprovide useful insight in the case of low-
order linear models and can allow a sensible choi@®ntroller to be made. For nonlinear models,
computer-based analysis of linearised descripticars be very useful in investigating possible
limitations of a high-gain proportional control appch and the possible merits of other forms of
control structure. For complex nonlinear models potar-based analysis is usually followed by
preliminary simulation runs to fine-tune feedbaekngvalues prior to using the inverse simulation
in the intended application. This applies not oryinear single-input single-output models but
also to multi-input multi-output models and to riaear models.

3.3 Thegeneral casefor single-input single-output linearised models.

With proportional control the feedback systeas kthe simple form shown in Figure 1 and if the
gain factorK is replaced by a transfer functiis), as for example in the case of proportional plus
integral control, the principles outlined above fbe implementation of inverse simulation by
feedback methods still apply. In this more geneaske Equation (2) has the form:

W(s) 1
= 4
Vi 1 g © (4)
K(s)

and the requirement for effective inverse simutai@that the magnitude ofK{s) should be small
compared with the magnitude @(s) over the frequency range of interest for the ndes
application of the inverse.

Investigation of the feedback system can beiezhrout using frequency-domain analysis
methods based on Bode plots while root locus @atsbe used subsequently to determine how the
dynamics of the closed loop system change withatian of selected parameterskif). Values of
the adjustable parameters can then be found tisaremhat poles of the inverse simulation model
lie at points in the s-plane that are close topbsitions of the zeros of the forward model. The
behaviour of any branches of the root locus thatl towards infinity in the s-plane as the gain
factor becomes large can also be established amid dffect on the properties of the inverse
simulation can then be understood.

The feedback approach to inverse simulation beagonsidered as involving two distinct stages.
This applies to both the linear and nonlinear cdmésthe importance of the two stages is more
obvious in the case of applications involving noeér models.
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In the first stage of the inversion process thesed-loop system is designed, by whatever
method is appropriate, and parameters are thestadjso that the feedback system meets specific
requirements in terms of the response to simpletsipuch as a step or impulse. If a linearised
description of the model is used in the initial igas the performance of the closed-loop system
must be checked through simulation for other ojpmyatonditions, preferably using the full
nonlinear model. Any limitations should be correlcte noted for the application stage.

In the second stage, the use of a feedbackrmygir model inversion is similar to a model-
following type of control system where the outpotshe model are forced to follow time histories
generated by a reference model. The input varidblethe model within the closed- loop system
are then the inputs necessary to achieve the eghairtputs. It is recommended that the differences
between the reference inputs (which representdithe histories to be followed by the model
output variables) and the actual model outputs Ishdx monitored continuously and that
guantitative measures of these differences (sutheastegral of the
squared error) should be generated and recorded) alith the time histories of model inputs
(which are the required outputs of the inverse &tmn) as shown in Figure 1.

3.3.1 An example involving a third-order system ehod

The use of simulation combined with the feedbagkagch for a single-input single-output system
model can best be illustrated through an examgles ifivolves a simple single-input single-output
system (SISO) model that has been used in previugstigations [16], [17], [18] involving the
conventional integration-based iterative approacimterse simulation. The state-space model for
the system has the following form:

X =Ax+ Bu
y=Cx+ Du
where
0O 1 O 1
A={0 0 1|, B=|-5/, cCc=[1 0 0o, D=0 (5)
-6 -11 -6 69

Analysis shows that the system has three poles £at1.000,s = -2.000 and = -3.000) and one
pair of complex transmission zeros $at -0.5000 £j7.0534). For this s-plane pattern of poles and
zeros it is reasonable to define the range of #agies of interest for this model as, at most, r@ro
30 rad./s..

Being a single-input single-output system, therenly one feedback loop. Figure 2 shows the root-
locus diagram for the closed-loop system for singuigoortional feedback. It is clear, as would be
expected, that as the gain factor is increaseddinvie poles of the closed-loop system move
towards the positions of the zeros of the forwamtiel, although there is an range of intermediate
values of gain which leads to two closed-loop pdtet lie in the right half of the s-plane and

would produce an unstable inverse. Values of the fgator used for the inverse simulation must
therefore be chosen to be significantly larger th@a critical range. A third closed-loop pole
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moves off along the negative real axis and fordaggin values this produces a very fast transient
mode which can be neglected.

Proportional control with a gain factér of 1000 leads to characteristics of the closed-loop
system involved poles at= -1005.0,s = -0.5 +j7.0 ands = -0.5 —j 7.0 and transmission zerossat
=-3.000,s=-2.000 ancs = -1.000. Therefore, it is clear that the feedbsygdtem which forms the
inverse model has poles very close to the origiragsmission zeros and an additional pole which
is far removed in the s-plane from the other paled zeros and has negligible influence overall.
Higher values of gain factor could be used if neagsto reduce the steady-state error and there is
no need to consider the introduction of a more dermform of feedback controller.

Testing for this example has been carried sutgia repeated ramp test signal which the inverse
model is required to follow. The input signal negde achieve this model output is found from the
inverse simulation (Figure 3). This calculated inpwst then be applied to the forward simulation
model to establish how well it meets the requiretsiéhRigure 4). The agreement shown in Figure 4
between the reference signal for the inverse sitomaand the output generated when the
calculated input is applied to the forward modeyaod for the chosen gain factor of 1000. The
reference input and model output are so closettighard to separate the records shown in Figure
4, indicating that the inverse simulation is saisbry.

Foot Locus
8 1 1 1 1 1 I

Imaginary &Axis
[}

Real Axis

Figure 2. Root locus diagram for feedback systeedufor inverse simulation of the model of
Equation (5) for variation of the single gain fadto

Note that the input signal in Figure 3 exhibotscillations which reflect the dynamics of the
feedback system and therefore of the inverse mddese oscillatory modes represent the so-

10
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called “constraint oscillation” phenomenon whichsHaeen discussed extensively in connection
with iterative approaches to inverse simulation [1p]. Such oscillatory effects have also been
found when inverse modelling techniques based atyical methods have been applied [17]. As
already mentioned, this example provides an intieggomparison with previous work involving
the application of the integration-based iteratiyge of approach to inverse simulation and results
obtained for this same problem using such methoeldiacussed at greater length in [16].

15 T T T T T T T T T

0.5

Input signal required
=

_15 1 | | | | | | | |
a
Time (5]

Figure 3. Input time history found from inversensiation of the SISO model using a gain fadfor
of 1000.

11
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Cutput and Dermanded Output

Time (5]

Figure 4. Reference signal applied to the invemsmilation of the SISO linear model (dashed line)
together with the output resulting from applicatiminthe input found from the inverse simulation
process (continuous line) for a gain fackoof 1000. These results were obtained usingldime
function in MATLAB®.

Considering a combined system involving thigense simulation model in cascade with the
forward simulation, the frequency response charsties of the cascaded combination should, if
the inverse was ideal, show unity gain factor (Q dBd zero phase at all frequencies. Figure 5
shows Bode plots for the combined system and tlaeseclose to the ideal for the relevant
frequency range up to 30 rad/s. At frequencies atahwout 100 rad/s the magnitude and phase
diverge significantly from the ideal but this isteide the frequency range of interest for the model
More importantly, there is a small peak in the magle plot (of the order of 0.3 dB) at 7 rad/s and
this is within the frequency range of interesttfog given model. However, the overall discrepancy
shown by the Bode plots of the combined systenery small. This is a useful type of test of the
quality of an inverse simulation for a linear modath as this and may provide more insight than
direct comparisons of time history records of ypetshown in Figure 4.

12
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Bode Diagram
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Figure 5. Bode plot for the combined system inwavthe inverse simulation model based on
feedback principles and the given forward modehnexted in series.

4. Feedback principles applied to inverse smulation of single-input single-
output nonlinear dynamic models

The significance of the two-stage nature of pihecess for inverse-simulation becomes clear
when nonlinear applications are considered. Thelbi@ek loop design process is really quite
separate from the inverse simulation applicati@gest This is best illustrated using an example,
which in this case involves an aeronautical engingeapplication.

4.1 Application to a nonlinear dynamic model of a fixed-wing air cr aft

The model involved in this application reprasethe longitudinal dynamics of an HS125
business jet (how known as the Hawker-Raytheon #0@s). This model has also been used in
previous investigations [17], [18], [19] involvinthe conventional integration-based iterative

approach to inverse simulation. The flight coiegitconsidered is level flight at 120 knots at sea
level. The equations of motion in terms of the oese to control inputs are as follows:

U=—QW + % — gsin® (6)

: z
W =QU+ ;+gcos"~3I (7
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0= = ®)
yy
0=Q 9)
Xz = Ucos ® + Wsin © (10)
Zp = —Usin ® + Wcos 0 (11)

whereU is the forward velocity (m/s)) is the heave velocity (m/9] is the pitch rate (rad/s§, is
the pitch angle (rad)Xg areZe are the positions of the aircraft in the directadrthe x and z axes
respectively in the earth-fixed frame of reference

A change of the elevator angig (rad) from the trim value changes the externatdeX andZ (N)
and the external momemd (Nm). These external forces and moments are olatairen the
following equations:

X=T—-Dcosa+ Lsina 12]
Z =—Lcosa—Dsina (13)
M =M, + Th; (14)

Here the aerodynamic loatdsD andM, are given by:

1

L =-pVFSC, (15)

D = pV2sC 16
=3PVfolp (16)

My =~ pV2SECy (17)

where

C, = Cpro+ Crga + Cpse0, (18)

CD = CDO + CDO!a + CD(maz (19)

CM = CMO + CMaa + CM5656 + CMq (20)

vy

The angle of attacly, is given by the equation:

14



D.J. Murray-Smith
Mathematical and Computer Modelling of Dynamicadt®yns

tana = % (21)

These equations and symbols are widely usaddéraft models and details of the derivation of a
general model for longitudinal motion of a fixedngiaircraft such as this may be found in many
textbooks (e.g. [32], [33], [34]). Parameters foe HS125 model are as follows [36):= 7484.4
kg (mass), ly,= 84309 kgn? (moment of inertia)S = 32.8 ni (wing area)c = 2.29 m (mean
chord),hr = 0.378 m (thrustline above the x-axis, which imied flight is fixed in the aircraft in
the direction of motion)y = 1.225 kg/rﬁ (air density),Cpp = 0.177,Cp, = 0.232,Cp,, = 1.393,
Clo=0.895,C,, =5.01,Cse =0.722,Cyo = -0.046,Cy,, = -1.087,Cyise = -1.88, Cyq =-7.055,

T = 13878 N (thrust),andg = 9.81 m/é (gravitational constant).

The equations can be solved simultaneouslyh®six state variables in response to the elevator
input. Appropriate initial conditions must be aggli and these normally involve a trimmed
equilibrium flight state. For the given forward weity the following set of values applieg. =
61.8682 m/sW, = 0.8501 m/sQ=0 rad/s,0, = 0.01374 radgee = -0.01659 radXee=0 m and
Ze~0 m. Here the subscript e indicates that thesevaltees for the trimmed equilibrium flight
state. The Equations (6) to (21) can be solved Isameously for the six state variables, (V, Q,

0, Xg, Zg) in response to elevator inpuis The elevator input feeds into lift and pitching memh
equations and subsequently into expressions foexkernal forces and moments which appear as
X, Z andM in Equations (6), (7) and (8). A changedgfrom its trim value leads to changes of the
external forces and moments and thus to changée istate variables.

Linearised equations of motion may be deriveainf Equations (6) to (21) using standard
methods (e.qg., [ 33], [34]) and, for the stateafalésx =[u w g 6]T and inputu =J., these
eqguations are as follows [35]:

x = Ax + Bu
—0.05718  0.12433 0 —9.81 0.10194
_| —030512 -08651  61.87 0 _|-7.4188
whereA=| 1001504 —0.03675 —054548 0 | 2"9B=|_39275| (12)
0 0 1 0 0

Figure 6 shows the simulated responses fondidinear model for the case of a positive step
change of elevator angle of one degree (0.0174balied at timd = 15 s for an initial trim
value of elevator angle of -0.01659 rad. In ternfisthe actions of the pilot this input is
equivalent to the stick being pushed forward frdma trim condition slightly and held in that
new position. These responses show the short pariddohugoid modes which are associated
with the eigenvalues of the system matiin the linearised description given above.
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Figure 6. Figures 6(a)-6(d) show simulated resesrfsr the state variablés, W, Q and @
respectively for the nonlinear model of the HSaGraft for a step change of elevator position of
1 degree applied at timel5 s. Initial conditions for all the state varieblof the model correspond

to the values for the specified trimmed flight ciimesh. These results were obtained using the
oded5 function in MATLAB®

4.2 Inverse simulation for the HS125 model with pitch rate output

Analysis of the linear model for the case wttch rate Q) as output shows that there are two
pairs of complex eigenvalues, giving one pair depats = -0.7114+j1.5030 and a second pair at

= -0.0225%j0.1862. Transmission zeros are at thgiprats = -0.1117 and a$ = -0.7411. The
range of frequencies of interest for this modethsyefore, from zero to about 20rad/s.

The feedback structure to be used involvesdifference between the reference input (the
required pitch rate) and the pitch rate from thededl@nd this difference signal is applied, through
proportional control, to the elevator. The rootus plot describing this feedback system, as
obtained from the linearised version of the modeltifie operating conditions given above, has the
form shown in Figure 7.

As the loop gain is increased from zero towdedge values, three of the four poles move
towards the positions of the zeros of the modelemtie other closed-loop system pole lies on the
negative real axis of the s-plane at a point famfrall the other poles and zeros of the feedback
system. For example, if one considers the cask fo 000 the closed loop poles are at posit®ns
=-0003,s=-0.1113,s=-0.7418 and = -3928. Zeros of the closed-loop system lihatdrigin,
ats=-0.7411 and a¢ = -0.1117. Thus, for high values of gain factor pudes of the closed loop
system are close to the zeros of the given modkllaa zeros of the closed-loop system lie at the
positions of the poles of the model. The inverseusation based on feedback should thus provide a
good approximation to the inverse model. No stgbidisues arise.
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Figure 7. Root locus plot for feedback system imwg pitch rate with proportional control.

Results for a reference signal involving a detlbf demanded pitch rate of magnitude 0.001
rad/s applied at time= 15 s with gain factoK = 1000 are shown in Figure 8 for the full nonlinear
simulation model. A linear first-order referencedrbwith time constant 5 s was used to generate
this demanded change of pitch rate. The time hisibthe elevator deflection has a complex form
because the elevator is being used to suppressatieal modes of the aircraft and produce the
required pitch rate response. It may be seen fiwee plots that the error values are very small
throughout the manoeuvre.
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Figure 8. The record in Figure 8(a) shows the étvaeflection obtained from inverse simulation
for a specific demanded pitch rate time historye Blecond plot, Figure 8(b), shows the reference
input (dashed line) together with the corresponduitgh rate time output obtained from the
forward model (continuous line) for that elevatoput. The third plot, Figure 8(c), shows the error
between the reference input and the model pitah nedulting from the application of that input.
These results were obtained using #te45 function in MATLAB® using the full nonlinear
simulation model of the aircraft.

4.3 Inverse simulation for the HS125 model with pitch attitude as output

Analysis of the linear model for this case shdhat there are once again two pairs of complex
poles, one pair &= -0.0225%j0.1862 and a second pais at-0.7114+j1.5030. There are only two
transmission zeros and these ares at-0.7412 and as = -0.1117. As in the previous case the
frequency range of interest is from zero to apprately 20 rad/s..

If @ (pitch angle) is chosen as the output variable fdeglback structure must involve the
difference between the reference input (the requmiéch) and the pitch value obtained from the
HS125 model. This difference signal is used foregation of the required elevator deflection.
Using proportional control, the root locus plot cdsing the feedback system, as obtained from the
linearised version of the model for the operatingditions given above, has the form shown in
Figure 9.

As the loop gain is increased from zero towdadge values, two of the four poles of this model
move towards the positions of the zeros while tiheotwo complex poles remain complex in form
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as the gain is increased. These poles lie at ptatsare far removed from the other poles and
zeros of the feedback system. For example, if @msiders the case f&=4000 the closed loop
poles are a$=-0.1118s=-0.7410 and at = -0.3075%j125.35 and the closed-loop zeros atkeat
origin,s=-0.1117 and a$ = -0.7411. Thus, for high values of gain fadtor poles of the closed
loop system are close to the zeros of the giveneimgt an additional pair of complex poles exists
that is likely to introduce poorly damped transgestiperimposed on the elevator deflection signal.
Although the inverse simulation based on feedbdulsl provide a good approximation to the
inverse model, additional filtering would have te bsed to reduce the effects of these additional
poles and allow the form of the elevator input éosleen more clearly.
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Figure 9. Root locus plot for feedback system imwg pitch angle, for the case involving
proportional feedback control.
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Figure 10. Results from inverse simulation invofypitch attitude feedback for a gain fadtoof
4000 showing the elevator deflection necessarchiese a specific time history in terms of pitch
attitude in Figure 10(a). The second record, Fidi), shows two plots: the pitch time history
(continuous line) resulting from the applicationtiat pattern of elevator deflection to the forward
model together with the demanded pitch time histdashed line). The third record, Figure 10(c),
shows the difference between the pitch angle frbenforward model and the reference input.
These results were obtained using 45 function in MATLAB® for the full nonlinear
simulation model of the aircratft.

Results for a doublet type of change of demdraiteh applied at timé= 15 s with gain factor
K= 4000 are shown in Figure 10 for the full nonlinsamulation model. A linear first-order
reference model with time constant 5 s was usegetwerate this demanded pitch change. Once
again, the time history of the elevator deflecti@ms a complex form because the elevator is being
used to suppress the natural modes of the airaraftproduce the required pitch rate response.
However, superimposed on the required elevatoedifin and pitch output signals are the high
frequency modes associated with the additional paicomplex poles mentioned above. These
high-frequency oscillations are not evident in tbeord of the model output because the model acts
as a low-pass filter but are nevertheless preasrgeen in the plot of the error signal.

A filter could clearly be used to reduce thieef of the oscillatory transient as the frequeaty
the transient is entirely predictable for any vadighe gain factoK but a better approach is to
apply a more complex form of feedback system. Hohriques of state-variable feedback design
can be applied to the linearised model to forcepalf the closed-loop system to lie at particular
points in the s-plane. Taking the desired poletmos for the feedback system as the positions of
the zeros of the forward model together with twaligdnal poles ats = -13 ands = -14 an
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appropriate state-variable feedback structure eafotnd without difficulty using, for example, the
place function within the MATLAB® Control Systems Toolbox [36]. Although this sodutiis
satisfactory it involves a gain factor of aboutif%he main feedback loop involving and this
gives rise to a steady-state error. This perforraaan be improved substantially using a method of
feedback system tuning involving controller paraneensitivity measures [37] to ensure that the
steady state error is negligible. Results are showkigure 11 for the case involving state variable
feedback with gain factors for the negative feegl@aths from®, Q, WandU of 2000, 240, 0 and

0 respectively. There is no high frequency osahlatmode present and the error between the
desired output and model output is negligible his tase the poles of the closed-loop system are at
the origin, ats= -0.1117,s = -0.74102s = -16.96 ands= -926.3. Thus, as required, three of the
poles of the feedback system lie at or very clasthé positions of the zeros of the model and all
other poles are well removed from the area of th&ase that is of interest. The positions of the
zeros are, of course, unaltered by the additidghe@feedback loops.

Applications of this inverse simulation havecluded investigation of the limitations of the
aircraft in terms of the effect on manoeuvrabildly the elevator and associated actuators. The
effects of elevator deflection and rate limits che investigated directly using the inverse
simulation results. The time history of the pitchgke or pitch rate variables for a demanded
manoeuvre are applied to the inverse simulation #rerequired elevator movement immediately
indicates whether or not the manoeuvre can be eed. For example it can be seen in the
elevator deflection time history of Figure 11 thae required manoeuvre involves elevator
deflections between about -0.06 rad and 0.016 alidpough for much of the time the elevator
deflection remains within the range -0.028 rad ah@04 rad. If the largest allowable elevator
deflection is set to be £ 0.02 rad in the forwarddel and the inverse simulation is repeated (with
the same gain factor values in the feedback patbaayised previously) the results obtained are as
shown in Figure 12. The error between the desirath @mnd the pitch output obtained from the
forward model shows very clearly that the requimehoeuvre cannot be performed. The necessary
elevator deflection would exceed the limiting vainehe negative direction for a significant time.
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Figure 11. Results from inverse simulation foe #eedback system involving state-variable
feedback (with gain factors of 2000, 240, 0 andgiven in the text) showing, in Figure 11(a), the
elevator deflection necessary to achieve a spetifie history in terms of pitch attitude and, in
Figure 11(b), the pitch time history resulting fraime application of that pattern of elevator
deflection to the forward model (continuous lineyeéther with the time history of the demanded
pitch (dashed line). These results were obtainetyubeode45 function in MATLAB® for the full
nonlinear simulation model of the aircratft.
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Figure 12. Results from inverse simulation withtestzariable feedback and an elevator deflection
limit of £ 0.02 rad.. The record shows forward slation results in terms of the pitch attitude
resulting from the elevator deflection input fouttdm the inverse simulation (continuous line).
This can be compared with the required pitch at&tduime history (dashed line) applied as
reference input for the inverse simulation. Thessuits were obtained using tb@e45 function in
MATLAB ®

5. Use of feedback principles for inverse simulation of multi-input multi-output system
models

The block diagram of Figure 1 can be extendedaver the case of multi-input multi-output
systems involving standard state-space or tramséérix descriptions. The case where the blGck
is replaced by a standard state-space representd#tithe system model with feedback through a
controller blockK has been considered already by Bucholz and vomiagen [4], [5] who
showed that the feedback approach can be employsahie cases where no inverse of the matrix
D exists so that no inverse of the standard staeesmpodel can be found in a direct way. This is
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an important property of the feedback approachesinmakes it applicable to situations involving
linear systems in which the block diagram has meadtlipathways from the input variables to the
output variables. Such cases (in whizlkx 0) are very common in practical applications.

It should be noted that the choice of elemehthe K matrix may present difficulties since it is
important to ensure that the feedback system Idestar the chosen loop gain factors. Thinking in
terms of single-input single-output closed-loopteys concepts, some closed-loop poles move
towards the positions of open-loop zeros as the lgain is increased but there are additional
closed-loop poles that may migrate towards undeleirareas of the s-plane as the gain is
increased. It is important to have an understandfrigpw these closed-loop poles are behaving and
to limit their movement appropriately. This may ueg the application of more advanced methods
of feedback system design, such as state-variadelbbick and eigenstructure assignment
techniques, for some applications.

5.1 Application to a nonlinear model of a coupled-tanks system

Figure 13 is a schematic diagram of a two-inqmutpled-tanks laboratory system. It consists of a
container which has a central partition that digidanto two separate tanks. Coupling between the
tanks is provided by a number of holes of varioizngters near the base of the partition and the
amount of coupling may be adjusted through therfimgeof plugs into these holes. The system is
equipped with a drain tap, under manual contrad, ttwe output flow rate from one of the tanks can
be adjusted by means of this tap. Tank 1 and Tamkv2 inflows from electrically driven variable-
speed pumps. Both tanks are equipped with sensatrsdn detect the level of liquid and provide a
proportional electrical output voltage.

The basic hardware was a commercial produehded for teaching applications (TecQuipment
Ltd) but has been modified at the University of $glaw through replacement of resistive level
sensors by more accurate and reliable differeptieésure based depth sensors. The two-input
configuration also represents a development, inited at the University of Glasgow, of the
commercially-available system.

5.1.1 A non-linear mathematical model

Using the principle that the rates of changeadfime of liquid in each tank must be equal to the
difference between the total flow rate into thatktaand the total flow rate out, it is a relatively
straightforward process to obtain physically-basedlinear equations describing the two-tank
system (see e.g. [38]). For all cases for whichl#éwel in Tank 2 is below that in Tank 1, the
eguations, in state-space form, are:

dH,

Qi
dt A

= e gt~ - S g, —H) @3

Ca

vV 29(H1 - Hz) (22)
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Figure 13. Schematic diagram of the pair of irdarected tanks of rectangular cross-section with
two inputs. Orifice 1 consists of number of hol@swdar of cross-section in the wall between the
two tanks. Orifice 2 consists of a single holehia second tank which leads directly to the outflow
pipe and drain tap. The centres of all these Hudest levelHs; above the base of the tanks.

In Equations (22) and (23) the main variables a&esteown in Figure 13. An equivalent set of
nonlinear equations may be derived for situationshich the level in Tank 2 is greater than that in
Tank 1.

Parameters are defined below and values fdatiwatory-scale system are as follows:

Cross-sectional area of each taf\k= A, = 9.7x10°m?
Cross-sectional area of orificeal = 3956x10™° m?

Cross-sectional area of orificesd = 385x107° m?

Coefficient of discharge of orifice @y = 0.6
Coefficient of discharge of orifice @y, = 0.6

Height of outlet above base of tahk, = 003 m
Gravitational constarg = 9.81 m&

Maximum flow rateQ .. =Q .. =5x10°m°s*
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Maximum liquid levelH ., = H opax = 03m

Further first-order linear ordinary differertiequations have been introduced to describe the
dynamics of the pumps. Instead of describing eachppsimply by constant&,; and G, the
relationship between the electrical voltage atpghenp inputsve(t) andve(t) and the flow rates
Qi1(t) andQi(t) provided by the pumps takes the form:

dQ’l Gpl Gpl
e T S L NO N LRy 24
dt T, Qu T ¢ (24)
and
G G
dC?Z =T > Qi2 + = Ve2 5§2
t T, T,

The value of the pump calibration consta@s,andGy,, are 7.2x10°° m’s*v*and an appropriate
value for the time constants andT, is one second.

5.1.2 Design and application of the inverse simatatising proportional control

The feedback in this case must be from theututpriables of the model (the liquid levels in
Tank 1 and Tank 2) and these variables must be a@dwith the reference inputs that define the
response required from the model. In the casesihale model of the kind being considered here,
trial and error methods or analysis of the lineatisersion of the model can be used to find an
appropriate value of gain constant. It must be chdteat as the loop gain is increased the
eigenvalues of the closed-loop system will chafgea result it is quite likely that problems of
stiffness will arise during this gain adjustmenbgess and it is therefore appropriate, from the
outset, to select an integration algorithm thagugable for stiff systems. Other forms of contoll
could be applied, as in the case of the HS125 ebgnbpit it is sensible to keep the feedback
system as simple as possible initially.

One simple way of testing an inverse simulaiiovolving feedback principles is to drive the
inverse simulation from a forward simulation of gfigen model. This approach has the benefit that
the output of the forward simulation in terms oé time history of the output level for a specific
form of input is immediately available. If the imge simulation is correct the input then will be
recreated exactly when that simulated output from forward model is presented to the inverse
simulation as the required output time history.

In this case the closed loops within the ingessnulation are established so that the liqui@llev
in Tank 1 is fed back to be compared with the @eslevel in that tank and the difference is fed
through a gain factoK; to the input flow to Tank 1. The level in Tank 2pides the feedback
variable in the second feedback loop and this ve®h gain factdk, and the flow to Tank 2.

Figure 14 shows a specific pattern of inputstiie two-tank model and these produce the output
levels shown in Figure 15. It should be noted thatlevel in Tank 1 is greater than the level in
Tank 2 throughout this test and flow between the tanks is therefore always from Tank 1 to
Tank 2, which is the normal operating condition fiois system. Figure 16 shows the difference
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between the output from the inverse simulation {he calculated flows to the two tanks to achieve
the levels specified in Figure 15) and the inpat thas applied to the reference model (as shown in
Figure 14). The results in Figure 16 thus show tmatrse simulation can be achieved through the
use of feedback principles for this multi-input mnalutput nonlinear system. High gain solutions
involving proportional control are adequate in thesse as shown by the very small difference
values of Figure 16.

Reference hodel Inputs (Flow Rates (m3/s))

_1 1 | | | | | | | |
o a0 100 150 200 250 300 350 400 450 500

Time (5]

Figure 14. Patterns of input flow to Tank 1 (dakhee) and Tank 2 (continuous line) in the model
used to generate the reference signals for thesawe@mulation test for the coupled tanks model.
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Figure 15. Liquid level in Tank 1 (dashed lineplan Tank 2 (continuous line) for the case of the
two-input model for the pattern of input flows show Figure 14. These results were obtained
using theodel5s function in MATLAB®.
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Figure 16. Difference between input flows to theks found from inverse simulation and
equivalent quantities applied to the reference rhobee difference for the case of the input to
Tank 1 is shown by the dashed line and for thetimpurank 2 by the continuous line. The gain
factorsK; andK; used in the inverse simulation in this case weré 86,000. These results were
obtained using thedel5s function in MATLAB®.

One application of the inverse simulation in thase is investigation of demanded patterns of level
change that would take the two pumps beyond theximum flow rate limits. This is similar to
the investigation of the effect of elevator defiectlimits on possible aircraft manoeuvres that was
discussed in Section 4.3. In this coupled-tanksmgpta information is immediately available from
the inverse simulation results and this could,aloy demanded pattern of level changes, be used to
highlight situations in which the necessary inflb@w rates exceeded their limits. A second use of
this inverse simulation has been as an additiomall for investigation of the limitations of the
nonlinear two-tank model given in Equations (22)28) through driving the inverse simulation
using input-flow and output-level data recorded exkpentally from the equipment. New insight
regarding aspects of the system model, and espethi@ modelling of the discharge from the
second tank has come from this use of inverse aimoul methods as part of this experimentally-
based model validation study.

6. Discussion and conclusions

Several different cases have been consideralisnpaper. Starting with single-input single-
output systems, an approach based on feedback dsettas been presented and applied to a
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number of linear and nonlinear examples. In prilegipny closed-loop system design method can
be applied in developing a feedback system forrsevesimulation, provided it leads to solutions
that involve relatively high loop-gains over theduency range that is important for intended
application of the model. In general, this involhssdection of an appropriate feedback structure,
often using linear analysis methods and subsedqueimg of feedback parameter values for the
application involving the full nonlinear model.

From the applications considered it is cleat thverse simulation methods can provide a form
of insight for engineering investigations that iffedent from the understanding that comes from
conventional modelling and simulation studies. Mieyvthe system in terms of the inputs that are
needed to achieve a defined pattern of outputsigeevthe investigator with information that is
potentially important in engineering design. Itbislieved that this understanding would not be so
readily obtained using traditional modelling anehglation tools. The feedback approach to inverse
simulation, described and applied in this papeanismportant alternative to the more widely-used
iterative methods.

One very important point about the feedbackreggh, that does not appear to have been
highlighted previously, is that the problem of dgsng a feedback system for an inverse model is,
generally, much less difficult than that of designia feedback system for a control system
application involving a model of similar complexityQuestions of response to external
disturbances, insensitivity to measurement noiserabustness in terms of model uncertainties are
all irrelevant in the inverse simulation case simtgturbances and measurement noise are not
present. The model is also completely known soettege no issues of robustness (other than
numerical robustness). There may well be unceré@within the model when compared with the
corresponding real system but, for the purposeaswvarting a given model, no uncertainty exists.
Relatively simple methods of feedback system desmgolving high-gain solutions and state-
variable feedback can therefore be considered Her model inversion application. Although
problems of numerical stiffness can arise with fedback approach to inverse simulation this
need not create major difficulties, for most apgiicns, if an appropriate choice of numerical
integration algorithm is made.

Errors in the inverse simulation procedure aepen the dynamics of the closed-loop system and
thus on the form of feedback controller used. Tamlner of possible inverse simulation models is
infinite as there is no limit to the possible numbgdesigns for the feedback loop. Analysis of the
forward model does, however, provide useful infdioraabout eigenvalues and transmission zeros
for the closed-loop system and this can provideafalk insight in assessing the inverse model.

Experience gained from the case studies sugdbat, with a careful choice of integration
method and integration step size, computation tiozes often be achieved that are similar to the
computation time for a conventional forward simigatfor the same model. This contrasts with the
integration-based approach described in Sectiowh2ch clearly involves a number of forward
simulation runs. Generation of the inverse solutbgnthat iterative method may therefore take
significantly longer than the time for a singlei@rd simulation run, depending on the number of
runs required for convergence of the algorithmshibuld also be noted that the integration-based
method requires choosing of an interVabver which inputs are constant. Selection of thadrval
generally involves a trial-and-error process, esplgan the case of nonlinear models. This means
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that a number of attempts may have to be madedefoiacceptable inverse simulation solution is
achieved using that approach.

In some cases the closed-loop system in thébfexk-based approach may have an execution
time that is noticeably greater than the time far forward simulation because of the fact that the
integration step size required for the model widedback is significantly smaller than the
integration step size for the forward model. Thiglue to the fact that the introduction of feedback
with high gain factors can give closed-loop systeotes that lie far from the poles of the forward
model, thus making the equations for the feedbgstem stiffer than those of the model itself. The
feedback approach therefore requires careful chofcéntegration method and step size, but
selection of these this is a familiar task for @Volved in system modelling and simulation
activities.

In making comparisons between the feedbackebapproach and other methods, the trade-off
between the additional complications of a one-efdback system design for the model being
inverted and the possible benefits, such as impnews in computational speed and overall
efficiency, are perhaps as important as the timeafsingle inverse simulation run. This is clearly
very dependent on the application and is an issaerequires further quantitative investigation.
However, from the qualitative evidence from theecatidies presented here, it is clear that there
may be advantages in using the feedback approattterrthan the established methods, for some
real-time applications and for applications invalyirepeated inverse simulation runs, such as in
design optimisation.

Earlier published work on this topic put pautar emphasis on linear models and feedback
involving proportional control techniques. The mainjective in the work described in this paper
has been to generalise the approach, includinguiee (where necessary) of other forms of
feedback, such as state-variable feedback, whichawaid some of the limitations that arise with
simple proportional feedback control. The curremrkvalso puts more emphasis on nonlinear
models of the kind that are likely to arise in ewegiring design applications. Thus, from the
experience gained with the examples consideredhis paper, it can be concluded that the
feedback-based approach provides a useful methodhwarse simulation. For applications
involving nonlinear dynamic models this is, therefoan appropriate and useful approach to be
considered, alongside the more established methfadserse simulation and model inversion.
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