700 research outputs found

    Elastic buckling of elliptical tubes

    Get PDF

    Quantum Hall states under conditions of vanishing Zeeman energy

    Full text link
    We report on magneto-transport measurements of a two-dimensional electron gas confined in a Cd0.997_{0.997}Mn0.003_{0.003}Te quantum well structure under conditions of vanishing Zeeman energy. The electron Zeeman energy has been tuned via the sds-d exchange interaction in order to probe different quantum Hall states associated with metallic and insulating phases. We have observed that reducing Zeeman energy to zero does not necessary imply the disappearing of quantum Hall states, i.e. a closing of the spin gap. The spin gap value under vanishing Zeeman energy conditions is shown to be dependent on the filling factor. Numerical simulations support a qualitative description of the experimental data presented in terms of a crossing or an avoided-crossing of spin split Landau levels with same orbital quantum number NN

    Role of the fast kinetics of pyroglutamate-modified amyloid-β oligomers in membrane binding and membrane permeability.

    Get PDF
    Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer's disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1-40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3-42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3-42 and Aβ1-42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3-42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3-42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3-42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability

    Statistical multi-moment bifurcations in random delay coupled swarms

    Full text link
    We study the effects of discrete, randomly distributed time delays on the dynamics of a coupled system of self-propelling particles. Bifurcation analysis on a mean field approximation of the system reveals that the system possesses patterns with certain universal characteristics that depend on distinguished moments of the time delay distribution. Specifically, we show both theoretically and numerically that although bifurcations of simple patterns, such as translations, change stability only as a function of the first moment of the time delay distribution, more complex patterns arising from Hopf bifurcations depend on all of the moments

    Tailoring magnetic anisotropy in epitaxial half metallic La0.7Sr0.3MnO3 thin films

    Full text link
    We present a detailed study on the magnetic properties, including anisotropy, reversal fields, and magnetization reversal processes, of well characterized half-metallic epitaxial La0.7Sr0.3MnO3 (LSMO) thin films grown onto SrTiO3 (STO) substrates with three different surface orientations, i.e. (001), (110) and (1-18). The latter shows step edges oriented parallel to the [110] (in-plane) crystallographic direction. Room temperature high resolution vectorial Kerr magnetometry measurements have been performed at different applied magnetic field directions in the whole angular range. In general, the magnetic properties of the LSMO films can be interpreted with just the uniaxial term with the anisotropy axis given by the film morphology, whereas the strength of this anisotropy depends on both structure and film thickness. In particular, LSMO films grown on nominally flat (110)-oriented STO substrates presents a well defined uniaxial anisotropy originated from the existence of elongated in-plane [001]-oriented structures, whereas LSMO films grown on nominally flat (001)-oriented STO substrates show a weak uniaxial magnetic anisotropy with the easy axis direction aligned parallel to residual substrate step edges. Elongated structures are also found for LSMO films grown on vicinal STO(001) substrates. These films present a well-defined uniaxial magnetic anisotropy with the easy axis lying along the step edges and its strength increases with the LSMO thickness. It is remarkable that this step-induced uniaxial anisotropy has been found for LSMO films up to 120 nm thickness. Our results are promising for engineering novel half-metallic magnetic devices that exploit tailored magnetic anisotropy.Comment: 10 pages, 10 figures, 1 tabl

    Nonsingular systems of generalized Sylvester equations: An algorithmic approach

    Get PDF
    We consider the uniqueness of solution (i.e., nonsingularity) of systems of r generalized Sylvester and ⋆-Sylvester equations with n×n coefficients. After several reductions, we show that it is sufficient to analyze periodic systems having, at most, one generalized ⋆-Sylvester equation. We provide characterizations for the nonsingularity in terms of spectral properties of either matrix pencils or formal matrix products, both constructed from the coefficients of the system. The proposed approach uses the periodic Schur decomposition and leads to a backward stable O(n3r) algorithm for computing the (unique) solution

    A severe case of erythrodermic psoriasis associated with advanced nail and joint manifestations: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Erythrodermic psoriasis is a rare generalized clinical presentation of psoriasis in children and adults. Its systemic involvement and a diverse range of clinical findings in the joint and nails are commonly described. A high index of suspicion and an exhaustive differential diagnosis involving other causes of erythroderma should be initially considered.</p> <p>Case presentation</p> <p>We present the case of a 9-year-old native Hispanic girl with severe erythrodermic psoriasis associated with uncommon advanced nail and joint manifestations. Our patient showed an excellent response to methotrexate medication.</p> <p>Conclusion</p> <p>This case shows clinical features not commonly described or reported in severe cases of erythrodermic psoriasis, including severe and rare nail and arthritic findings in a pediatric scenario.</p

    Magneto-optical spectroscopy of (Ga,Mn)N epilayers

    Get PDF
    We report on the magneto-optical spectroscopy and cathodoluminescence of a set of wurtzite (Ga,Mn)N epilayers with a low Mn content, grown by molecular beam epitaxy. The sharpness of the absorption lines associated to the Mn3+^{3+} internal transitions allows a precise study of its Zeeman effect in both Faraday and Voigt configurations. We obtain a good agreement if we assume a dynamical Jahn-Teller effect in the 3d4^{4} configuration of Mn, and we determine the parameters of the effective Hamiltonians describing the 5T_2^{5}T\_{2} and 5E^{5}E levels, and those of the spin Hamiltonian in the ground spin multiplet, from which the magnetization of the isolated ion can be calculated. On layers grown on transparent substrates, transmission close to the band gap, and the associated magnetic circular dichroism, reveal the presence of the giant Zeeman effect resulting from exchange interactions between the Mn3+^{3+} ions and the carriers. The spin-hole interaction is found to be ferromagnetic
    corecore