research

Magneto-optical spectroscopy of (Ga,Mn)N epilayers

Abstract

We report on the magneto-optical spectroscopy and cathodoluminescence of a set of wurtzite (Ga,Mn)N epilayers with a low Mn content, grown by molecular beam epitaxy. The sharpness of the absorption lines associated to the Mn3+^{3+} internal transitions allows a precise study of its Zeeman effect in both Faraday and Voigt configurations. We obtain a good agreement if we assume a dynamical Jahn-Teller effect in the 3d4^{4} configuration of Mn, and we determine the parameters of the effective Hamiltonians describing the 5T_2^{5}T\_{2} and 5E^{5}E levels, and those of the spin Hamiltonian in the ground spin multiplet, from which the magnetization of the isolated ion can be calculated. On layers grown on transparent substrates, transmission close to the band gap, and the associated magnetic circular dichroism, reveal the presence of the giant Zeeman effect resulting from exchange interactions between the Mn3+^{3+} ions and the carriers. The spin-hole interaction is found to be ferromagnetic

    Similar works