89 research outputs found

    The Structural Colors of Photonic Glasses

    Get PDF
    The color of materials usually originates from a combination of wavelength-dependent absorption and scattering. Controlling the color without the use of absorbing dyes is of practical interest, not only because of undesired bleaching properties of dyes but also regarding minimization of environmental and health issues. Color control without dyes can be achieved by tuning the material's scattering properties in controlling size and spatial arrangement of scatterers. Herein, calibrated photonic glasses (PGs), which are isotropic materials made by random aggregation of nonabsorbing, monodisperse colloidal polystyrene spheres, are used to generate a wide spectral range of purely structural, angular-independent colors. Experimental reflectance spectra for different sized spheres compare well with a recent theoretical model, which establishes the latter as a tool for color mapping in PGs. It allows to determine the range of visible colors accessible in PGs as function of size, packing fraction, and refractive index of scatterers. It also predicts color saturation on top of the white reflectance as function of the sample's optical thickness. Blue, green, and red are obtained even with low index, while saturated green, cyan, yellow, and magenta can be reached in higher index PGs over several orders of magnitude of sample thickness.Deutsche Forschungsgemeinschaft. Grant Number: SFB1214 Swiss National Science Foundation. Grant Number: 200020M_162846 Alexander von Humboldt Foundatio

    Coherent multiple light scattering in Faraday active materials

    Full text link
    Wave propagation in multiple scattering media shows various kinds of coherent phenomena such as coherent backscattering [1, 2] or Anderson localization [3], both of which are intimately connected to the concept of reciprocity. Manipulating reciprocity in such media is a powerful tool to study these phenomena in experiments [4]. Here we discuss the manipulation of reciprocity in reflection and transmission geometry for the case of light propagation in magneto-optical media. We show new experiments on coherent backscattering and speckle correlations in strongly scattering samples containing Faraday active materials (CeF3) with transport mean free path in the ΞΌm range, at low temperatures (T < 10 K) and high fields (B = 18 T). Under such conditions we observe the effect of a Faraday rotation saturation in multiple scattering measurements.publishe

    Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae

    Get PDF
    Endosymbioses have shaped the evolutionary trajectory of life and remain ecologically important. Investigating oceanic photosymbioses can illuminate how algal endosymbionts are energetically exploited by their heterotrophic hosts and inform on putative initial steps of plastid acquisition in eukaryotes. By combining three-dimensional subcellular imaging with photophysiology, carbon flux imaging, and transcriptomics, we show that cell division of endosymbionts (Phaeocystis) is blocked within hosts (Acantharia) and that their cellular architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume increases 100-fold in correlation with the expansion of a reticular mitochondrial network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size, and photon propagation modeling indicates that the networked mitochondrial architecture enhances light capture. This is accompanied by 150-fold higher carbon uptake and up-regulation of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary production in symbiosis. Mass spectrometry imaging revealed major carbon allocation to plastids and transfer to the host cell. As in most photosymbioses, microalgae are contained within a host phagosome (symbiosome), but here, the phagosome invaginates into enlarged microalgal cells, perhaps to optimize metabolic exchange. This observation adds evidence that the algal metamorphosis is irreversible. Hosts, therefore, trigger and benefit from major bioenergetic remodeling of symbiotic microalgae with potential consequences for the oceanic carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, which is a putative initial step toward plastid acquisition

    Long-term results of radiotherapy for periarthritis of the shoulder: a retrospective evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate retrospectively the results of radiotherapy for periarthritis of the shoulder</p> <p>Methods</p> <p>In 1983–2004, 141 patients were treated, all had attended at least one follow-up examination. 19% had had pain for several weeks, 66% for months and 14% for years. Shoulder motility was impaired in 137/140 patients. Nearly all patients had taken oral analgesics, 81% had undergone physiotherapy, five patients had been operated on, and six had been irradiated. Radiotherapy was applied using regular anterior-posterior opposing portals and Co-60 gamma rays or 4 MV photons. 89% of the patients received a total dose of 6 Gy (dose/fraction of 1 Gy twice weekly, the others had total doses ranging from 4 to 8 Gy. The patients and the referring doctors were given written questionnaires in order to obtain long-term results. The mean duration of follow-up was 6.9 years [0–20 years].</p> <p>Results</p> <p>During the first follow-up examination at the end of radiotherapy 56% of the patients reported pain relief and improvement of motility. After in median 4.5 months the values were 69 and 89%, after 3.9 years 73% and 73%, respectively. There were virtually no side effects. In the questionnaires, 69% of the patients reported pain relief directly after radiotherapy, 31% up to 12 weeks after radiotherapy. 56% of the patients stated that pain relief had lasted for "years", in further 12% at least for "months".</p> <p>Conclusion</p> <p>Low-dose radiotherapy for periarthropathy of the shoulder was highly effective and yielded long-lasting improvement of pain and motility without side effects.</p

    MISC-1/OGC Links Mitochondrial Metabolism, Apoptosis and Insulin Secretion

    Get PDF
    We identified MISC-1 (Mitochondrial Solute Carrier) as the C. elegans orthologue of mammalian OGC (2-oxoglutarate carrier). OGC was originally identified for its ability to transfer Ξ±-ketoglutarate across the inner mitochondrial membrane. However, we found that MISC-1 and OGC are not solely involved in metabolic control. Our data show that these orthologous proteins participate in phylogenetically conserved cellular processes, like control of mitochondrial morphology and induction of apoptosis. We show that MISC-1/OGC is required for proper mitochondrial fusion and fission events in both C. elegans and human cells. Transmission electron microscopy reveals that loss of MISC-1 results in a decreased number of mitochondrial cristae, which have a blebbed appearance. Furthermore, our pull-down experiments show that MISC-1 and OGC interact with the anti-apoptotic proteins CED-9 and Bcl-xL, respectively, and with the pro-apoptotic protein ANT. Knock-down of misc-1 in C. elegans and OGC in mouse cells induces apoptosis through the caspase cascade. Genetic analysis suggests that MISC-1 controls apoptosis through the physiological pathway mediated by the LIN-35/Rb-like protein. We provide genetic and molecular evidence that absence of MISC-1 increases insulin secretion and enhances germline stem cell proliferation in C. elegans. Our study suggests that the mitochondrial metabolic protein MISC-1/OGC integrates metabolic, apoptotic and insulin secretion functions. We propose a novel mechanism by which mitochondria integrate metabolic and cell survival signals. Our data suggest that MISC-1/OGC functions by sensing the metabolic status of mitochondria and directly activate the apoptotic program when required. Our results suggest that controlling MISC-1/OGC function allows regulation of mitochondrial morphology and cell survival decisions by the metabolic needs of the cell

    Coordinated Regulation of Intestinal Functions in C. elegans by LIN-35/Rb and SLR-2

    Get PDF
    LIN-35 is the sole C. elegans representative of the pocket protein family, which includes the mammalian Retinoblastoma protein pRb and its paralogs p107 and p130. In addition to having a well-established and central role in cell cycle regulation, pocket proteins have been increasingly implicated in the control of critical and diverse developmental and cellular processes. To gain a greater understanding of the roles of pocket proteins during development, we have characterized a synthetic genetic interaction between lin-35 and slr-2, which we show encodes a C2H2-type Zn-finger protein. Whereas animals harboring single mutations in lin-35 or slr-2 are viable and fertile, lin-35; slr-2 double mutants arrest uniformly in early larval development without obvious morphological defects. Using a combination of approaches including transcriptome profiling, mosaic analysis, starvation assays, and expression analysis, we demonstrate that both LIN-35 and SLR-2 act in the intestine to regulate the expression of many genes required for normal nutrient utilization. These findings represent a novel role for pRb family members in the maintenance of organ function. Our studies also shed light on the mechanistic basis of genetic redundancy among transcriptional regulators and suggest that synthetic interactions may result from the synergistic misregulation of one or more common targets

    Chromosome-Biased Binding and Gene Regulation by the Caenorhabditis elegans DRM Complex

    Get PDF
    DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA–binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.National Institutes of Health (U.S.) (grant GM24663)National Institutes of Health (U.S.) (grant DK068429)National Institutes of Health (U.S.) (grant GM082971)National Institutes of Health (U.S.) (grant GM076378
    • …
    corecore