218 research outputs found

    The use of polyhedral borane derivatives as molecular electronic scaffolds

    Get PDF
    Abstract from short.pdf file.Dissertation supervisor: Dr. Mark W. Lee Jr.Includes vita.When functionalized, the highly symmetrical, three-dimensional aromatic cluster, closo - dodecahydrododecaborate, or dodecaborate, has a two, one - electron oxidation pathway available to it. The framework of dodecaborate is constructed from 26 delocalized electrons. Upon oxidation, electron density form the substituents is needed to allow for a stable oxidation pathway. This work examines the oxidation pathway of a large variety of dodecaborate derivatives via Density Functional Theory (BPV86 / cc-pVTZ) towards the elucidation of dodecaborate as a scaffold for molecular electronics. In this work it was observed that [pi]-back bonding from the substituents to the framework of dodecaborate occurred in the oxidized product. It was also observed that the substituents are able to become conjugated with the framework of dodecaborate, suggesting that it could become coupled with an electronic component. Additionally, a variety of realistic, functionalized ethers were examined to highlight the versatility of functionalizing the cage. Both the use of the cage as a scaffold for a molecular transistor and molecular rotor were examined. To test the molecular transistor, it was observed that a chemical source, NH2, and drain, NO2, could serve similar to an actual circuitry source and drain. The molecular rotor was examined through the use of transition metal bisdicarbollide sandwich complexes. Here, it was observed that Palladium, a second - row metal, was found to have energy barriers of such high as to be amenable to a molecular rotor.Includes bibliographical references

    A 1400-Year Oxygen Isotope History from the Ross Sea Area, Antarctica

    Get PDF
    Four ice cores from the Ross Sea drainage, Antarctica, show patterns of δ18O variations on a time scale of decades to centuries over the last 1400 years without change in the long-term average δ18O. Century scale δ18O fluctuations in the two cores drilled in the Ross Ice Shelf at Station J-9 (82° 23\u27 S, 168° 38\u27 W, elevation 60 m) are highly correlated (P \u3c 2 x 10-4). The long isotope record (\u3e30 000 a) of the 1978 1-9 core thus represents local conditions over at least 102 m and on time scales of 100 years and longer. Regional correlations between the 1-9 δ18O records and those from Ridge BC (82 ° 54\u27S, 136 ° 40\u27W, elevation 509 m) and the Dominion Range (85 ° 15\u27 S, 166 ° 10\u27 E, elevation 2700 m) are barely significant (P ≈ 0.05 for J-9 \u2776 and Dominion Range, δ18O to 1400 years ago) or absent. The failure to find clear regional isotope trends related to climate fluctuations may reflect the finding that between 1957 and 1982 the area was in the transition zone between areas with opposite temperature trends, and showed little or no temperature change. The fact that the records nevertheless show significant δ18O fluctuations highlights the need to base regional climate reconstructions on a regional suite of ice-core records

    Clumping and X-Rays in cooler B supergiant stars

    Full text link
    B supergiants (BSGs) are evolved stars with effective temperatures between 10 to 30 kK and are important to understand massive star evolution. Located on the edge of the line-driven wind regime, the study of their atmospheres is helpful to understand phenomena such as the bi-stability jump. Key UV features of their spectra have so far not been reproduced by models for types later than B1. Here, we aim to remedy this situation via spectral analysis that accounts for wind clumping and X-rays. In addition, we investigate the evolutionary status of our sample stars based on the obtained stellar parameters. We determined parameters via quantitative spectroscopy using CMFGEN and PoWR codes. The models were compared to UV and optical data of four BSGs: HD206165, HD198478, HD53138, and HD164353. We also study the evolutionary status of our sample using GENEC and MESA tracks. When including clumping and X-rays, we find good agreements between synthetic and observed spectra for our sample stars. For the first time, we reproduced key lines in the UV. For that, we require a moderately clumped wind (f_infty > ~0.5). We also infer relative X-ray luminosities of ~10^-7.5 to 10^-8 -- lower than the typical ratio of 10^-7. Moreover, we find a possible mismatch between evolutionary and spectroscopic masses, which could be related to the mass-discrepancy problem present in other OB stars. Our results provide evidence that X-rays and clumping are needed to describe the winds of cool BSGs. However, their winds seem less structured than in earlier type stars. This aligns with observational X-rays and clumping constraints as well as recent hydrodynamical simulations. The BSGs' evolutionary status appears diverse: some objects are potentially post-red supergiants or merger products. The wind parameters provide evidence for a moderate mass-loss rate increase around the bi-stability jump. Abstract abridgedComment: 27 pages, 22 figures, accepted for publication in A&

    Avoiding moving obstacles

    Get PDF
    To successfully move our hand to a target, we must consider how to get there without hitting surrounding objects. In a dynamic environment this involves being able to respond quickly when our relationship with surrounding objects changes. People adjust their hand movements with a latency of about 120 ms when the visually perceived position of their hand or of the target suddenly changes. It is not known whether people can react as quickly when the position of an obstacle changes. Here we show that quick responses of the hand to changes in obstacle position are possible, but that these responses are direct reactions to the motion in the surrounding. True adjustments to the changed position of the obstacle appeared at much longer latencies (about 200 ms). This is even so when the possible change is predictable. Apparently, our brain uses certain information exceptionally quickly for guiding our movements, at the expense of not always responding adequately. For reaching a target that changes position, one must at some time move in the same direction as the target did. For avoiding obstacles that change position, moving in the same direction as the obstacle is not always an adequate response, not only because it may be easier to avoid the obstacle by moving the other way, but also because one wants to hit the target after passing the obstacle. Perhaps subjects nevertheless quickly respond in the direction of motion because this helps avoid collisions when pressed for time. © 2008 Springer-Verlag

    Grasping Kinematics from the Perspective of the Individual Digits: A Modelling Study

    Get PDF
    Grasping is a prototype of human motor coordination. Nevertheless, it is not known what determines the typical movement patterns of grasping. One way to approach this issue is by building models. We developed a model based on the movements of the individual digits. In our model the following objectives were taken into account for each digit: move smoothly to the preselected goal position on the object without hitting other surfaces, arrive at about the same time as the other digit and never move too far from the other digit. These objectives were implemented by regarding the tips of the digits as point masses with a spring between them, each attracted to its goal position and repelled from objects' surfaces. Their movements were damped. Using a single set of parameters, our model can reproduce a wider variety of experimental findings than any previous model of grasping. Apart from reproducing known effects (even the angles under which digits approach trapezoidal objects' surfaces, which no other model can explain), our model predicted that the increase in maximum grip aperture with object size should be greater for blocks than for cylinders. A survey of the literature shows that this is indeed how humans behave. The model can also adequately predict how single digit pointing movements are made. This supports the idea that grasping kinematics follow from the movements of the individual digits

    Hippocampal-Dependent Spatial Memory in the Water Maze is Preserved in an Experimental Model of Temporal Lobe Epilepsy in Rats

    Get PDF
    Cognitive impairment is a major concern in temporal lobe epilepsy (TLE). While different experimental models have been used to characterize TLE-related cognitive deficits, little is known on whether a particular deficit is more associated with the underlying brain injuries than with the epileptic condition per se. Here, we look at the relationship between the pattern of brain damage and spatial memory deficits in two chronic models of TLE (lithium-pilocarpine, LIP and kainic acid, KA) from two different rat strains (Wistar and Sprague-Dawley) using the Morris water maze and the elevated plus maze in combination with MRI imaging and post-morten neuronal immunostaining. We found fundamental differences between LIP- and KA-treated epileptic rats regarding spatial memory deficits and anxiety. LIP-treated animals from both strains showed significant impairment in the acquisition and retention of spatial memory, and were unable to learn a cued version of the task. In contrast, KA-treated rats were differently affected. Sprague-Dawley KA-treated rats learned less efficiently than Wistar KA-treated animals, which performed similar to control rats in the acquisition and in a probe trial testing for spatial memory. Different anxiety levels and the extension of brain lesions affecting the hippocampus and the amydgala concur with spatial memory deficits observed in epileptic rats. Hence, our results suggest that hippocampal-dependent spatial memory is not necessarily affected in TLE and that comorbidity between spatial deficits and anxiety is more related with the underlying brain lesions than with the epileptic condition per se
    • …
    corecore