254 research outputs found
A Cytoplasmic Complex Mediates Specific mRNA Recognition and Localization in Yeast
The localization of ash mRNA in yeast requires the binding of She2p and the myosin adaptor protein She3p to its localization element, which is highly specific and leads to the assembly of stable transport complexes
Phenotypic and environmental correlates of natal dispersal in a long-lived territorial vulture
Natal dispersal, the movement between the birth and the first breeding site, has been rarely studied in long-lived territorial birds with a long-lasting pre-breeding stage. Here we benefited from the long-term monitoring programs of six populations of Egyptian vultures (Neophron percnopterus) from Spain and France to study how the rearing environment determines dispersal. For 124 vultures, we recorded a median dispersal distance of 48km (range 0-656km). Linear models were used to assess the effect of population and individual traits on dispersal distance at two spatial scales. Dispersal distances were inversely related to vulture density in the natal population, suggesting that birds perceive the abundance of conspecifics as a signal of habitat quality. This was particularly true for declining populations, so increasing levels of opportunistic philopatry seemed to arise in high density contexts as a consequence of vacancies created by human-induced adult mortality. Females dispersed further than males, but males were more sensitive to the social environment, indicating different dispersal tactics. Both sexes were affected by different individual attributes simultaneously and interactively with this social context. These results highlight that complex phenotype-by-environment interactions should be considered for advancing our understanding of dispersal dynamics in long-lived organisms.Funds were partially provided by Diputación General de Aragón, Junta de Andalucía, Comunidad de Bardenas and Projects CGL2009-12753-C02-02, CGL2009-12753-C02-01/BOS and CGL2010-15726 of Spanish Ministerio of Economía y Competitividad. ACA was supported by a contract Juan de la Cierva Incorporación (IJCI-2014-20744; Ministerio de Economía y Competitividad, Spain) and a Post-Doc contract Programa Viçent Mut of Govern Balear, Spain (PD/039/2017). EA was supported by La Caixa-Severo Ochoa International PhD Program 2015, JM was supported by a Basque Government predoctoral fellowship PRE_2018_2_0112 (2017)
Site-specific labeling of nucleotides for making RNA for high resolution NMR studies using an E. coli strain disabled in the oxidative pentose phosphate pathway
Escherichia coli (E. coli) is a versatile organism for making nucleotides labeled with stable isotopes (13C, 15N, and/or 2H) for structural and molecular dynamics characterizations. Growth of a mutant E. coli strain deficient in the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (K10-1516) on 2-13C-glycerol and 15N-ammonium sulfate in Studier minimal medium enables labeling at sites useful for NMR spectroscopy. However, 13C-sodium formate combined with 13C-2-glycerol in the growth media adds labels to new positions. In the absence of labeled formate, both C5 and C6 positions of the pyrimidine rings are labeled with minimal multiplet splitting due to 1JC5C6 scalar coupling. However, the C2/C8 sites within purine rings and the C1′/C3′/C5′ positions within the ribose rings have reduced labeling. Addition of 13C-labeled formate leads to increased labeling at the base C2/C8 and the ribose C1′/C3′/C5′ positions; these new specific labels result in two- to three-fold increase in the number of resolved resonances. This use of formate and 15N-ammonium sulfate promises to extend further the utility of these alternate site specific labels to make labeled RNA for downstream biophysical applications such as structural, dynamics and functional studies of interesting biologically relevant RNAs
Diagnosis of pancreaticobiliary malignancy by detection of minichromosome maintenance protein 5 in bile aspirates
Biliary brush cytology is the standard method of sampling a biliary stricture but has a low sensitivity for the detection of malignancy. We have previously shown that minichromosome maintenance (MCM) replication proteins (Mcm2–7) are markers of dysplasia and have utilised these novel biomarkers of growth for the diagnosis of cervical and bladder cancer. We aimed to determine if MCM proteins are dysregulated in malignant pancreaticobiliary disease and if levels in bile are a sensitive marker of malignancy. In 30 tissue specimens from patients with malignant/benign biliary strictures, we studied Mcm2 and -5 expression by immunohistochemistry. Bile samples were also collected prospectively at endoscopic retrograde cholangiopancreatography from 102 consecutive patients with biliary strictures of established (n=42) or indeterminate aetiology (n=60). Patients with indeterminate strictures also underwent brush cytology as part of standard practice. Bile sediment Mcm5 levels were analysed using an automated immunofluorometric assay. In benign biliary strictures, Mcm2 and -5 protein expression was confined to the basal epithelial proliferative compartment – in contrast to malignant strictures where expression was seen in all tissue layers. The percentage of nuclei positive for Mcm2 was higher in malignant tissue (median 76.5%, range 42–92%) than in benign tissue (median 5%, range 0–33%) (P<0.0005), with similar results for Mcm5. Minichromosome maintenance protein 5 levels in bile were significantly more sensitive than brush cytology (66 vs 20%; P=0.004) for the detection of malignancy in patients with an indeterminate stricture, with a comparable positive predictive value (97 vs 100%; P=ns). In this study, we demonstrate that Mcm5 in bile detected by a simple automated test is a more sensitive indicator of pancreaticobiliary malignancy than routine brush cytology
Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms
The main functions of viral capsids are to protect, transport and deliver their genome. The mechanical properties of capsids are supposed to be adapted to these tasks. Bacteriophage capsids also need to withstand the high pressures the DNA is exerting onto it as a result of the DNA packaging and its consequent confinement within the capsid. It is proposed that this pressure helps driving the genome into the host, but other mechanisms also seem to play an important role in ejection. DNA packaging and ejection strategies are obviously dependent on the mechanical properties of the capsid. This review focuses on the mechanical properties of viral capsids in general and the elucidation of the biophysical aspects of genome packaging mechanisms and genome delivery processes of double-stranded DNA bacteriophages in particular
Foraging Fidelity as a Recipe for a Long Life: Foraging Strategy and Longevity in Male Southern Elephant Seals
Identifying individual factors affecting life-span has long been of interest for biologists and demographers: how do some individuals manage to dodge the forces of mortality when the vast majority does not? Answering this question is not straightforward, partly because of the arduous task of accurately estimating longevity in wild animals, and of the statistical difficulties in correlating time-varying ecological covariables with a single number (time-to-event). Here we investigated the relationship between foraging strategy and life-span in an elusive and large marine predator: the Southern Elephant Seal (Mirounga leonina). Using teeth recovered from dead males on îles Kerguelen, Southern Ocean, we first aged specimens. Then we used stable isotopic measurements of carbon () in dentin to study the effect of foraging location on individual life-span. Using a joint change-point/survival modelling approach which enabled us to describe the ontogenetic trajectory of foraging, we unveiled how a stable foraging strategy developed early in life positively covaried with longevity in male Southern Elephant Seals. Coupled with an appropriate statistical analysis, stable isotopes have the potential to tackle ecological questions of long standing interest but whose answer has been hampered by logistic constraints
The phocein homologue SmMOB3 is essential for vegetative cell fusion and sexual development in the filamentous ascomycete Sordaria macrospora
Members of the striatin family and their highly conserved interacting protein phocein/Mob3 are key components in the regulation of cell differentiation in multicellular eukaryotes. The striatin homologue PRO11 of the filamentous ascomycete Sordaria macrospora has a crucial role in fruiting body development. Here, we functionally characterized the phocein/Mob3 orthologue SmMOB3 of S. macrospora. We isolated the gene and showed that both, pro11 and Smmob3 are expressed during early and late developmental stages. Deletion of Smmob3 resulted in a sexually sterile strain, similar to the previously characterized pro11 mutant. Fusion assays revealed that ∆Smmob3 was unable to undergo self-fusion and fusion with the pro11 strain. The essential function of the SmMOB3 N-terminus containing the conserved mob domain was demonstrated by complementation analysis of the sterile S. macrospora ∆Smmob3 strain. Downregulation of either pro11 in ∆Smmob3, or Smmob3 in pro11 mutants by means of RNA interference (RNAi) resulted in synthetic sexual defects, demonstrating for the first time the importance of a putative PRO11/SmMOB3 complex in fruiting body development
Novel colorectal endoscopic in vivo imaging and resection practice: a short practice guide for interventional endoscopists
Colorectal cancer remains a leading cause of cancer death in the UK. With the advent of screening programmes and developing techniques designed to treat and stage colorectal neoplasia, there is increasing pressure on the colonoscopist to keep up to date with the latest practices in this area. This review looks at the basic principles behind endoscopic mucosal resection and forward to the potential endoscopic tools, including high-magnification chromoscopic colonoscopy, high-frequency miniprobe ultrasound and confocal laser scanning endomicroscopic colonoscopy, that may soon become part of routine colorectal cancer management
- …