1,066 research outputs found
Better Together – A Day Hospital’s move towards Integrated care
Abstract -
Background/Aims: This article will present how an interdisciplinary team working within a day hospital in an acute NHS Foundation Trust embraced the opportunities of practice development to work ‘better together’ to meet the complex needs of individuals using the service.
Methods: By working closely with key stakeholders, the team developed an integrated service intersecting both primary and secondary care boundaries.
Results: The principles of practice development, including shared vision and focus, ensured changes made to the service were patient centred. These changes included a 360-degree assessment by professional staff with extended skills beyond their own professional role, and a virtual ward round, where individual patients are reviewed by an interdisciplinary team in the community with a focus on avoiding hospital admission, with quicker access to the day hospital. The team worked closely with their local university towards achieving practice development unit status, demonstrating a rigorous approach to the development of services provided by the day hospital.
Conclusions: The article highlights both the value of practice development and significantly the value of an interdisciplinary team working within a day hospital setting
Discrete antiferromagnetic spin-wave excitations in the giant ferric wheel Fe18
The low-temperature elementary spin excitations in the AFM molecular wheel
Fe18 were studied experimentally by inelastic neutron scattering and
theoretically by modern numerical methods, such as dynamical density matrix
renormalization group or quantum Monte Carlo techniques, and analytical
spin-wave theory calculations. Fe18 involves eighteen spin-5/2 Fe(III) ions
with a Hilbert space dimension of 10^14, constituting a physical system that is
situated in a region between microscopic and macroscopic. The combined
experimental and theoretical approach allowed us to characterize and discuss
the magnetic properties of Fe18 in great detail. It is demonstrated that
physical concepts such as the rotational-band or L&E-band concepts developed
for smaller rings are still applicable. In particular, the higher-lying
low-temperature elementary spin excitations in Fe18 or AFM wheels in general
are of discrete antiferromagnetic spin-wave character.Comment: 16 pages, 10 figure
A preliminary investigation of the use of inertial sensing technology for the measurement of hip rotation asymmetry in horse riders
This study investigated the use of inertial sensing technology as an indicator of asymmetry in horse riders, evidenced by discrepancies in the angle of external rotation of the hip joint. Twelve horse and rider combinations were assessed with the rider wearing the XsensTM MVN inertial motion capture suit. Asymmetry (left vs right) was revealed in mean hip external rotation of all riders, with values ranging from 1° to 27°, and 83% showed greater external rotation of the right hip. This study represents novel use of inertial sensing equipment in its application to the measurement of rider motion patterns. The technique is non-invasive, is capable of recording rider hip rotation asymmetry whilst performing a range of movements unhindered and was found to be efficient and practical, with potential to further advance the analysis of horse and rider interactions
Comparative hazards of chrysotile asbestos and its substitutes: A European perspective.
Although the use of amphibole asbestos (crocidolite and amosite) has been banned in most European countries because of its known effects on the lung and pleura, chrysotile asbestos remains in use in a number of widely used products, notably asbestos cement and friction linings in vehicle brakes and clutches. A ban on chrysotile throughout the European Union for these remaining applications is currently under consideration, but this requires confidence in the safety of substitute materials. The main substitutes for the residual uses of chrysotile are p-aramid, polyvinyl alcohol (PVA), and cellulose fibers, and it is these materials that are evaluated here. Because it critically affects both exposure concentrations and deposition in the lung, diameter is a key determinant of the intrinsic hazard of a fiber; the propensity of a material to release fibers into the air is also important. It is generally accepted that to be pathogenic to the lung or pleura, fibers must be long, thin, and durable; fiber chemistry may also be significant. These basic principles are used in a pragmatic way to form a judgement on the relative safety of the substitute materials, taking into account what is known about their hazardous properties and also the potential for uncontrolled exposures during a lifetime of use (including disposal). We conclude that chrysotile asbestos is intrinsically more hazardous than p-aramid, PVA, or cellulose fibers and that its continued use in asbestos-cement products and friction materials is not justifiable in the face of available technically adequate substitutes
Integrating vector control across diseases
Background: Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. Discussion: The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of ‘accidental’ cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world’s population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Summary: Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available
Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk
Background
Japanese encephalitis (JE) is one of the most significant aetiological agents of viral encephalitis in Asia. This medically important arbovirus is primarily spread from vertebrate hosts to humans by the mosquito vector Culex tritaeniorhynchus. Knowledge of the contemporary distribution of this vector species is lacking, and efforts to define areas of disease risk greatly depend on a thorough understanding of the variation in this mosquito’s geographical distribution.
Results
We assembled a contemporary database of Cx. tritaeniorhynchus presence records within Japanese encephalitis risk areas from formal literature and other relevant resources, resulting in 1,045 geo-referenced, spatially and temporally unique presence records spanning from 1928 to 2014 (71.9% of records obtained between 2001 and 2014). These presence data were combined with a background dataset capturing sample bias in our presence dataset, along with environmental and socio-economic covariates, to inform a boosted regression tree model predicting environmental suitability for Cx. tritaeniorhynchus at each 5 × 5 km gridded cell within areas of JE risk. The resulting fine-scale map highlights areas of high environmental suitability for this species across India, Nepal and China that coincide with areas of high JE incidence, emphasising the role of this vector in disease transmission and the utility of the map generated.
Conclusions
Our map contributes towards efforts determining the spatial heterogeneity in Cx. tritaeniorhynchus distribution within the limits of JE transmission. Specifically, this map can be used to inform vector control programs and can be used to identify key areas where the prevention of Cx. tritaeniorhynchus establishment should be a priority
Community structure of Pleistocene coral reefs of Curaçao, Netherlands Antilles
The Quaternary fossil record of living coral reefs is fundamental for understanding modern ecological patterns. Living reefs generally accumulate in place, so fossil reefs record a history of their former biological inhabitants and physical environments. Reef corals record their ecological history especially well because they form large, resistant skeletons, which can be identified to species. Thus, presence-absence and relative abundance data can be obtained with a high degree of confidence. Moreover, potential effects of humans on reef ecology were absent or insignificant on most reefs until the last few hundred years, so that it is possible to analyze "natural" distribution patterns before intense human disturbance began. We characterized Pleistocene reef coral assemblages from Curacao, Netherlands Antilles, Caribbean Sea, focusing on predictability in species abundance patterns from different reef environments over broad spatial scales. Our data set is composed of >2 km of surveyed Quaternary reef. Taxonomic composition showed consistent differences between environments and along secondary environmental gradients within environments. Within environments, taxonomic composition of communities was markedly similar indicating nonrandom species associations and communities composed of species occurring in characteristic abundances. This community similarity was maintained with little change over a 40-km distance. The nonrandom patterns in species abundances were similar to those found in the Caribbean before the effects of extensive anthropogenic degradation of reefs in the late 1970s and early 1980s. The high degree of order observed in species abundance patterns of fossil reef coral communities on a scale of tens of kilometers contrasts markedly with patterns observed in previous small-scale studies of modern reefs. Dominance of Acropora palmata in the reef crest zone and patterns of overlap and nonoverlap of species in the Montastraea ''annularis'' sibling species complex highlight the tendency for distribution and abundance patterns of Pleistocene corals to reflect environmental preferences at multiple spatial scales. Wave energy is probably the most important physical environmental variable structuring these coral communities. The strong similarity between ancient and pre-1980s Caribbean reefs and the nonrandom distribution of coral species in space and time indicate that recent variability noted at much smaller time scales may be due to either unprecedented anthropogenic influences on reefs or fundamentally different patterns at varying spatio-temporal scales
Global mapping of infectious disease
The primary aim of this review was to evaluate the state of knowledge of the geographical distribution of all infectious diseases of clinical significance to humans. A systematic review was conducted to enumerate cartographic progress, with respect to the data available for mapping and the methods currently applied. The results helped define the minimum information requirements for mapping infectious disease occurrence, and a quantitative framework for assessing the mapping opportunities for all infectious diseases. This revealed that of 355 infectious diseases identified, 174 (49%) have a strong rationale for mapping and of these only 7 (4%) had been comprehensively mapped. A variety of ambitions, such as the quantification of the global burden of infectious disease, international biosurveillance, assessing the likelihood of infectious disease outbreaks and exploring the propensity for infectious disease evolution and emergence, are limited by these omissions. An overview of the factors hindering progress in disease cartography is provided. It is argued that rapid improvement in the landscape of infectious diseases mapping can be made by embracing non-conventional data sources, automation of geo-positioning and mapping procedures enabled by machine learning and information technology, respectively, in addition to harnessing labour of the volunteer ‘cognitive surplus’ through crowdsourcing
- …