10,422 research outputs found

    Anisotropy probe of galactic and extra-galactic Dark Matter annihilations

    Get PDF
    We study the flux and the angular power spectrum of gamma-rays produced by Dark Matter (DM) annihilations in the Milky Way (MW) and in extra-galactic halos. The annihilation signal receives contributions from: a) the smooth MW halo, b) resolved and unresolved substructures in the MW, c) external DM halos at all redshifts, including d) their substructures. Adopting a self-consistent description of local and extra-galactic substructures, we show that the annihilation flux from substructures in the MW dominates over all the other components for angles larger than O(1) degrees from the Galactic Center, unless an extreme prescription is adopted for the substructures concentration. We also compute the angular power spectrum of gamma-ray anisotropies and find that, for an optimistic choice of the particle physics parameters, an interesting signature of DM annihilations could soon be discovered by the Fermi LAT satellite at low multipoles, l<100, where the dominant contribution comes from MW substructures with mass M>10^4 solar masses. For the substructures models we have adopted, we find that the contribution of extra-galactic annihilations is instead negligible at all scales.Comment: 14 pages, 7 figure

    Dark Matter Annihilation in Substructures Revised

    Full text link
    Upcoming γ\gamma-ray satellites will search for Dark Matter annihilations in Milky Way substructures (or 'clumps'). The prospects for detecting these objects strongly depend on the assumptions made on the distribution of Dark Matter in substructures, and on the distribution of substructures in the Milky Way halo. By adopting simplified, yet rather extreme, prescriptions for these quantities, we compute the number of sources that can be detected with upcoming experiments such as GLAST, and show that, for the most optimistic particle physics setup (mχ=40m_\chi=40 GeV and annihilation cross section σv=3×1026\sigma v = 3 \times 10^{-26} cm3^3 s1^{-1}), the result ranges from zero to \sim hundred sources, all with mass above 105M10^{5}M\odot. However, for a fiducial DM candidate with mass mχ=100m_\chi=100 GeV and σv=1026\sigma v = 10^{-26} cm3^3 s1^{-1}, at most a handful of large mass substructures can be detected at 5σ5 \sigma, with a 1-year exposure time, by a GLAST-like experiment. Scenarios where micro-clumps (i.e. clumps with mass as small as 106M10^{-6}M\odot) can be detected are severely constrained by the diffuse γ\gamma-ray background detected by EGRET.Comment: Version accepted for publication in MNRAS. Other subhalos mass function slopes added. All-sky analysis performed. Boost factors added. High resolution figures for all models in http://www2.iap.fr/users/bertone/Clumps

    Entanglement between pairing and screening in the Gorkov-Melik-Barkhudarov correction to the critical temperature throughout the BCS-BEC crossover

    Get PDF
    The theoretical description of the critical temperature Tc of a Fermi superfluid dates back to the work by Gor'kov and Melik-Barkhudarov (GMB), who addressed it for a weakly-coupled (dilute) superfluid in the BCS (weak-coupling) limit of the BCS-BEC crossover. The point made by GMB was that particle-particle (pairing) excitations, which are responsible for superfluidity to occur below Tc, and particle-hole excitations, which give rise to screening also in a normal system, get effectively disentangled from each other in the BCS limit, thus yielding a reduction by a factor 2.2 of the value of Tc obtained when neglecting screening effects. Subsequent work on this topic, aimed at extending the original GMB argument away from the BCS limit with diagrammatic methods, has kept this disentangling between pairing and screening throughout the BCS-BEC crossover, without realising that the conditions for it to be valid are soon violated away from the BCS limit. Here, we reconsider this problem from a more general perspective and argue that pairing and screening are intrinsically entangled with each other along the whole BCS-BEC crossover but for the BCS limit considered by GMB. We perform a detailed numerical calculation of the GMB diagrammatic contribution extended to the whole BCS-BEC crossover, where the full wave-vector and frequency dependence occurring in the repeated in-medium two-particle scattering is duly taken into account. Our numerical calculations are tested against analytic results available in both the BCS and BEC limits, and the contribution of the GMB diagrammatic term to the scattering length of composite bosons in the BEC limit is highlighted. We calculate Tc throughout the BCS-BEC crossover and find that it agrees quite well with Quantum Monte Carlo calculations and experimental data available in the unitarity regime.Comment: 21 pages, 11 figure

    Spin Chains in an External Magnetic Field. Closure of the Haldane Gap and Effective Field Theories

    Full text link
    We investigate both numerically and analytically the behaviour of a spin-1 antiferromagnetic (AFM) isotropic Heisenberg chain in an external magnetic field. Extensive DMRG studies of chains up to N=80 sites extend previous analyses and exhibit the well known phenomenon of the closure of the Haldane gap at a lower critical field H_c1. We obtain an estimate of the gap below H_c1. Above the lower critical field, when the correlation functions exhibit algebraic decay, we obtain the critical exponent as a function of the net magnetization as well as the magnetization curve up to the saturation (upper critical) field H_c2. We argue that, despite the fact that the SO(3) symmetry of the model is explicitly broken by the field, the Haldane phase of the model is still well described by an SO(3) nonlinear sigma-model. A mean-field theory is developed for the latter and its predictions are compared with those of the numerical analysis and with the existing literature.Comment: 11 pages, 4 eps figure

    Popov approximation for composite bosons in the BCS-BEC crossover

    Full text link
    Theoretical treatments of the BCS-BEC crossover need to provide as accurate as possible descriptions of the two regimes where the diluteness condition applies, either in terms of the constituent fermions (BCS limit) or of the composite bosons which form as bound-fermion pairs (BEC limit). This has to occur via a single fermionic theory that bridges across these two limiting representations. In this paper, we set up successive improvements of the fermionic theory, that result into composite bosons described at the level of either the Bogoliubov or the Popov approximations for point-like bosons. This work bears on the recent experimental advances on the BCS-BEC crossover with trapped Fermi atoms, which show the need for accurate theoretical descriptions of BEC side of the crossover.Comment: 13 pages, 4 figure

    Gap equation with pairing correlations beyond mean field and its equivalence to a Hugenholtz-Pines condition for fermion pairs

    Full text link
    The equation for the gap parameter represents the main equation of the pairing theory of superconductivity. Although it is formally defined through a single-particle property, physically it reflects the pairing correlations between opposite-spin fermions. Here, we exploit this physical connection and cast the gap equation in an alternative form which explicitly highlights these two-particle correlations, by showing that it is equivalent to a Hugenholtz-Pines condition for fermion pairs. At a formal level, a direct connection is established in this way between the treatment of the condensate fraction in condensate systems of fermions and bosons. At a practical level, the use of this alternative form of the gap equation is expected to make easier the inclusion of pairing fluctuations beyond mean field. As a proof-of-concept of the new method, we apply the modified form of the gap equation to the long-pending problem about the inclusion of the Gorkov-Melik-Barkhudarov correction across the whole BCS-BEC crossover, from the BCS limit of strongly overlapping Cooper pairs to the BEC limit of dilute composite bosons, and for all temperatures in the superfluid phase. Our numerical calculations yield excellent agreement with the recently determined experimental values of the gap parameter for an ultra-cold Fermi gas in the intermediate regime between BCS and BEC, as well as with the available quantum Monte Carlo data in the same regime.Comment: 24 pages, 13 figure

    Competition between final-state and pairing-gap effects in the radio-frequency spectra of ultracold Fermi atoms

    Full text link
    The radio-frequency spectra of ultracold Fermi atoms are calculated by including final-state interactions affecting the excited level of the transition, and compared with the experimental data. A competition is revealed between pairing-gap effects which tend to push the oscillator strength toward high frequencies away from threshold, and final-state effects which tend instead to pull the oscillator strength toward threshold. As a result of this competition, the position of the peak of the spectra cannot be simply related to the value of the pairing gap, whose extraction thus requires support from theoretical calculations.Comment: 4 pages, 3 figures, final version published in Phys. Rev. Let

    Anisotropic Galactic Outflows and Enrichment of the Intergalactic Medium. I: Monte Carlo Simulations

    Get PDF
    We have developed an analytical model to describe the evolution of anisotropic galactic outflows. With it, we investigate the impact of varying opening angle on galaxy formation and the evolution of the IGM. We have implemented this model in a Monte Carlo algorithm to simulate galaxy formation and outflows in a cosmological context. Using this algorithm, we have simulated the evolution of a comoving volume of size [12h^(-1)Mpc]^3 in the LCDM universe. Starting from a Gaussian density field at redshift z=24, we follow the formation of ~20,000 galaxies, and simulate the galactic outflows produced by these galaxies. When these outflows collide with density peaks, ram pressure stripping of the gas inside the peak may result. This occurs in around half the cases and prevents the formation of galaxies. Anisotropic outflows follow the path of least resistance, and thus travel preferentially into low-density regions, away from cosmological structures (filaments and pancakes) where galaxies form. As a result, the number of collisions is reduced, leading to the formation of a larger number of galaxies. Anisotropic outflows can significantly enrich low-density systems with metals. Conversely, the cross-pollution in metals of objects located in a common cosmological structure, like a filament, is significantly reduced. Highly anisotropic outflows can travel across cosmological voids and deposit metals in other, unrelated cosmological structures.Comment: 32 pages, 9 figures (2 color). Revised version accepted in Ap
    corecore