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The problem of the theoretical description of the critical temperature Tc of a Fermi superfluid dates back to
the work by Gorkov and Melik-Barkhudarov (GMB), who addressed it for a weakly coupled (dilute) superfluid
in what would today be referred to as the (extreme) BCS (weak-coupling) limit of the BCS-BEC crossover.
The point made in this context by GMB was that particle-particle (pairing) excitations, which are responsible
for superfluidity to occur below Tc, and particle-hole excitations, which give rise to screening also in a normal
system, get effectively disentangled from each other in the BCS limit, thus yielding a reduction by a factor of 2.2
of the value of Tc obtained when neglecting screening effects. Subsequent work on this topic, that was aimed at
extending the original GMB argument away from the BCS limit with diagrammatic methods, has tout court kept
this disentangling between pairing and screening throughout the BCS-BEC crossover, without realizing that the
conditions for it to be valid are soon violated away from the BCS limit. Here, we reconsider this problem from a
more general perspective and argue that pairing and screening are intrinsically entangled with each other along
the whole BCS-BEC crossover but for the BCS limit considered by GMB, with the particle-hole excitations soon
transmuting into particle-particle excitations away from this limit. We substantiate our argument by performing a
detailed numerical calculation of the GMB diagrammatic contribution suitably extended to the whole BCS-BEC
crossover, where the full wave-vector and frequency dependence occurring in the repeated in-medium two-particle
scattering is duly taken into account. Our numerical calculations are tested against analytic results available in
both the BCS and BEC limits, and the contribution of the GMB diagrammatic term to the scattering length of
composite bosons in the BEC limit is highlighted. We calculate Tc throughout the BCS-BEC crossover and find
that it agrees quite well with quantum Monte Carlo calculations and experimental data available in the unitarity
regime.
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I. INTRODUCTION

In the original work by Bardeen, Cooper, and Schrieffer
(BCS) on the theory of superconductivity [1], the attrac-
tive interparticle interaction of strength U0 acting between
opposite-spin fermions was considered to affect an energy
region about the Fermi surface with width of the order of the
Debye frequency ωD (we set h̄ = 1 throughout). This led to a
critical temperature for the onset of superconductivity, of the
form

kBT BCS
c = 2eγ ωD

π
exp{−1/(N0|U0|)}, (1)

where N0 = mkF /(2π2) is the density of states at the Fermi
level per spin component [m being the fermion mass and kF =
(3π2n)1/3 the Fermi wave vector associated with the particle
density n], e the Euler number, and kB and γ the Boltzmann
and Euler constants, respectively (with eγ � 1.781).

Soon after the BCS paper, Gorkov and Melik-Barkhudarov
(GMB) considered the phenomenon of superfluidity in a dilute
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(neutral) Fermi gas [2]. This physical system has the advantage
over the BCS model that the effects of the interparticle
interaction can be expressed entirely in terms of the scattering
length aF of the two-fermion problem in vacuum, thereby
leaving aside the uncertainties related to the strength U0 and the
cutoff ωD . The dilute Fermi gas was originally considered by
Galitskii for the case of a repulsive interparticle interaction, for
which aF > 0 and kF aF � 1 [3]. To deal with the phenomenon
of superfluidity, GMB extended this treatment to the case
of an attractive interparticle interaction, for which aF < 0
and kF |aF | � 1. Nowadays, full experimental control of the
fermionic scattering length aF can be achieved with ultracold
Fermi gases with an attractive interparticle interaction [4].

Having disposed of the quantities U0 and ωD with their
associated uncertainties, the critical temperature for a dilute
Fermi gas can still be obtained within the BCS mean-field
decoupling, leading to the expression

kBT BCS
c = 8eγ EF

πe2
exp{π/(2kF aF )}, (2)

where EF = k2
F /(2m) is the Fermi energy. [Note that ex-

pression (2) can be formally obtained from the original BCS
expression [Eq. (1)] with the replacements ωD → 4EF /e2 and
U0 → 4πaF /m.] What GMB then realized was that, owing to
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the exponential dependence of the BCS expression [Eq. (2)]
for Tc, if additional terms in the small parameter kF aF could be
introduced in the exponent such that (kF aF )−1 → (kF aF )−1 +
b + c (kF aF ) + · · · , where b and c are constants, the constant
b would modify the BCS prefactor of Tc by a finite amount
even in the (extreme) weak-coupling limit when kF aF → 0−.
To obtain the constant b, GMB considered a correction to
the BCS instability of the normal phase that occurs when Tc

is approached from above. This instability can be obtained
diagrammatically in terms of the “series of ladder graphs” in
the particle-particle channel [5] and yields correspondingly
for Tc the BCS mean-field result (2) as obtained when Tc is
approached from below. For this reason, the GMB correction is
sometimes referred to as “beyond-mean-field approximation.”
The end result of the GMB calculation for Tc was a reduction
of expression (2) of Tc by the factor (4e)1/3 � 2.2. This
result was obtained by performing, in practice, all wave-vector
integrations contained in the diagrammatic expressions near
the Fermi surface, with the assumption that the fermionic
chemical potential μ coincides with EF .

Later on, the GMB effect on Tc was interpreted on physical
grounds in terms of “polarization” effects of the medium
occurring in the particle-hole channel due to particle-hole
excitations across the Fermi surface [6], and attempts along
these lines were also made to extend the GMB result to
the high-density regime [7]. In all cases, these calculations
were still limited to the (weak-coupling) BCS limit where
the noninteracting Fermi surface is only slightly perturbed by
the interparticle attraction. In this limit (as we comment more
extensively below), the primary BCS instability occurring in
the particle-particle channel and the polarization effects of
the medium occurring in the particle-hole channel get effec-
tively disentangled from each other (with an accompanying
large reduction in the computational effort for determining
their effect on Tc). Extensions of the GMB result were also
considered for lower dimensionality [8], for mixtures of two-
component fermionic atoms with different masses [9], for
imbalanced spin populations in quasi two dimensions [10],
and for lattice models [11], but in all cases still adopting the
standard approximations that apply to the BCS regime.

With the advent of the experiments with ultracold Fermi
gases and the related study of the BCS-BEC crossover, how-
ever, the question has naturally arisen about what would be
the effect of the GMB correction when departing from the
BCS limit. In particular, it is of interest to assess whether this
correction may still yield significant effects at the unitary limit
(kF aF )−1 = 0 where a remnant Fermi surface is still active
[12]. By the BCS-BEC crossover, there occurs a progressive
reduction of the size of the fermionic pairs, ranging from
the large size of strongly overlapping Cooper pairs in the
BCS limit of weak interparticle attraction, to the small size
of nonoverlapping composite bosons in the BEC limit of a
strong interparticle attraction, across the intermediate unitary
limit where the size of the pairs is comparable with the average
interparticle distance. This crossover is driven by the coupling
parameter (kF aF )−1, which ranges from (kF aF )−1 � −1 in the
weak-coupling (BCS) regime when aF < 0, to (kF aF )−1 �
+1 in the strong-coupling (BEC) regime when aF > 0, across
the unitary limit when |aF | diverges. Correspondingly, the
fermionic chemical potential μ ranges from EF in the BCS

limit to −(2ma2
F )−1 in the BEC limit, with a large variation

occurring in between these two limits.
In this context, when dealing diagrammatically with the

GMB correction to Tc throughout the BCS-BEC crossover, the
effective disentangling between particle-particle and particle-
hole channels mentioned above, which should confidently
apply to the BCS limit only, was instead carried over tout
court to the whole crossover [13,14]. In practice, this was
simply done by calculating the particle-hole bubble associated
with particle-hole excitations (suitably averaged over the Fermi
sphere, like in the original GMB calculation), but now with a
chemical potential that spans the whole crossover and thus is no
longer equal toEF (apart from minor differences resulting from
the way the chemical potential itself is calculated [13,14]).
Recently, extensions along these lines were also considered
to investigate the GMB correction when including the effect
of the Rashba spin-orbit coupling in two-dimensional Fermi
gases [15]. A completely different approach was instead
followed in Ref. [16], where particle-particle and particle-hole
bubbles were included simultaneously in the framework of the
functional-renormalization-group approach.

The purpose of this paper is to analyze and settle the
question of entanglement vs disentanglement between pairing
and screening in the GMB correction to the critical tempera-
ture throughout the whole BCS-BEC crossover, by a careful
analysis of the relevant many-body diagrammatic structure of
the theory. Our analysis combines both extensive numerical
calculations applied to the whole crossover and analytic results
in the BCS and BEC limits, and avoids at the outset the approx-
imations introduced originally by GMB. We show that these
approximations, which entail an effective disentanglement
between pairing (in the particle-particle channel) and screening
(in the particle-hole channel), hold only in the BCS limit where
the particle-particle propagator is approximately constant over
a large sector of the wave-vector and frequency domain. Away
from the BCS limit, the particle-particle (pair) propagator
acquires instead a progressively marked dependence on wave
vector and frequency and the GMB disentanglement between
pairing and screening no longer holds. This feature makes the
numerical calculation of the GMB correction to the critical
temperature quite more involved than those reported, e.g., in
Refs. [13,14], where the GMB disentanglement was assumed
to hold for the whole crossover. In addition, for a realistic
calculation of the critical temperature throughout the whole
BCS-BEC crossover, we have combined the GMB correction,
which evolves from the BCS to the BEC limits, with another
correction which instead evolves in the opposite direction from
the BEC to the BCS limits, since it was conceived in Ref. [17]
to improve on the description of composite bosons in the BEC
limit, at the level of the Popov approximation for pointlike
bosons [18]. This combined Popov-GMB calculation for the
critical temperature throughout the whole BCS-BEC crossover
will yield a quite good comparison with quantum Monte Carlo
data over the whole coupling range for which they are available
and with experimental data at unitarity. It turns out, however,
that the associated value of the chemical potential at unitarity
does not match the corresponding experimental value. We
attribute this difference to the lack of self-consistency in the
fermionic propagators that underlie our theoretical approach,
and argue at the same time that inclusion of self-consistency
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would not affect the good result obtained for the critical
temperature.

Finally, it is relevant to mention that interest in the effects
of medium polarization has also arisen in the context of
low-density neutron matter, to the extent that these effects
affect the value of the pairing gap in the superfluid phase
at zero temperature [19,20]. Actually, it was already shown
in the original GMB paper [2] that their beyond-mean-field
approximation also renormalizes the value of the pairing
gap at zero temperature with respect to the BCS value, in
quite the same way that it does for the value of the critical
temperature. The question of the entanglement between pairing
and screening away from the weak-coupling (BCS) limit, that
we discuss in detail in this paper for the critical temperature,
is then expected to be relevant for the pairing gap as well and
will be considered in future work.

The plan of the paper is as follows. In Sec. II we set up
a diagrammatic approach to pairing fluctuations above Tc,
which includes the GMB contribution in a form that can be
extended to the whole BCS-BEC crossover. In this way, we
show that in the BCS limit pairing and screening get effectively
disentangled from each other, thus recovering the original
GMB result. We also show, however, that this disentanglement
cannot be sustained away from the BCS limit. To this end, we
calculate analytically how the GMB correction evolves toward
the BEC limit, showing that in this limit it yields a significant
contribution to the scattering length for composite bosons. We
further discuss the need to introduce the Popov correction
mentioned above. In Sec. III we report on the numerical
calculation of the Popov and GMB corrections and show
how the relevant quantities in this context behave across the
BCS-BEC crossover. We also discuss a (partial) self-consistent
procedure on the pair propagator which is required for the
calculation of Tc, owing to the fact that this propagator diverges
upon approaching the superfluid phase when lowering the
temperature from the normal phase. The numerical results for
the Popov and GMB corrections are tested against their analytic
expressions from Sec. II in the BCS and BEC limits, and our
results for Tc throughout the BCS-BEC crossover are compared
with the quantum Monte Carlo and experimental data available
in the unitary regime. Section IV gives our conclusions and sets
up future perspectives of our approach. Appendix A discusses
in detail the way the numerical calculations of the Popov and
GMB corrections have been implemented in practice, in view
of the highly nontrivial task of including the full wave-vector
and frequency dependence of the pair propagators that enter
these corrections. Finally, Appendix B shows how the Popov
and GMB corrections contribute to the value of the scattering
length for composite bosons that form in the BEC limit.

II. EXTENDING THE GMB CONTRIBUTION
THROUGHOUT THE BCS-BEC CROSSOVER

In this section, we show how the GMB contribution has
to be handled away from the BCS (weak-coupling) limit
of the BCS-BEC crossover, in the normal phase above the
critical temperature Tc. To this end, we begin by discussing the
essential aspects of the many-body diagrammatic theory for
a dilute Fermi gas with an attractive interparticle interaction,
which are relevant to this problem. We are explicitly concerned

with determining the value of Tc throughout the BCS-BEC
crossover, by resting on a minimal set of diagrammatic terms
which include the GMB contribution. In the following, both
the reduced Planck constant h̄ and the Boltzmann constant kB

are set equal to unity.

A. Brief summary about pairing fluctuations in the normal
phase above Tc

A dilute Fermi gas is characterized by the fact that the range
of the interparticle interaction is much smaller than the average
interparticle distance, such that the interaction can be taken
of the contact type v0δ(r − r′) acting between opposite-spin
fermions. In the following, only the attractive case v0 < 0 is
considered and equal spin populations are taken.

The choice of a contact potential entails the introduction
of an ultraviolet cutoff k0 in the otherwise divergent integrals
over the wave vector k. The two quantities v0 and k0 can
be combined together by resorting to the two-body problem
in vacuum, whereby the fermionic scattering length aF is
obtained from the relation [21]

m

4πaF

= 1

v0
+

∫
|k|�k0

dk
(2π )3

m

k2
. (3)

A suitable regularization procedure can be introduced at this
point which eliminates further reference to v0 and k0, by taking
the limits v0 → 0− and k0 → ∞ simultaneously such that aF

remains fixed at a desired value.
The above procedure is especially relevant when dealing

with ultracold Fermi gases, for which aF can be experimentally
controlled [4]. From the theoretical side, this regularization
procedure somewhat simplifies the structure of the many-body
diagrammatic theory. This is because a given diagram, which
can be drawn for finite v0, survives the limit v0 → 0− provided
there occurs a compensating ultraviolet divergence for k0 →
∞. It turns out then that in this way the bare interaction v0 is
everywhere replaced by the effective interaction (or bare pair
propagator) �0(Q) for opposite-spin fermions, where Q =
(Q,�ν) is a four-vector with bosonic Matsubara frequency
�ν = 2πνT (ν integer). The pair propagator, depicted in
Fig. 1(a), corresponds to an infinite sequence of two-body
scattering events in the particle-particle channel (or ladder
diagrams) and is given by the expression

�0(Q) = −v0

1 + v0 χpp(Q)
= − 1

m
4πaF

+ Rpp(Q)
. (4)

Here,

χpp(Q) =
∫

dk
(2π )3

T
∑

n

G0(k+Q,ωn+�ν) G0(−k,−ωn)

(5)

is the particle-particle bubble, where G0(k,ωn) = (iωn −
ξk)−1 is the bare fermionic single-particle propagator with ξk =
k2/(2m) − μ (μ being the chemical potential) and fermionic
Matsubara frequency ωn = (2n + 1)πT (n integer), and

Rpp(Q) = χpp(Q) −
∫

dk
(2π )3

m

k2

=
∫

dk
(2π )3

(
1 − f (ξk+Q) − f (ξk)

ξk+Q + ξk − i�ν

− m

k2

)
(6)
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FIG. 1. Diagrammatic representation of (a) the bare pair propaga-
tor �0 for opposite-spin fermions and (b) the single-particle fermionic
self-energy � obtained from �0 within the (non-self-consistent)
t-matrix approximation. Solid and dashed lines represent the bare
fermionic single-particle propagator G0 and the interaction potential
v0, respectively, while Q (k) are bosonic (fermionic) four-vectors.
Here and in the following, the upper (lower) line of �0 corresponds
to an up (down) fermionic spin.

is the regularized version of the particle-particle bubble ob-
tained with the help of Eq. (3) [f (E) = (exp{E/T } + 1)−1

being the Fermi function].
Accordingly, the pair propagator �0 represents a building

block of the diagrammatic theory in the normal phase above
Tc. In particular, the simplest possible fermionic self-energy is
obtained in terms of a single �0, as depicted in Fig. 1(b) and
given by the expression

�(k) = −
∫

dQ
(2π )3

T
∑

ν

�0(Q) G0(Q − k) (7)

with the fermionic four-vector notation k = (k,ωn). The
choice of Eq. (7) for � corresponds to the so-called non-
self-consistent t-matrix approximation. This self-energy was
originally considered by Nozières and Schmitt-Rink (NSR) to
account for the correct behavior of the BCS-BEC crossover
in the BEC limit at finite temperature [22]. In the following,
we adopt the approach of Ref. [23] and use the self-energy
[Eq. (7)] to obtain the (dressed) fermionic single-particle
propagator G(k) = [G0(k)−1 − �(k)]−1, in terms of which the
total fermionic density

n = 2
∫

dk
(2π )3

T
∑

n

eiωnη G(k) (8)

(where η = 0+) can be calculated to obtain the chemical po-
tential for given temperature and coupling. In the original NSR
approach [22], however, the density was derived from Eq. (8)
with the additional approximation of expressing G at first order
in �, thereby writing G(k) � G0(k) + G0(k) �(k) G0(k).

B. Thouless criterion

The pair propagator �0(Q) plays also the role of signaling
the insurgence of the broken-symmetry (superfluid) phase,

when the temperature is lowered down to the critical temper-
ature Tc. This is because the sequence of ladder diagrams on
which the pair propagator is built diverges for Q = 0, thereby
manifesting that, upon approaching Tc, pairing fluctuations
are able to organize themselves over a progressively larger
spatial distance. The critical temperature is thus determined by
the following condition (known also as the Thouless criterion
[24]):

−�0(Q = 0; Tc,μc)−1 = m

4πaF

+
∫

dk
(2π )3

(
tanh(ξk/2Tc)

2ξk
− m

k2

)
= 0, (9)

obtained upon setting Q = 0 in expression (4) and with the
thermodynamic variables explicitly indicated. This expression
formally coincides with that obtained within the BCS mean-
field approximation when Tc is reached from below. Care
should, however, be exerted about the value of μc = μ(Tc)
that enters Eq. (9).

For later purposes, it is relevant to obtain analytically the
expression of Tc in the BCS (weak-coupling) limit within the
non-self-consistent t-matrix approximation of Eqs. (7) and (8).
To this end, the integral on the right-hand side of Eq. (9)
can be calculated analytically under the typical weak-coupling
approximation Tc � μ. One obtains∫

dk
(2π )3

(
tanh(ξk/2Tc)

2ξk
− m

k2

)

� (2m)3/2√μ

4π2

[
ln

(
8μeγ

πTc

)
− 2

]
. (10)

Entering this result into the Thouless criterion (9) yields

Tc � 8eγ μ

πe2
exp

{
π

2kF aF

√
EF

μ

}
. (11)

Within the non-self-consistent t-matrix approximation (as
well as in the NSR approach), to the leading order in the
small parameter kF |aF | (where aF < 0) the chemical potential
(for T � TF , as is the case in weak coupling close to Tc) is
given by

μ = EF

[
1 + 4

3π
kF aF + · · ·

]
, (12)

such that π
√

EF /μ/(2kF aF ) � π/(2kF aF ) − 1/3 in the ex-
ponent of Eq. (11). This results in a “spurious” factor e−1/3 to
appear on the right-hand side of Eq. (11) with respect to the ex-
pected BCS (weak-coupling) result (2). This shortcoming can
be remedied by introducing a partial degree of self-consistency
in the non-self-consistent t-matrix approximation through a
constant self-energy (mean-field) shift �0 � 2πaF n/m [23],
such that μ − �0 � EF again at the leading order in kF |aF |.
In this way, expression (2) for Tc is correctly recovered.

In the following, a partial degree of self-consistency is
introduced in the non-self-consistent t-matrix approximation,
not only in the BCS (weak-coupling) limit but also throughout
the whole BCS-BEC crossover, by relying on the approach of
Ref. [17]. This approach (to be discussed next) was originally
conceived to improve on the description of composite bosons
(dimers) that form in the BEC limit with respect to the
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p+Q
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(a)

FIG. 2. Diagrammatic representation of (a) the Popov bosoniclike
self-energy�B

Popov, obtained by dressing the upper fermionic line in the
particle-particle channel (an analogous dressing occurs for the lower
fermionic line), and (b) the GMB bosoniclike self-energy �B

GMB. In
both cases, upper and lower fermionic lines correspond to opposite
spins. By the present approach,�B

Popov and�B
GMB represent bosoniclike

self-energy insertions to the pair propagator �0.

non-self-consistent t-matrix approximation by introducing a
kind of mean-field interaction also between the otherwise
noninteracting composite bosons.

C. Popov contribution

In Ref. [17], an approximation for the BCS-BEC crossover
was devised, which in the strong-coupling limit of the
fermionic attraction would extend the Popov description from
pointlike [18] to composite bosons. In this way, a residual
interaction among composite bosons survives even when the
condensate disappears above the critical temperature. Under
these circumstances, the bare pair propagator �0 gets dressed
through the bosoniclike self-energy depicted in Fig. 2(a),
whose analytic expression reads [25]

�B
Popov(Q) = −2

∫
dk

(2π )3
T

∑
n

∫
dQ′

(2π )3
T

∑
ν ′

×G0(k + Q)2G0(−k)G0(Q′ − Q − k)�0(Q′),

(13)

where the factor of 2 accounts for the dressing of both
upper and lower fermionic lines. In the following, we limit
ourselves to consider the case Q = 0, whereby we set �B

Popov =
�B

Popov(Q = 0).

Both the BCS (weak-coupling) and BEC (strong-coupling)
limits of �B

Popov can be calculated analytically. In particular, the
BCS limit is obtained as follows. One begins by approximating
�0(Q′) � −4πaF /m in Eq. (13), such that∫

dQ′

(2π )3
T

∑
ν ′

G0(Q′ − k)�0(Q′) � −4πaF

m

n0(T ,μ)

2
,

(14)

where n0(T ,μ) is the density of a system of noninteracting
fermions with Fermi energy μ at temperature T . Accordingly,
for T � TF we can write n0(T ,μ) = k3

μ/(3π2), with the
notation μ = k2

μ/(2m) (with μ > 0) [23]. The remaining factor
on the right-hand side of Eq. (13) can be calculated by noting
that∫

dk
(2π )3

T
∑

n

G0(k)2G0(−k)

= −1

2

∂

∂μ

∫
dk

(2π )3
T

∑
n

G0(k)G0(−k)

= −1

2

∂

∂μ
Rpp(Q = 0)

� −1

2

(2m)3/2

8π2√μ

{[
ln

(
8μeγ

πT

)
− 2

]
+ 2

}
� m2

8πaF k2
μ

.

(15)

To obtain this result, we have made use of definition (6) for
the regularized particle-particle bubble (with Q = 0) and of
its approximate expression [Eq. (10)] valid in the BCS limit,
as well as of the result ln(μ/T ) � −π/(2kμaF ) obtained by
the Thouless criterion [Eq. (9)] in the absence of the Popov
correction by assuming that T is of the order of the critical
temperature Tc.

Entering the results Eqs. (14) and (15) in Eq. (13) with
Q = 0, we obtain eventually in the BCS limit

�B
Popov � mkμ

6π2
= 1

3

(2m)3/2√μ

4π2
. (16)

Here, the expression on the right-hand side makes evident
the presence of a factor 1/3, which is required to eliminate
the “spurious” factor e−1/3 in the expression of the critical
temperature as noted after Eq. (12).

To this end, we modify the original Thouless criterion
[Eq. (9)] by including the Popov contribution, in the form

�0(Q = 0; Tc,μc)−1 − �B
Popov(Q = 0) = 0. (17)

With the help of expressions (9) and (16), this modified
Thouless criterion then yields the result

m

4πaF

+ (2m)3/2√μ

4π2
ln

(
8μeγ e1/3

πTce2

)
= 0, (18)

as we had anticipated.
In the BEC (strong-coupling) limit, on the other hand, the

Popov bosoniclike self-energy acquires the form [17]

�B
Popov � −mkF

6π2
(kF aF )2. (19)
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In the following, the Popov correction [Eq. (13)] (with Q =
0) is included numerically throughout the whole BCS-BEC
crossover, where it will turn out to give an important contri-
bution to the calculation of the critical temperature. In this
context, recovering numerically the analytic BCS [Eq. (16)]
and BEC [Eq. (19)] limiting values will serve as an important
test for the accuracy of the calculations. The procedure to set
up the numerical calculation of �B

Popov for a generic value of
the coupling (kF aF )−1 is described in Appendix A.

D. GMB contribution

Akin to the Popov correction discussed above, also the
GMB correction can be interpreted in terms of a bosoniclike
self-energy �B

GMB shown in Fig. 2(b), which dresses the bare
pair propagator �0. In this respect, our approach is similar to
the original GMB treatment [2], where the singularities of the
“vertex part” of the two-particle Green’s function [26] were
identified by approaching Tc from the normal phase. This
contrasts with the treatment of Ref. [6] (see also Ref. [27]),
where an induced interaction was added to the bare interaction
directly in the linearized gap equation to approach Tc from the
superfluid phase. In these references, however, only the BCS
(weak-coupling) limit was considered.

The present treatment of the GMB correction differs from
all previous treatments on the same subject. This is because
we consider the GMB correction not only in the BCS limit
but also throughout the BCS-BEC crossover. And, contrary to
previous treatments of the GMB correction where the BCS-
BEC crossover was considered [13,14], we take into account
the full dependence on wave vector and frequency of the pair
propagators �0 that appear in Fig. 2(b). This dependence, in
fact, will prove to be an essential ingredient for an appropriate
description of the physics at the basis of the GMB correction.

The analytic expression of the GMB bosoniclike self-energy
�B

GMB depicted in Fig. 2(b) reads

�B
GMB(Q)

=
∫

dk
(2π )3

T
∑

n

∫
dp

(2π )3
T

∑
νp

∫
dq

(2π )3
T

∑
νq

×G0(p − k+Q) G0(k − p) G0(p+q − k+Q) G0(k)

×G0(q − k + Q) G0(k − q) �0(p + Q) �0(q + Q).

(20)

In the following, we again limit ourselves to consider the
case Q = 0, whereby we set �B

GMB = �B
GMB(Q = 0).

Expression (20), which contains six single-particle prop-
agators G0 and two pair propagators �0 with one fermionic
and two bosonic four-vector integrations, is considerably more
involved than the Popov counterpart [Eq. (13)], so its numerical
calculation for Q = 0 will also prove quite more challeng-
ing. The numerical strategies to deal with this complicated
calculation are outlined in Sec. III A and further discussed
in more detail in Appendix A. In this context, we note that,
for the needs of the numerical calculations, expression (20)
is fully symmetric under the interchange p ↔ q. Different
sets of four-wave-vector integration and summation variables
(k,p,q), however, are useful to obtain the BCS and BEC limits
of expression (20), to be considered next.

In addition, we anticipate that in the numerical calculations
reported in Sec. III the pair propagator �0, which enters
the Popov [Eq. (13)] and GMB [Eq. (20)] bosoniclike self-
energies as well as the fermionic self-energy [Eq. (7)] used in
density equation (8), will everywhere be replaced by the pair
propagator � dressed by a constant shift according to Eq. (44)
below. The presence of this shift (either �B

Popov or �B
GMB, or

both) is required to avoid unwanted divergences that would
otherwise occur when T → Tc.

E. Disentanglement of pairing and screening in the BCS limit

To obtain the BCS limiting value of the GMB bosoniclike
self-energy [Eq. (20)], it would appear natural to approximate
both pair propagators �0 therein by their asymptotic expression
−4πaF /m valid in the BCS limit, in a similar way to what we
did in Eq. (14) for the Popov bosoniclike self-energy. However,
for the GMB case adopting tout court this approximation for
�0 would make the GMB self-energy [Eq. (20)] diverge, and
some care should be accordingly exerted in this context. For
these reasons, it is relevant to spell out in detail the sequence
of (approximate) steps to obtain the GMB result for Tc [2].
In this way, it will also be clear that these approximations
cannot simply be extended to the whole BCS-BEC crossover,
for which a more complete approach is instead required.

To deal with the BCS limit of the GMB self-energy
[Eq. (20)], it is convenient to rename the four-wave-vector
variables like in Fig. 3(a) (where, again, only the case Q =
0 is considered). If one would retain the full four-vector
dependence of the two pair propagators �0 appearing in this
diagram, there would be no problem in the convergence of
the corresponding sums and integrals over the fermionic four-
vectors (k,k′,k′′), but no analytic result could be obtained in
this way.

In the weak-coupling limit, the GMB result can be derived
from the general expression (20) through the following steps:

(i) Begin by taking each �0 of the form −4πaF /m,
independent of wave vector and frequency. By doing this, a
particle-hole bubble of the form

χph(k + k′) =
∫

dk′′

(2π )3
T

∑
n′′

G0(k′′,ωn′′ )

×G0(k′′ − k − k′,ωn′′ − ωn − ωn′)

=
∫

dk′′

(2π )3

f (ξk+k′+k′′ ) − f (ξk′′)

ξk+k′+k′′ − ξk′′ − i(ωn + ωn′)

(21)

appears in the central part of the diagram. This bubble identifies
the simplest process associated with screening in a Fermi
gas [28].

(ii) In the particle-hole bubble [Eq. (21)], set ωn + ωn′ = 0,
take k and k′ on a Fermi sphere with radius kμ, and average
over their relative angle. The result is

χ̄ph = −N (μ) ln(4e)1/3, (22)

where N (μ) = (2m)3/2√μ/(4π2) is the single-particle density
of states (per spin component) taken at the chemical potential.
This step is justified by the presence of the sums over the four-
vectors k and k′ in Fig. 3(a), whereby the factors G0(k)G0(−k)
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FIG. 3. (a) The GMB bosoniclike self-energy �B
GMB of Fig. 2(b)

is cast in a form suitable to obtain its BCS limit analytically. The
magnitude of the inverse �0(Q,�ν)−1 of the pair propagator [in units
of m/(4π |aF |)] is shown vs (|Q|/kF )2 and �ν/EF for the couplings
(b) (kF aF )−1 = −6 in the extreme BCS limit and (c) (kF aF )−1 = −1
at the boundary between the BCS and the crossover regions.

and G0(k′)G0(−k′) in the particle-particle bubbles on the left-
and right-hand sides of the diagram are strongly peaked at
|k| = kμ,ωn = 0 and |k′| = kμ,ωn′ = 0.

(iii) In this way, the diagram of Fig. 3(a) is effectively
disentangled into the product of three terms, namely, two
particle-particle bubbles of the form (5) that appear on the
left- and right-hand sides of the diagram and the (averaged)
particle-hole bubble that appears in the central part of the
diagram. Taken as they stand, the two particle-particle bubbles
would diverge in the ultraviolet. However, owing to the conver-
gence of the original diagram where the two pair propagators
�0 retain their full wave-vector and frequency dependence,
one can safely make the integrals over k and k′ convergent
again by replacing each particle-particle bubble [Eq. (5)] with
its regularized version [Eq. (6)], whose integrand has the
same behavior in the dominant region where |k| � kμ,ωn � 0
and |k′| � kμ,ωn′ � 0. Accordingly, the GMB self-energy

becomes

�B
GMB = �B

GMB(Q = 0) �
(
−4πaF

m

)2

Rpp(Q = 0)2χ̄ph.

(23)

(Note in this context that the use here of the word “disentan-
glement” follows the original work of Feynman [29].)

(iv) The approximate result [Eq. (23)] affects the critical
temperature by modifying the Thouless criterion, in the form

�0(Q = 0; Tc,μc)−1 − �B
GMB(Q = 0) = 0 (24)

in analogy with Eq. (17) for the Popov case. Making use of
expression (4) for �0 and of the result (23) for �B

GMB, the
generalized Thouless criterion [Eq. (24)] becomes

m

4πaF

+ Rpp(Q = 0) +
(

4πaF

m
Rpp(Q = 0)

)2

χ̄ph = 0.

(25)

(v) Expression (25) can be further simplified by noting that,
for T of the order of the BCS critical temperature, the Thouless
criterion [Eq. (9)] is equivalent to writing 4πaF

m
Rpp(Q = 0) =

−1. Using this result, Eq. (25) reduces to its final form:
m

4πaF

+ Rpp(Q = 0) + χ̄ph = 0. (26)

With the result (22), one then obtains, in analogy with Eq. (18),

m

4πaF

+ (2m)3/2√μ

4π2
ln

(
8μeγ

πTce2(4e)1/3

)
= 0. (27)

Upon setting μ = EF in this expression, one gets that the
value of the BCS critical temperature (2) is reduced by the
factor (4e)1/3 � 2.2, as it was obtained in Ref. [2]. Otherwise,
if the value [Eq. (12)] of μ within the non-self-consistent
t-matrix approximation is adopted, the Popov contribution is
also needed to get rid of the additional “spurious” factor e−1/3

as discussed in Sec. II C.
From the way it has been derived, it is clear that

Eq. (26) holds only in the extreme BCS (weak-coupling)
limit (kF aF )−1 � −1, whereby �0(Q) can be approximated
by the constant term −4πaF /m. We have explicitly verified
the validity of this approximation numerically, by plotting the
magnitude of the inverse �0(Q,�ν)−1 of the pair propagator
in units of m/(4π |aF |), in Fig. 3(b) for the coupling values
(kF aF )−1 = −6 in the extreme BCS (weak-coupling) limit
and in Fig. 3(c) for the coupling value (kF aF )−1 = −1 at
the boundary between the BCS and the crossover regions.
From these plots, one indeed verifies that in the extreme BCS
(weak-coupling) limit to a good approximation �0(Q,�ν) can
be considered constant over a large plateau in the (|Q|,�ν)
plane. This property, however, no longer holds already at the
boundary between the BCS and the crossover regions, where
strong deviations of �0 from constancy appear evident. In spite
of this property, in Refs. [13,14] the critical temperature was
calculated by relying on the result in Eq. (26) not only in the
BCS limit but also across the whole BCS-BEC crossover.

In the following, we remedy this shortcoming by maintain-
ing the full Q and �ν dependence of �0 in expression (20)
of the GMB self-energy �B

GMB. The corresponding numerical
calculation are reported in Sec. III throughout the BCS-BEC

014528-7



PISANI, PERALI, PIERI, AND STRINATI PHYSICAL REVIEW B 97, 014528 (2018)

FIG. 4. (a) The GMB bosoniclike self-energy �B
GMB of Fig. 2(b)

is cast in a form suitable to obtain its BEC limit analytically. The
magnitude of the inverse �0(Q,�ν)−1 of the pair propagator [in units
of N0 = N (μ = EF )] is shown vs (|Q|/kF )2 and �ν/EF for the
couplings (b) (kF aF )−1 = 0 at unitarity and (c) (kF aF )−1 = 2 in the
BEC regime.

crossover. In particular, we anticipate that our calculation will
be able to reproduce in a totally numerical fashion the GMB
result for the reduction of the value of the critical temperature
[Eq. (2)] by the factor (4e)1/3 � 2.2 in the extreme weak-
coupling limit, thus confirming the validity of the nontrivial
weak-coupling approximations leading to the GMB result.

F. Transmuting of screening into pairing in the BEC limit

To deal with the BEC (strong-coupling) limit of the GMB
bosoniclike self-energy [Eq. (20)], it is convenient to rename
the four-wave-vector variables like in Fig. 4(a) (where the case
Q = 0 is again considered). In this limit, we are going to show
analytically that keeping the full Q and �ν dependence in the
pair propagators �0 of the GMB contribution is essential for a
correct evaluation of this quantity. This need can be anticipated
by looking at the much stronger Q and �ν dependence of
|�0(Q,�ν)−1| that occurs in the BEC with respect to the BCS
limit, as shown in Fig. 4(c). For comparison, in Fig. 4(b) the
shape of |�0(Q,�ν)−1| is also shown at unitarity. [Note the

change of normalization for |�0(Q,�ν)−1| in Figs. 4(b) and
4(c) with respect to Figs. 3(b) and 3(c).]

In the BEC limit μ/T → −∞ we are interested in, the
pair propagators entering the diagram of Fig. 4(a) have the
approximate form [30]

�0(q,�q) = D(q,�q)

i�q − ξB
q

, (28)

where

D(q,�q) = − 4π

m2aF

⎛
⎝1 +

√
1 + ξB

q − i�q

ε0

⎞
⎠. (29)

In these expressions, ε0 = (ma2
F )−1 is the binding energy

of the two-fermion problem in vacuum and ξB
q = q2/(4m) −

μB , where μB = 2μ + ε0 is the chemical potential for the
composite bosons that form in this limit. When extended to
the complex frequency plane by letting i�q → z in Eqs. (28)
and (29), the function �0(q,z) has a pole at z = ξB

q and a cut
along the real frequency axis for z � ξB

q + ε0.
The integrations occurring in the expression of the GMB

bosoniclike self-energy �B
GMB [cf. the diagram of Fig. 4(a)]

can be done by first considering the sums over the bosonic
Matsubara frequencies �p and �q . These sums can both be
transformed into contour integrals in the complex z plane by
using the bosonic distribution b(z) = (exp{z/(kBT )} − 1)−1

[31]. Let C be a contour in this plane which encircles poles and
branch cut clockwise. Owing to the presence of the function
b(z), the contribution from the cuts of �0(p) and �0(q) are
exponentially suppressed in the BEC limit (when ε0 is the
largest energy scale) and need not be considered. Similarly,
the contribution from the poles of G0(k + q) and G0(−k + p)
wherep andq appear with a positive sign are also exponentially
suppressed. Therefore, only the poles of �0(p) and �0(q) and
of G0(k + q − p) and G0(−k − q + p) (where p or q appear
with a negative sign) give a finite contribution.

Specifically, three contributions result by doing the sums
over �q and �p in the sequence, which arise respectively from
the poles of (i) �0(q) and �0(p), (ii) �0(q) and G0(k + q − p),
and (iii) �0(p) and G0(−k − q + p).

Contribution (i) yields

�
B(i)
GMB

∼= 8π

m2aF

∫
dq

(2π )3
b
(
ξB

q

)
× 8π

m2aF

∫
dp

(2π )3
b
(
ξB

p

) ∫
dk G0(k)3G0(−k)3,

(30)

where ∫
dk G0(k)3G0(−k)3 ∼= 15m5a7

F

256π
(31)

with the shorthand notation∫
dk =

∫
dk

(2π )3
T

∑
ωk

(32)

and similarly for the other integrals. Note that this contribution
(which is of second order in the bosonic density nB = n/2)
could have been obtained by neglecting thep andq dependence
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everywhere in the G0 of the diagram in Fig. 4(a) and by
approximating further:∫

dq �0(q) ∼= − 8π

m2aF

∫
dq

(2π )3
T

∑
�q

ei�qη

i�q − ξB
q

= 8π

m2aF

∫
dq

(2π )3
b
(
ξB

q

) = 8π

m2aF

nB, (33)

where η is a positive infinitesimal.
Contribution (ii) yields instead

�
B(ii)
GMB � 8π

m2aF

∫
dq

(2π )3
b
(
ξB

q

) ∫
dp

(2π )3
φ(p), (34)

where the sum over the fermionic frequency ωk has been
performed analytically and with the definition

φ(p) =
∫

dk
(2π )3

�0(p, − ξk − ξk−p)

(2 ξk)2(2 ξk−p)2
. (35)

Here, �0(p, − ξk − ξk−p) is obtained from �0(p,�p) given
by Eqs. (28) and (29) with the replacement i�p → −ξk −
ξk−p. Note that, the numerator (29) of the expression (28)
contributes to the integration in Eq. (35). It is for this reason
that, contrary to the expression (30), only one power of
the bosonic density nB appears eventually in the expression
(34). An expression identical to (34) results also from the
contribution (iii) (apart from the interchange of the wave
vectors q and p).

There remains to calculate the function φ(p) given by
Eq. (35). To this end, it is convenient to change the integration
variable into k′ = k − p/2, rescale the magnitude of the wave
vectors by k̃′ = |k′|aF and p̃ = |p|aF , and introduce the
notation

A(k̃′,p̃) = 1 + k̃′2 + p̃2/4

k̃′ p̃
. (36)

In this way, the integral over the angle between k′ and p can
be done analytically, yielding

φ(p) = 2 m3 a4
F

π

1

p2
F (p̃), (37)

where

F (p̃) =
∫ ∞

0
dk̃

(1 +
√

2 + k̃2 + p̃2/2)

(2 + 2k̃2 + p̃2)(1 + k̃2 + p̃2/4)2

×
[

1

A(k̃,p̃)2 − 1
+ 1

A(k̃,p̃)
arctanh

(
1

A(k̃,p̃)

)]
.

(38)

To obtain this expression, we have neglected the small energy
scale μB with respect to ε0. We can thus rewrite in Eq. (34)∫

dp
(2π )3

φ(p) = m3 a3
F

π3

∫ ∞

0
dp̃ F (p̃), (39)

where a numerical calculation gives the value Ĩ = 0.25974 for
the integral of F (p̃) in Eq. (39).

In conclusion, the sum of the above three contributions (i)–
(iii) can be written in the compact form

�B
GMB �

∫
dp

(2π )3

∫
dq

(2π )3

×
{

8π

m2aF

[
b
(
ξB

q

)
φ(p) + b

(
ξB

p

)
φ(q)

]

+
(

8π

m2aF

)2 15m5a7
F

256π
b
(
ξB

p

)
b
(
ξB

q

)}

� 16 Ĩ

π2

mkF

6π2
(kF aF )2 (40)

to the leading order in the small parameter kF aF . Apart from
a sign, this result differs from the corresponding Popov result
[Eq. (19)] by the constant factor 16 Ĩ /π2 � 0.421.

Note that the power-law dependence of expression (40) on
the small parameter (kF aF ) � 1 contrasts with the exponential
dependence of the particle-hole bubble [Eq. (21)] on the
(square of the) coupling parameter (kF aF )−1, which would
be obtained by extending expression (21) to the BEC limit
(kF aF )−1 → +∞. In fact, no trace of the particle-hole bubble
[Eq. (21)] appears in the derivation of the result in Eq. (40),
where only particle-particle processes, which are relevant to
the scattering between composite bosons, correctly occur in the
BEC limit. This result confirms that screening processes show
up in the GMB contribution only in the opposite BCS limit
(kF aF )−1 → −∞ treated originally by Gorkov and Melik-
Barkhudarov [2] and discussed in Sec. II E.

Result (40) is further considered in Appendix B, where the
GMB self-energy �B

GMB is shown to contribute to the scattering
lengthaB of composite bosons that form in the BEC limit. In the
following section, result (40) instead represents a benchmark
for the numerical calculation in the (extreme) BEC limit.

III. NUMERICAL RESULTS

In this section, we implement numerically the inclusion of
the Popov and GMB corrections into the non-self-consistent
t-matrix approximation. We are specifically concerned with
determining how these corrections affect the value of the
critical temperature Tc throughout the BCS-BEC crossover.
In the process, the numerical accuracy of the calculation of
the Popov and GMB corrections is tested against the analytic
results obtained in Sec. II in the BCS and BEC limits. Our
numerical results for Tc are also compared with quantum
Monte Carlo calculations which are available in an extended
region of coupling about unitarity and with the experimental
data which are available at unitarity.

A. Numerical strategies at Tc

In the Popov [�B
Popov of Eq. (13)] and GMB [�B

GMB of
Eq. (20)] bosoniclike self-energies depicted in Fig. 2, all pair
propagators were taken to be bare ones. This choice was
sufficient for obtaining the analytic results in the BCS and
BEC limit. When implementing the numerical calculations for
these bosoniclike self-energies, however, care must be exerted
based on the fact that the bare pair propagator �0(Q) becomes
singular at Q = 0 for specific values of Tc and μc according
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to the Thouless criterion [Eq. (9)]. This problem is definitely
bound to show up numerically in the BCS limit, where one
knows that the GMB correction decreases the value of the
critical temperature by a factor of 2.2 with respect to the BCS
result.

To overcome this problem, it is clear that some degree of
self-consistency must unavoidably be included in the calcu-
lation. However, to keep at the same time the calculation for
determining Tc as simple as possible (thus avoiding increasing
its complexity beyond affordable limits), self-consistency is
implemented in practice according to the following scheme.

We begin by considering Eq. (4), in the form

�0(Q; T ,μ)−1 = − m

4πaF

− Rpp(Q; T ,μ), (41)

where Rpp is given by expression (6) and the dependence
on the thermodynamic quantities (T ,μ) has been explicitly
indicated. By normalizing �−1

0 in terms of the single-particle
density of states (per spin component) at the Fermi level,
N0 = N (μ = EF ) = mkF /(2π2), the coupling (kF aF )−1 is
seen to appear explicitly only in the first term on the right-hand
side of Eq. (41). In particular, for given value of (kF aF )−1 the
condition �0(Q = 0; Tc,μc)−1 = 0 determines a set of values
{Tc,μc} consistently with the equation

m

4πaF

+ Rpp(Q = 0; Tc,μc) = 0. (42)

For each of these pairs of values, we can then rewrite
Eq. (41) in the form

�0(Q; Tc,μc)−1 = −Rpp(Q; Tc,μc) + Rpp(Q = 0; Tc,μc).

(43)

Upon entering expression (43) for �0(Q) into the fermionic
self-energy [Eq. (7)] and then into density equation (8), in
order to determine uniquely a pair of values Tc and μc for
given (kF aF )−1, it turns out that the density equation does not
depend explicitly on the coupling (kF aF )−1 but only on the pair
(Tc,μc).

Next, we consider the effect of the bosoniclike self-energy
�B (either �B

Popov or �B
GMB, or both) calculated at Q = 0 only,

by introducing the dressed pair propagator:

�(Q; T ,μ)−1 = �0(Q; T ,μ)−1 − �B(T ,μ). (44)

In this case, a new set of values {T̄c,μ̄c} is determined by
the generalized Thouless criterion

�(Q = 0; T̄c,μ̄c)−1 = �0(Q = 0; T̄c,μ̄c)−1

−�B(T̄c,μ̄c) = 0. (45)

In this way, Eq. (44) becomes, for given value of (T̄c,μ̄c)
and a generic value of Q,

�(Q; T̄c,μ̄c)−1 = �0(Q; T̄c,μ̄c)−1 − �B(T̄c,μ̄c)

= �0(Q; T̄c,μ̄c)−1 − �0(Q = 0; T̄c,μ̄c)−1

= −Rpp(Q; T̄c,μ̄c) + Rpp(Q = 0; T̄c,μ̄c),

(46)

where in the last line Eq. (41) has been used. Note that the
right-hand sides of Eqs. (43) and (46) are formally identical
to each other, apart from the different set of values (Tc,μc)

and (T̄c,μ̄c) on which they depend. This remark implies that
the replacement �0(Q)−1 → �(Q)−1 in the expressions of
the Popov self-energy [Eq. (13)] and the GMB self-energy
[Eq. (20)] amounts to considering a new set of values (T̄c,μ̄c)
in the place of the old ones (Tc,μc). This is also true when this
replacement is made in the density equation [Eq. (8)], which
in this way depends only on the pairs (T̄c,μ̄c) but not explicitly
on the coupling (kF aF )−1. The new values (T̄c,μ̄c) are then
determined by the generalized Thouless criterion (45), in the
form

−�0(Q = 0; T̄c,μ̄c)−1 + �B(T̄c,μ̄c)

= m

4πaF

+ Rpp(Q = 0; T̄c,μ̄c) + �B(T̄c,μ̄c) = 0 (47)

for a given coupling (kF aF )−1. Note that Eq. (47) has the same
structure of Eq. (24), although with a more general expression
for the bosoniclike self-energy �B .

We again emphasize that the above simplified procedure,
for including some degree of self-consistency in the pair
propagator �0, relies on the fact that we are considering only
the Q = 0 value of �B(Q) and limit ourselves to determine
the critical temperature Tc. In addition, we note that, owing
to the formal analogy between Eqs. (43) and (46), the density
equation (8) (with the dressed � in the place of the bare �0)
is formally identical to its counterpart within the (non-self-
consistent) t-matrix approximation. As a consequence, the
solution of the generalized Thouless criterion [Eq. (47)] plus
the associated density equation to get a new pair of values
(T̄c,μ̄c) amounts in practice to fixing an old pair of values
(Tc,μc) that satisfy the original Thouless criterion [Eq. (42)]
plus the corresponding density equation for given coupling
g = (kF aF )−1, and then finding the value of the modified
coupling ḡ for which Eq. (47) is satisfied.

Finally, we comment that more sophisticated degrees of
self-consistency with respect to the one adopted here (like the
replacement of the bare fermionic single-particle propagator
G0 by the dressed one G, everywhere G0 appears in the
relevant diagrams) are bound to result in an exceedingly
difficult numerical calculation, especially as far as the GMB
self-energy �B

GMB is concerned. This need to restrict to the G0

will be apparent in the discussion of Appendix A, where the
calculation of the Popov and GMB diagrams is implemented
in detail.

B. Bosoniclike self-energies and generalized Thouless criterion

To solve the generalized Thouless criterion [Eq. (47)],
knowledge is required of the bosoniclike self-energy (either
Popov or GMB, or both), calculated at the self-consistent
values (T̄c,μ̄c) for a given value of the coupling (kF aF )−1.

A plot of �B
Popov and �B

GMB is shown in Fig. 5(a) throughout
the BCS-BEC crossover, with both quantities calculated at the
values of (T̄c,μ̄c) of the full theory. Note that these two quan-
tities have somewhat opposite behavior, with a comparable
magnitude across the whole crossover. The limiting behaviors
of both quantities in the (extreme) BCS limit are shown in
Fig. 5(b). In particular, the limiting BCS values for (kF aF ) →
0− have been obtained in both cases by fitting the numerical
results with a quadratic polynomial and then extrapolating the
curve to kF aF = 0, recovering in this way with very good
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FIG. 5. (a) Bosoniclike self-energies �B
Popov (circles) and �B

GMB

(squares) (in units of the single-particle density of states N0) vs the
coupling (kF aF )−1. Both quantities are calculated with the values
of (T̄c,μ̄c) of the full theory. (b) �B

Popov and �B
GMB vs kF |aF | (with

aF < 0) obtained numerically in the interval (0,1). The limiting
values for kF |aF | → 0 are shown to recover the results (16) and (22),
respectively, through an extrapolation procedure represented in each
case by a solid line. (c) �B

Popov and �B
GMB vs kF aF (with aF > 0)

obtained numerically (symbols plus solid lines) in the interval (0,1)
are compared, respectively, with the analytic behaviors (19) and (40)
(dashed lines). [Note that in (b) and (c) �B

Popov is multiplied by a minus
sign.]

accuracy the Popov value of 1/3 given by Eq. (16) and the
GMB value of − ln(4e)1/3 given by Eq. (22) [in units of N (μ)
with μ = EF ]. Figure 5(c) shows further the limiting behaviors
of the Popov and GMB bosoniclike self-energies in the BEC
limit for small values of kF aF . In this case, our numerical
calculations are compared with the analytic expressions for
the Popov [Eq. (19)] and GMB [Eq. (40)] contributions. These
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FIG. 6. The graphical procedure for determining numerically the
intersection between �−1

0 (Q = 0) (dashed line) and �B
GMB + �B

Popov

(solid line) is shown for the coupling (kF aF )−1 = −1.0 (both quan-
tities are in units of single-particle density of states, N0). Here,
T t-matrix

c = 0.08485TF corresponds to the intersection given by the
square and T Popov+GMB

c = 0.04860TF corresponds to the intersection
given by the circle.

limiting analytic behaviors are quite well reproduced by our
numerical calculation, thus providing a stringent test on its
accuracy.

Figure 6 reports an example about the way the generalized
Thouless criterion [Eq. (47)] is solved in practice for given
coupling. It amounts to finding the intersection between the
curves of �−1

0 (Q = 0) and �B
GMB + �B

Popov vs T/TF . One

begins by drawing the function �−1
0 (Q = 0; Tc,μc) vs Tc/TF

(dashed line), where the value of Tc and of the associated μc are
consistent with density equation (8). Since this function given
by Eq. (41) depends explicitly on the coupling, the plot reported
in Fig. 6 corresponds to a specific value of (kF aF )−1. The value
of Tc at which �−1

0 crosses zero (identified by the square in
Fig. 6) then corresponds to the (non-self-consistent) t-matrix
approximation (cf. the discussion of Sec. III A. Next one draws
the bosoniclike self-energy �B

GMB + �B
Popov vs Tc/TF (solid

line), which also depends on the pair (Tc,μc) as specified above.
The intersection of this curve with the function �−1

0 (identified
by the circle in Fig. 6) provides eventually the value of Tc (and
thus also of μc) with the Popov and GMB corrections included
for the given coupling.

C. Critical temperature

The complete dependence of the critical temperature Tc on
coupling obtained in this way is reported in Fig. 7(a). This
figure shows the results obtained by several approximations:
(i) the most complete result, T

(GMB+Popov)
c , obtained by in-

cluding both �B
GMB and �B

Popov (solid line); (ii) the partial
result, T (GMB)

c , obtained by including �B
GMB only (dashed line);

(iii) the partial result, T
(Popov)
c , obtained by including �B

Popov

only (dotted line); (iv) T (t-matrix)
c corresponding to the (non-

self-consistent) t-matrix approximation (dash-dotted line); and
(v) the BCS result, T̄ (BCS)

c , obtained at the mean-field level
(i.e., with no inclusion of pairing fluctuations) throughout the
BCS-BEC crossover [32] (dashed double-dotted line), which
extends expression (2) away from the extreme weak coupling.

From this figure it appears that curves (i)–(iii) are obtained
from curve (iv) by a nonuniform “stretching” of the coupling
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FIG. 7. (a) Five different approximations for the critical tempera-
ture Tc are shown vs the coupling (kF aF )−1: T (GMB+Popov)

c (solid line),
T (GMB)

c (dashed line), T (Popov)
c (dotted line), T (t-matrix)

c (dash-dotted
line), and T̄ (BCS)

c at the mean-field level (dashed double-dotted line).
The inset compares the coupling dependence of T (GMB+Popov)

c (solid
line) and of Tc obtained in Refs. [33,34] within the self-consistent
t-matrix approximation (dashed line). (b) The corresponding values
of the chemical potential μc evaluated at Tc are shown with the same
conventions of panel (a). Both Tc and μc are in units of the Fermi
energy, EF .

axis. Consistently with this observation, all curves (i)–(iv) have
a maximum with the same height, although shifted at different
couplings. On the other hand, this maximum is absent when
the self-consistent t-matrix approximation of Refs. [33,34] is
adopted to calculate Tc, as shown in the inset of Fig. 7(a)
(dashed line), where a comparison with our most complete
result T (GMB+Popov)

c is also reported (solid line). Note that these
two curves cross each other at about unitarity.

Quite generally, the presence of a maximum in the curve of
the critical temperature vs coupling throughout the BCS-BEC
crossover would be required by a general argument that, when
approaching the extreme BEC limit where composite bosons
can be treated as pointlike for all practical purposes, the Bose-
Einstein condensation temperature TBEC for noninteracting
bosons should be approached from above as shown in Ref. [35].

Figure 7(b) reports the results for the chemical potential
μc associated with the values of the critical temperature Tc

corresponding to the approximations of Fig. 7(a). Note, in
particular, that the BCS result for μc (dashed double-dotted
line) corresponds to the noninteracting value taken at the
temperature Tc. Note also that our most complete result for μc,
obtained by including both �B

GMB and �B
Popov (solid line), gives
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FIG. 8. (a) The results for the critical temperature T (GMB+Popov)
c

(solid line) are compared with the quantum Monte Carlo data from
Ref. [36] (squares with error bars) and Ref. [37] (dots with error
bars) over an extended region of coupling. The inset focuses on
the results at unitarity, by comparing our value of T (GMB+Popov)

c

(solid line) with the results from Refs. [36–41] (corresponding to
the symbols from bottom to top). (b) The ratio T (BCS)

c /Tc is shown
in the BCS (weak-coupling) regime kF |aF | � 1.0 (with aF < 0),
for the various approximations for Tc (GMB+Popov, GMB, Popov,
and t-matrix) reported in Fig. 7(a) over a more extended region of
coupling. Here, T (BCS)

c is given by expression (2) that holds in the BCS
regime.

larger values with respect to the (non-self-consistent) t-matrix
approximation (dash-dotted line), while the self-consistent
t-matrix approximation of Refs. [33,34] gives a smaller value
for μc at unitarity. We comment more extensively on this issue
in Sec. IV.

Figure 8(a) compares our most complete results (GMB +
Popov) for Tc over an extended region of the coupling pa-
rameter (kF aF )−1 with the quantum Monte Carlo (QMC) data
available from Refs. [36,37]. The agreement between our
results and the QMC data appears quite remarkable, taking
into account the fact that our calculations contain no fitting
parameters. It is also worth noting that the value of Tc for
(kF aF )−1 = +0.5 from Ref. [37] is larger than the BEC value
TBEC attained by our calculation in the extreme BEC limit, thus
supporting the presence of a maximum in the curve of Tc vs
(kF aF )−1. In addition, the inset of Fig. 8(a) compares our result
for Tc at unitarity with the corresponding data reported both
in experimental [38–40] and theoretical (QMC) [36,37,41]
works. Also in this case, it is remarkable that our value for
Tc lies well within the boundaries provided by these data.
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Finally, Fig. 8(b) considers the ratio of the BCS critical
temperature T (BCS)

c given by Eq. (2), which well approximates
the mean-field result for Tc in the BCS (weak-coupling) regime
kF |aF | � 1.0 with aF < 0, with our numerical results for
Tc that were reported in Fig. 7(a) over a more extended
region of coupling. The numerical results (symbols) have
been extrapolated to the limit kF |aF | → 0 through the fittings
curves also reported in the figure (lines), where the limiting
values coincide in each case with those obtained analytically
in Secs. II C and II E. This represents a further strong check on
the accuracy of our calculations.

D. Relevance of the dependence on wave vector and frequency
of the pair propagators entering the GMB

bosonic self-energy

We have emphasized in the Introduction that this paper
includes the full wave-vector and frequency dependence of the
pair propagator �0 in the calculation of the GMB contribution.
We have also shown throughout this work that taking into
account this dependence is essential for a correct calculation of
the GMB contribution away from the (extreme) BCS regime.
In this context, the question naturally arises about which one
of these two dependencies (that is, wave vector or frequency)
is the dominant one.

To answer this question, we have performed additional
“partial calculations” of the GMB bosoniclike self-energy
�B

GMB, where the dependence on either the wave vector or
the frequency has been neglected in both pair propagators �0

that appear therein [while using the same values of (T̄c,μ̄c)
in all calculations]. Specifically, in each �0 we have the
following: (i) Either we set the magnitude of the wave vectors
|p| and |q| equal to

√
2kμ (where the absolute value of the

corresponding integrand is a maximum) while maintaining
the full frequency dependence, (ii) or we set the frequency
alternatively equal to zero or to EF while maintaining the full
wave-vector dependence. The results of these calculations are
reported in Fig. 9 on the BCS side of unitarity, where they are
compared with the full calculation with both the wave-vector
and frequency dependencies of �0 taken into account. From
this comparison one concludes that in the calculation of �B

GMB,
not only does the frequency dependence play a dominant role
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FIG. 9. The full calculation of �B
GMB vs (kF aF )−1 is compared

with partial calculations of the same quantity, where either the wave-
vector or the frequency dependence has been neglected in both pair
propagators �0 entering the expression of �B

GMB. The pairs (T̄c,μ̄c)
obtained by the full calculation are also used in the partial calculations.

over the wave-vector dependence of �0, but also neglecting
the frequency dependence of �0 yields a result considerably
different from that of the full calculation, even with the wrong
curvature of �B

GMB as a function of coupling.

IV. CONCLUDING REMARKS AND PERSPECTIVES

In this paper, we have dealt with the calculation of the GMB
correction in such a way that we could consistently extend
it to scan the whole BCS-BEC crossover, whereby largely
overlapping Cooper pairs on the BCS side evolve continuously
into dilute composite bosons on the BEC side. The GMB
correction was, in fact, originally introduced [2] to complement
the BCS theory of superconductivity [1], which at that time
was meant to apply only to largely overlapping Cooper pairs.
For this reason, the GMB theory took advantage of specific
approximations which are valid under these circumstances,
resulting into a sizable reduction (by a factor of 2.2) of the value
of the critical temperature with respect to the standard BCS
value. The recent advent of accurate experiments with ultracold
Fermi gases has then brought up the need for an accurate
calculation of the GMB correction throughout the BCS-BEC
crossover, thereby avoiding those approximations that would
apply specifically to the BCS limit but could not be extended
to the whole crossover. Previous attempts by diagrammatic
methods to extend the calculation of the GMB correction
throughout the BCS-BEC crossover [13,14] apparently did not
realize this delicate point and made an incorrect use of the same
main approximations utilized in the original GMB paper.

Our handling of the GMB correction throughout the BCS-
BEC crossover has helped clarify an important physical point,
that is, that the effective disentanglement between the particle-
particle excitations (which are characteristic of superconduc-
tivity) and the particle-hole excitations (which are character-
istic of screening) holds only in the (extreme) BCS limit of
the crossover, which was of exclusive interest to the original
GMB approach [2]. We have shown that, consistently with
the key ingredients on which any physical sensible theoretical
treatment of the BCS-BEC crossover must rely on, the above
disentanglement between particle-particle and particle-hole
excitations is not bound to occur when moving away from the
BCS limit. In this context, we have also shown (cf. Appendix B)
that the GMB correction, apart from maintaining its role in the
BCS limit, acquires also an important role in the BEC limit of
the crossover where it contributes significantly to the value of
the scattering length aB of composite bosons. Otherwise, if one
would (incorrectly) stick to maintaining the disentanglement
between particle-particle and particle-hole excitations even in
the BEC limit, the GMB correction would become totally
irrelevant in this limit.

From the computational side, we have performed a very
accurate numerical calculation of the GMB correction, main-
taining the full dependence on wave vector and frequency of the
pair propagators that appear in its expression. In this respect,
we have been able to reproduce in a totally numerical fashion
the factor of 2.2 for the reduction of the critical temperature
with respect to the standard BCS value (while originally this
result was obtained in an analytic way [2]). The accuracy
of our numerical calculations was further tested against the
analytic results that can be obtained both in the BCS and BEC
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limits of the crossover. To this end, we found it necessary
to complement the GMB correction by a further correction
based on the Popov theory for pointlike bosons, which provides
an important mean-field shift contribution to the chemical
potential of the constituent fermions in the BCS limit and to the
chemical potential of the composite bosons in the BEC limit.

A definite success of our accurate simultaneous numerical
handling of the GMB and Popov corrections throughout
the BCS-BEC crossover is represented by the remarkable
agreement we have obtained, between our calculated values
of the critical temperature and those available by QMC
calculations in the core of the crossover region (whereby
−0.5 � (kF aF )−1 � +0.5) and by experiments with ultracold
Fermi gases at unitarity. This agreement appears particularly
significant, in light of the fact that our first-principles calcula-
tions do not contain any fitting parameter.

In this context, however, it should be pointed out that our
calculation does not match the value of the chemical potential
μc at Tc and unitarity, within the range determined by an
available experiment and by alternative theoretical calcula-
tions. Specifically, at unitarity and at the respective value of
Tc, μc/EF = 0.3659 within the non-self-consistent t-matrix
approximation, 0.6971 by adding to it the GMB and Popov
corrections as was done in the present work, 0.394 within the
self-consistent t-matrix approximation of Refs. [33,34], and
0.42 as obtained experimentally in Ref. [39]. It thus appears
that, adding the GMB and Popov corrections on top of the non-
self-consistent t-matrix approximation makes the agreement
with the experimental chemical potential worse than that
obtained with the non-self-consistent t-matrix approximation
itself.

This failure in obtaining a reasonable value of the thermo-
dynamic chemical potential can be attributed to the lack of (at
least some degree of) self-consistency in the fermionic propa-
gators G0 entering the diagrammatic structures of �B

Popov [cf.
Eq. (13)] and �B

GMB [cf. Eq. (20)], as well as of �0 [cf. Eqs. (4)
and (5)] and of the fermionic self-energy � [cf. Eq. (7)]. To
estimate the effect of introducing this self-consistency on the
critical temperature obtained by including the Popov and GMB
corrections, we can parallel the way the self-consistency was
implemented in this paper for the bosoniclike pair propagator
�0. To this end, self-consistency in the fermionic propagators
can approximately be dealt with at any given coupling by
including a suitable constant (that is, independent of the four-
vector k) self-energy shift �0 in each of the above propagators
G0. Accordingly, this constant shift �0 would get subtracted
from the chemical potential μ, such that μ → μ − �0 = μ′.
The only way this replacement would not affect the values of
the critical temperature, as determined above within the full
theory that includes �B

Popov and �B
GMB [cf. the solid line in

Fig. 7(a)], would be that μ′ thus determined corresponds to
the chemical potential reported in Fig. 7(b) (solid line). An
important observation can be made at this point, that the same
value of μ′ also identifies an underlying Fermi surface with
radius kμ′ = √

2mμ′ when μ′ > 0, at whose location a back-

bending occurs in the dispersion relation
√

( k2

2m
− μ′)

2 + �̃2

as obtained from the single-particle spectral function, where �̃

can be identified with a pairing gap in the superfluid phase [42]
or with a pseudogap in the normal phase [43]. Figure 10 shows
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FIG. 10. The Luttinger wave vector kL, obtained in Refs. [43,44]
from the single-particle spectral function to identify the existence of
an underlying Fermi surface in a Fermi gas with attractive interparticle
interaction, is shown at Tc vs coupling across the BCS-BEC crossover
(squares with error bars). The corresponding value obtained at
unitarity from the QMC calculation of Ref. [46] is also reported
for comparison (star). This quantity is compared with the values of
kμ = √

2mμ for μ > 0 (solid curve) obtained from the values of μ

corresponding to the solid curve of Fig. 7(b).

the value of kμ′ obtained in Refs. [43,44] (where it was referred
to as the Luttinger wave vector kL) from a study of the single-
particle spectral function at Tc vs coupling (squares with error
bars). These data are compared with the value of kμ = √

2mμ

for μ > 0 (solid curve) obtained from the corresponding solid
curve of Fig. 7(b). We recall that the values of kL reported in
Fig. 10 have been validated by an extensive comparison with
experiment over an extended range of coupling about unitarity
[43,45] and also by the value obtained at unitarity by the QMC
calculation of Ref. [46] (identified by the star in Fig. 10). The
quite good overall agreement obtained in this figure confirms
our identification between μ of the present theory [the solid
curve of Fig. 7(b)] with μ′ = μ − �0 of a more refined theory
that would include fermionic self-consistency, and supports
our argument that the values of Tc obtained in this paper by
including the Popov and GMB corrections [the solid line in
Fig. 7(a)] should not be affected by including explicitly this
self-consistency.

A future natural extension of the present approach will be
to consider the superfluid phase below Tc and to calculate the
pairing gap � down to zero temperature. Actually, this problem
was considered in the original GMB paper [2], where it was
found that at zero temperature also the value of � is reduced by
a factor of 2.2 with respect to the BCS result. The challenge now
would be to extend this GMB result to the whole BCS-BEC
crossover for all temperatures between zero and Tc. To this end,
a suitable diagrammatic form of the gap equation should be set
up beforehand, which would allow us to take into account the
GMB as well as the Popov correction extended to the superfluid
phase. This topic will be postponed to future work.

Extending the proper treatment of the GMB correction to
the superfluid phase across the BCS-BEC crossover appears
particularly relevant at this time, since accurate experimental
values of the pairing gap were recently made available via
Bragg spectroscopy with ultracold Fermi gases [47]. This topic
is also of much interest in the context of nuclear physics, where
the value of the pairing gap was calculated at zero temperature
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by QMC methods essentially over the whole BCS side of
unitarity [48].
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APPENDIX A: IMPLEMENTING THE NUMERICAL
CALCULATION OF THE POPOV AND GMB DIAGRAMS

We pass now to discuss in detail the procedures that we
have adopted for implementing the numerical calculations
of the Popov [Eq. (13)] and GMB [Eq. (20)] diagrammatic
contributions (both with Q = 0). A detailed discussion is
relevant, in light of the fact that in these calculations we have
included the full wave-vector and frequency dependence of the
pair propagators �0 appearing in expressions (13) and (20). In
particular, this is especially important for the GMB expression
(20), for which this inclusion was never attempted before. In
the following, we discuss the two contributions separately.

For the sake of definiteness, the procedures to calculate
numerically the integrals and sums entering the Popov and
GMB diagrammatic contributions are discussed below in terms
of the “bare” pair propagator �0. In practice, however, these
calculations are performed utilizing instead the “dressed” pair

propagator � of Eq. (44) in the place of �0. This replacement
will obviously not affect the procedures described below,
which rest on taking full account of the wave-vector and
frequency dependence of �0 (or, equivalently, of �).

1. Popov contribution

For the sake of the following discussion, it is convenient to
reproduce here expression (13) with Q = 0:

�B
Popov = −2

∫
dk

(2π )3
T

∑
n

∫
dq

(2π )3
T

∑
νq

×G0(k)2 G0(−k) G0(q − k) �0(q) (A1)

with the four-vector notation k = (k,ωn) and q = (q,�νq
),

where ωn and �νq
are fermionic and bosonic Matsubara

frequencies, respectively. Here, G0(k) = (iωn − ξk)−1 with
ξk = k2/(2m) − μ and �0 is given by Eq. (4). Expression
(A1) contains summations over two Matsubara frequencies,
and integrations over four angles (three of which turn out to
be trivial) and over two magnitudes of wave vectors. We have
optimized these sums and integrations by performing them in
the following order.

Sum over the fermionic Matsubara frequency. The sum
over the fermionic Matsubara frequency ωn can be done
analytically. One arrives at the following expression:

�B
Popov = −2

∫
dk

(2π )3

∫
dq

(2π )3
T

∑
νq

I
(
ξk,ξq−k; �νp

,�νq

)
�0(q), (A2)

where

I
(
ξk,ξq−k; �νp

,�νq

) = − f (ξk)

(2ξk)2
(
ξk + ξq−k − i�νq

) − f (ξk)

2ξk
(
ξk + ξq−k − i�νq

)2 + df (ξk)/dξk

2ξk
(
ξk + ξq−k − i�νq

)
+ f (−ξk)

(2ξk)2
(−ξk + ξq−k − i�νq

) − f (−ξq−k)(
ξk + ξq−k − i�νq

)2(−ξk + ξq−k − i�νq

) . (A3)

Angular integrations over the wave vectors. Expression
(A3) depends only on the relative angle between k and q. The
integration over this angle is performed numerically with 100
points, while the integrations over the remaining three angles
[which do not appear explicitly in expression (A3)] contribute
a mere numerical factor 8π2.

Radial integration over the fermionic wave vector. The
radial integration over the magnitude |k| of the fermionic
wave vector k is conveniently split into three intervals, namely,
[0,kc], [kc,kc + 2kF ], and [kc + 2kF , + ∞], where

kc =
√

2m(μ2 + T 2)1/2 (A4)

irrespective of the sign of μ. In each interval, 50 integration
points at most prove sufficient. The need for introducing
the wave vector kc stems from the need for reproducing
with good accuracy the shape of the peak developed by the
integrand at about kc. The second cutoff at kc + 2kF is instead
required to deal with the large-|k| tail of the integrand. [Similar
considerations (about the peaks and tails of the integrands)

apply when introducing the cutoffs q̃c, (kc1,kc2 ), (qc1 ,qc2 ), and
(pc1 ,pc2 ) later on in this Appendix.]

Sum over the bosonic Matsubara frequency. It turns out
that the last sum over the Matsubara frequency �νq

decays
like |�νq

|−1.5 for large |�νq
|. This rather slow decay forces us

to perform the sum with special care, by (i) summing up the
discrete values from ν = 0 up to νc1 = 500, (ii) transforming
the discrete sum into an integral from �νc1

up to �νc2
= 1.5 ×

106EF , and (iii) calculating the integral analytically from νc2 up
to infinity by estimating the coefficient of the |�νq

|−1.5 power-
law decay. (The sum for �νq

< 0 can simply be obtained by
complex conjugation.)

Radial integration over the bosonic wave vector. The last
integral over |q| is divided into three intervals, namely, [0,q̃c],
[q̃c,3q̃c], and [3q̃c, + ∞], where q̃c = 2kc with kc defined
above in Eq. (A4). The integration over the first two intervals
is performed numerically with 10 points in each interval,
while the integration over the last interval is performed an-
alytically by estimating the coefficient of the |q|−4 power-law
decay.
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2. GMB contribution

It is again convenient to reproduce here expression (20) with Q = 0:

�B
GMB =

∫
dk

(2π )3
T

∑
n

∫
dp

(2π )3
T

∑
νp

∫
dq

(2π )3
T

∑
νq

G0(p−k) G0(k−p) G0(p+q−k)G0(k)G0(q−k) G0(k−q) �0(p) �0(q)

(A5)

with the additional four-vector notation p = (p,�νp
) with respect to Eq. (A1), where �νp

is a bosonic Matsubara frequency.
Expression (A5) contains summations over three Matsubara frequencies and integrations over six angles (three of which turn out
to be trivial) and over three magnitudes of wave vectors. We have optimized these sums and integrations by performing them in
the following order.

Sum over the fermionic Matsubara frequency. It is convenient to perform the sum over the fermionic Matsubara frequency ωn

first. This can be done analytically in closed form, owing to the simple expression G0(k) = (iωn − ξk)−1 of the bare fermionic
single-particle propagator. Otherwise, if one would dress the bare propagator G0 with a fermionic self-energy � [like in Eq. (8),
or even in a more complicated fully self-consistent fashion], performing analytically the sum over ωn would no longer be possible
and one should unavoidably revert to a fully numerical evaluation of this sum.

In this way, one arrives at the compact expression

�B
GMB =

∫
dk

(2π )3

∫
dp

(2π )3
T

∑
νp

∫
dq

(2π )3
T

∑
νq

J (ξk,ξp−k,ξq−k,ξp+q−k; �νp
,�νq

) �0(p) �0(q), (A6)

where

J
(
ξk,ξp−k,ξq−k,ξp+q−k; �νp

,�νq

)
= 1

2

1[
ξk + ξp+q−k − i

(
�νp

+ �νq

)]
{

−F
(
ξp−k,ξk,�νp

)
ξ(−)ξ(+)

+ F
(
ξq−k,ξk,�νq

)
ξ(−)ξ

∗
(+)

− F
(−ξp−k,ξk,�νp

)
ξ ∗

(−)ξ
∗
(+)

+ F
(−ξq−k,ξk,�νq

)
ξ ∗

(−)ξ(+)
+ F

(
ξp−k, − ξp+q−k,−�νq

)
ξ(−)ξ(+)

− F
(
ξq−k,−ξp+q−k, − �νp

)
ξ(−)ξ

∗
(+)

+ F
( − ξp−k, − ξp+q−k, − �νq

)
ξ ∗

(−)ξ
∗
(+)

− F
(−ξq−k, − ξp+q−k, − �νp

)
ξ ∗

(−)ξ(+)

}
(A7)

and

ξ(±) = ξp−k ± ξq−k + i
(
�νp

− �νq

)
, F(x,y,z) = f (x) − f (y)

x(x − y + iz)
. (A8)

Depending on the values of �νp
and �νq

, expression (A7)
can be further simplified according to the following steps:

(i) When either �νp
�= 0 or �νq

�= 0, the eight terms
therein can be reduced to four by the change of variable
k′ = p + q − k in half of the original terms.

(ii) When �νp
�= �νq

, a further change of variables p′ = q

and q ′ = p in half of the four terms that are left after step (i)
reduces them to two terms only.

(iii) When �νp
= �νq

�= 0, one has instead to stick with
the four terms obtained in step (ii).

(iv) Finally, when �νp
= �νq

= 0, one has to stick with the
original eight terms of expression (A7) in order to avoid intro-
ducing unnecessary principal values integrals in the numerical
calculation.

Angular integrations over the wave vectors. Expressions
(A7) and (A8) depend explicitly on three angles only. If
one takes the z axis in wave-vector space oriented along the
direction of k and the x axis such that q belongs to the x-z
plane, these three angles are the polar angle θq−k of q and the
azimuthal ϕp and polar θp−k angles of p. While the integration
over ϕp can be done analytically, the integrations over θp−k and

θq−k have to be performed numerically. For both integrations
30 points prove usually sufficient. Finally, the integrations
over the remaining three angles of (k,p,q) [i.e., those on
which expressions (A7) and (A8) do not depend] contribute
a numerical factor 8π2.

Radial integration over the fermionic wave vector. The
radial integration over the magnitude |k| of the fermionic
wave vector k is conveniently split into three intervals,
namely, [0,kc1 ], [kc1 ,kc2 ], and [kc2 , + ∞]. Here, kc1 =
max{kc,(|p| + |q|)/2} with kc given by Eq. (A4), while kc2 =
2kc1 for μ > 0 and kc2 = 4kc1 for μ < 0. In each interval, 15
integration points prove sufficient.

Sum over the bosonic Matsubara frequencies. At this point,
it is sufficient to calculate the sums over the bosonic Matsubara
frequencies (�p,�q) in the half plane �p � 0 only, since in
the other half plane �p < 0 the integrand can be obtained by
complex conjugation. In this case, a natural cutoff is given
by the frequency �c = 2πνcT = (|p|2 + |q|2)/(2m). The dis-
crete sum over the frequencies (�p,�q) is then computed over
the trapezoidal area 0 � �p � �c and −(�c + �p) � �q �
�c + �p, while outside this area a continuum approximation
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is adopted which transforms the discrete sums into a two-
dimensional integral. Care should be exerted along the line
�p = �q where the integrand presents pronounced peaks. In
the asymptotic regions �p � �c and |�q | � �c the integrand
behaves like �−3.5

p and |�q |−3.5, such that 20 integration points
prove sufficient for each variable.

Radial integrations over the bosonic wave vectors. First,
the integral over |q| is divided in two intervals, namely, [0,qc1 ]
and [qc1 ,qc2 ], where qc1 = max{qc,|p|} and qc2 = 7kF + |p|
with qc = √

2kc and kc given by Eq. (A4). The integrand turns
out to have a minimum at about qc1 , past which it decays to
zero like |q|−3. It is found that the tail beyond qc2 contributes
less than 1% to the final value of the integral and can thus be
neglected.

Finally, the integral over |p| is also divided into two
intervals, namely, [0,pc1 ] and [pc1 ,pc2 ], where pc1 = qc while
pc2 = 5kF when aF < 0 and pc2 = 7kF when aF > 0. Even in
this case, the integrand turns out to have a minimum at about
pc1 , past which it decays to zero like |p|−4, while the tail beyond
pc2 is found to contribute at most about 2–3 % to the final value
of the integral.

APPENDIX B: CONTRIBUTION OF THE POPOV AND
GMB DIAGRAMS TO THE SCATTERING LENGTH OF

COMPOSITE BOSONS IN THE BEC LIMIT

In Sec. II, the expressions of the Popov and GMB boson-
iclike self-energies were obtained analytically in the BEC
(strong-coupling) limit. We now show that these expressions
are related to the scattering length aB for the low-energy
scattering between composite bosons that form out of fermion
pairs in the BEC limit. To this end, we rewrite the result in
Eq. (19) for the Popov bosoniclike self-energy in the BEC
limit in the form

�B
Popov = −mk3

F a2
F

6π2
= −

(
m2aF

8π

)
8π (2aF )

2m

n

2
, (B1)

as well as the result in Eq. (40) for the GMB bosoniclike self-
energy in the BEC limit in the form

�B
GMB = 16Ĩ

π2

mk3
F a2

F

6π2
=

(
m2aF

8π

)
16Ĩ

π2

8π (2aF )

2m

n

2
. (B2)

Here, 2m is the mass mB of a composite boson and n/2 the
density nB of the system of composite bosons.

In both expressions (B1) and (B2), the factor m2aF /(8π ) is
required to comply with the structure of the pair propagator
(28), which in the (extreme) BEC limit acquires the polar
form

�0(q,�q) = −
(

8π

m2aF

)
1

i�q − ξB
q

. (B3)

Apart from the factor −8π/(m2aF ), expression (B3) has
the structure of the single-particle propagator of free (point-
like) bosons with dispersion relation ξB

q = q2/(4m) − μB . In
addition, when the interaction is taken into account in a low-
density gas of (pointlike) bosons, this free-boson propagator
is complemented by a self-energy of the form 8πaBnB/mB

[18].
Upon translating this information back in the language

of composite bosons, we then conclude that to the Popov

k+Q k+Q

−k

Q’

Q’−Q−k

−k

k+Q

k+q+Q
 q+Q

k+q−p+Q

−k+p

−k−q+p
 p+Q

(b)

(a)

α

α

FIG. 11. Alternative drawing of (a) the Popov diagram of Fig. 2(a)
and (b) the GMB diagram of Fig. 4(a), which in both cases evidences
a substructure (in blue) contributing to the scattering length aB for
composite bosons when Q = 0 that survives in the limit n → 0. To
better highlight the correspondence with aB , the fermionic spins have
been explicitly indicated. The pair propagator �0 responsible for the
presence of a single factor of the density n in both Eqs. (B1) and (B2)
is also shown, in pink.

expression, Eq. (B1), there corresponds the value aB = 2aF

of the scattering length aB of composite bosons in terms of the
scattering length aF of the constituent fermions. This value of
aB amounts to treating two-fermion scattering at the level of
the Born approximation [30]. The GMB expression, Eq. (B2),
on the other hand, contributes the value −(16Ĩ /π2)2aF �
−0.842aF to the scattering length aB , with a different sign
with respect to the Popov contribution. In conclusion, when
combined together the Popov and GMB contributions alone
yield the approximate value aB � 1.158aF , which has to be
compared with the exact result aB � 0.6aF obtained when
all possible scattering processes among composite bosons are
taken into account [49,50].

In this context, it is instructive to identify directly in the
Popov diagram of Fig. 2(a) and the GMB diagram of Fig. 4(a)
the substructures, which are associated with the processes that
contribute to the scattering length aB of composite bosons.
This can be readily done by redrawing these diagrams in
the alternative way shown in Fig. 11, which makes these
processes evident. In addition, in Fig. 11(b) we identify the
two fermionic propagators G0 (by denoting them with the label
α), which would give rise to the particle-hole bubble in the
BCS limit discussed in Sec. II E, but which in the BEC limit
here considered take part in the effective interaction between
composite bosons.
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