699 research outputs found

    PAS: A Sampling Based Similarity Identification Algorithm for compression of Unicode data content

    Get PDF
    Generally, Users perform searches to satisfy their information needs. Now a day’s lots of people are using search engine to satisfy information need. Server search is one of the techniques of searching the information. the Growth of data brings new changes in Server. The data usually proposed in timely fashion in server. If there is increase in latency then it may cause a massive loss to the enterprises. The similarity detection plays very important role in data. while there are many algorithms are used for similarity detection such as Shingle, Simhas TSA and Position Aware sampling algorithm. The Shingle Simhash and Traits read entire files to calculate similar values. It requires the long delay in growth of data set value. instead of reading entire Files PAS sample some data in the form of Unicode to calculate similarity characteristic value.PAS is the advance technique of TSA. However slight modification of file will trigger the position of file content .Therefore the failure of similarity identification is there due to some modifications.. This paper proposes an Enhanced Position-Aware Sampling algorithm (EPAS) to identify file similarity for the Server. EPAS concurrently samples data blocks from the modulated file to avoid the position shift by the modifications. While there is an metric is proposed to measure the similarity between different files and make the possible detection probability close to the actual probability. In this paper describes a PAS algorithm to reduce the time overhead of similarity detection. Using PAS algorithm we can reduce the complication and time for identifying the similarity. Our result demonstrate that the EPAS significantly outperforms the existing well known algorithms in terms of time. Therefore, it is an effective approach of similarity identification for the Server

    Intermittency in Two-Dimensional Turbulence with Drag

    Full text link
    We consider the enstrophy cascade in forced two-dimensional turbulence with a linear drag force. In the presence of linear drag, the energy wavenumber spectrum drops with a power law faster than in the case without drag, and the vorticity field becomes intermittent, as shown by the anomalous scaling of the vorticity structure functions. Using a previous theory, we compare numerical simulation results with predictions for the power law exponent of the energy wavenumber spectrum and the scaling exponents of the vorticity structure functions ζ2q\zeta_{2q} obtained in terms of the distribution of finite time Lyapunov exponents. We also study, both by numerical experiment and theoretical analysis, the multifractal structure of the viscous enstrophy dissipation in terms of its R\'{e}nyi dimension spectrum DqD_q and singularity spectrum f(α)f(\alpha). We derive a relation between DqD_q and ζ2q\zeta_{2q}, and discuss its relevance to a version of the refined similarity hypothesis. In addition, we obtain and compare theoretically and numerically derived results for the dependence on separation rr of the probability distribution of \delta_{\V{r}}\omega, the difference between the vorticity at two points separated by a distance rr. Our numerical simulations are done on a 4096×40964096 \times 4096 grid.Comment: 18 pages, 17 figure

    N,N′-Bis[3,5-bis­(2,6-diisopropyl­phen­yl)phen­yl]butane-2,3-diimine

    Get PDF
    The title mol­ecule, C64H80N2, lies on an inversion center wherein the central butane­diimine fragment [N=C(Me)—C(Me)=N] is essentially planar [maximum deviation = 0.002 (2) Å] and its mean plane forms a dihedral of 70.88 (10)° with the attached benzene ring. In the symmetry-unique part of the mol­ecule, the dihedral angles between the benzene ring bonded to the N atom and the other two benzene rings are 89.61 (6) and 82.77 (6)°

    Chemical pretreatment of cells for enhanced MALDI-TOF-MS discrimination of clinical staphylococci including MRSA

    Get PDF
    BACKGROUND: Limited success has been reported for matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) differentiation of staphylococci, including methicillin resistant Staphylococcus aureus (MRSA) strains. Chemical pretreatment of cells prior to MALDI-TOF-MS analysis has not been systematically investigated for enhanced discrimination of S.aureus strains. OBJECTIVES: To evaluate various chemical pretreatment of cells for MALDI-TOF-MS discrimination of clinical staphylococcal isolates, with a focus on differentiation of MRSA from methicillin sensitive S. aureus (MSSA) strains and from other staphylococcal species. METHOD: MALDI-TOF-MS of a well-characterised S. aureus strain(s) was optimised with respect to matrix chemical(s), matrix solvent and target plating method. Various chemical pretreatments (solvents, reductants, detergents) and pretreatment application methods were then evaluated for enhancement of spectral richness. The three most promising pretreatments were applied to MALDI-TOF-MS discrimination of three set of clinical isolates comprising non-S.aureus staphylococci (77 isolates ), MSSA (36) and MRSA (43), with analysis by total or set specific resolved peaks. RESULTS: The optimized MALDI-TOF-MS protocol involved α-cyano-4-hydroxycinnamic acid (CHCA) as matrix chemical (in 1:2 acetonitrile:H2O and 2% trifluoroacetic acid), with application as an overlay onto smeared cells (on-probe). On-probe application of chemical pretreatment was most effective at enhancing MALDI-TOF-MS spectral richness. Use of reductants and detergents as pretreatments were ineffective. The three most effective solvents/acid pretreatments - ethanol:formate, ethanol:acetate and formate:isopropanol - each generated reproducible and distinct spectra over the 2,000 -10,000 m/z range. For the combined sets of clinical isolates (114), all three of these pretreatments increased the total number of resolved peaks in comparison with no pretreatment controls. The ethanol:formate pretreatment gave 100% clustering of non-S. aureus staphylococci, based on total resolved peaks. The formate:isopropanol pretreatment generated the largest increase in number of MRSA set specific peaks (from 18 to 32; 78% increase) and clustered the majority (77%) of the MRSA strains together, although compete discrimination of the MSSA and MRSA was not achieved. CONCLUSION: MALDI-TOF-MS discrimination of clinical isolates of staphylococci is enhanced through chemical pretreatment of cells. Three chemical pretreatments, not previously applied to staphylococci, are highlighted for enhancing spectral richness and offering new opportunities for improved discrimination of staphylococci, including MRSA and MSSA strains

    Chemical pretreatment of cells for enhanced MALDI-TOF-MS discrimination of clinical staphylococci including MRSA

    Get PDF
    BACKGROUND: Limited success has been reported for matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) differentiation of staphylococci, including methicillin resistant Staphylococcus aureus (MRSA) strains. Chemical pretreatment of cells prior to MALDI-TOF-MS analysis has not been systematically investigated for enhanced discrimination of S.aureus strains. OBJECTIVES: To evaluate various chemical pretreatment of cells for MALDI-TOF-MS discrimination of clinical staphylococcal isolates, with a focus on differentiation of MRSA from methicillin sensitive S. aureus (MSSA) strains and from other staphylococcal species. METHOD: MALDI-TOF-MS of a well-characterised S. aureus strain(s) was optimised with respect to matrix chemical(s), matrix solvent and target plating method. Various chemical pretreatments (solvents, reductants, detergents) and pretreatment application methods were then evaluated for enhancement of spectral richness. The three most promising pretreatments were applied to MALDI-TOF-MS discrimination of three set of clinical isolates comprising non-S.aureus staphylococci (77 isolates ), MSSA (36) and MRSA (43), with analysis by total or set specific resolved peaks. RESULTS: The optimized MALDI-TOF-MS protocol involved α-cyano-4-hydroxycinnamic acid (CHCA) as matrix chemical (in 1:2 acetonitrile:H2O and 2% trifluoroacetic acid), with application as an overlay onto smeared cells (on-probe). On-probe application of chemical pretreatment was most effective at enhancing MALDI-TOF-MS spectral richness. Use of reductants and detergents as pretreatments were ineffective. The three most effective solvents/acid pretreatments - ethanol:formate, ethanol:acetate and formate:isopropanol - each generated reproducible and distinct spectra over the 2,000 -10,000 m/z range. For the combined sets of clinical isolates (114), all three of these pretreatments increased the total number of resolved peaks in comparison with no pretreatment controls. The ethanol:formate pretreatment gave 100% clustering of non-S. aureus staphylococci, based on total resolved peaks. The formate:isopropanol pretreatment generated the largest increase in number of MRSA set specific peaks (from 18 to 32; 78% increase) and clustered the majority (77%) of the MRSA strains together, although compete discrimination of the MSSA and MRSA was not achieved. CONCLUSION: MALDI-TOF-MS discrimination of clinical isolates of staphylococci is enhanced through chemical pretreatment of cells. Three chemical pretreatments, not previously applied to staphylococci, are highlighted for enhancing spectral richness and offering new opportunities for improved discrimination of staphylococci, including MRSA and MSSA strains

    Exposure Characterization of Haloacetic Acids in Humans for Exposure and Risk Assessment Applications: An Exploratory Study

    Get PDF
    Disinfected water is the major source of haloacetic acids (HAAs) in humans, but their inter- and intra-individual variability for exposure and risk assessment applications is under-researched. Thus, we measured HAAs in cross-sectional and longitudinal urine and water specimens from 17 individuals. Five regulated HAAs—mono-, di-, and trichloroacetic acid (MCAA, DCAA, and TCAA) and mono- and dibromoacetic acid (MBAA and DBAA)—and one unregulated HAA—bromochloroacetic acid (BCAA)—were measured. Urinary DCAA, MBAA, DBAA, and BCAA levels were always below the limits of detection (LOD). Measured levels and interindividual variability of urinary MCAA were higher than urinary TCAA. Longitudinal urinary specimens showed MCAA levels peaked in after-shower specimens, while TCAA levels remain unchanged. Correlation between urinary MCAA and TCAA was moderate but statistically significant. The prevalence of MCAA and TCAA in urine suggest they can be considered as biomarkers of HAA. Peak urinary MCAA in post-shower specimens suggest MCAA captures short-term exposure via dermal and/or inhalation, while urinary TCAA captures long-term exposure via ingestion. However, further research is warranted in a large pool of participants to test the reliability of MCAA as exposure biomarker

    Pendekatan Qspm Sebagai Dasar Perumusan Strategi Peningkatan Pendapatan Asli Daerah Kabupaten Batang, Jawa Tengah

    Full text link
    The aim of this research is to analyse of increasing Local Original Income (LOI) strategy and his influence to increasing the regional income. The research was done at Local Government Income of Batang regency. This research also want to know that the LOI strategy was based on the potencies and opportunities. The analyzing use the IFE, EFE, SWOT, and then QSPM to choose strategic formulation; and proportion models. The result of Internal – External analysis show that increasing strategy of LOI have not based on the potencies and opportunities that they have yet. The Local Government Income of Batang Regency needs the intensification strategy for increasing the LOI. By the QSPM analysis, the Local Government Income of Batang Regency needs extensification strategy for LOI acceptance

    Evaluating the causality of novel sequence variants in the prion protein gene by example

    Get PDF
    The estimation of pathogenicity and penetrance of novel prion protein gene (PRNP) variants presents significant challenges, particularly in the absence of family history, which precludes the application of Mendelian segregation. Moreover, the ambiguities of prion disease pathophysiology renders conventional in silico predictions inconclusive. Here, we describe 2 patients with rapid cognitive decline progressing to akinetic mutism and death within 10 weeks of symptom onset, both of whom possessed the novel T201S variant in PRNP. Clinically, both satisfied diagnostic criteria for probable sporadic Creutzfeldt-Jakob disease and in one, the diagnosis was confirmed by neuropathology. While computational analyses predicted that T201S was possibly deleterious, molecular strain typing, prion protein structural considerations, and calculations leveraging large-scale population data (gnomAD) indicate that T201S is at best either of low penetrance or nonpathogenic. Thus, we illustrate the utility of harnessing multiple lines of prion disease-specific evidence in the evaluation of the T201S variant, which may be similarly applied to assess other novel variants in PRNP
    corecore