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Abstract 
 
BACKGROUND:  Limited success has been reported for matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) differentiation of 

staphylococci, including methicillin resistant Staphylococcus aureus (MRSA) strains. Chemical 

pretreatment of cells prior to MALDI-TOF-MS analysis has not been systematically investigated for 

enhanced discrimination of S.aureus strains. 

OBJECTIVES: To evaluate various chemical pretreatment of cells for MALDI-TOF-MS discrimination of 

clinical staphylococcal isolates, with a focus on differentiation of MRSA from methicillin sensitive S. 

aureus (MSSA) strains and from other staphylococcal species.  

METHOD: MALDI-TOF-MS of a well-characterised S. aureus strain(s) was optimised with respect to 

matrix chemical(s), matrix solvent and target plating method.  Various chemical pretreatments 

(solvents, reductants, detergents) and pretreatment application methods were then evaluated for 

enhancement of spectral richness. The three most promising pretreatments were applied to MALDI-

TOF-MS discrimination of three set of clinical isolates comprising non-S.aureus staphylococci (77 

isolates ), MSSA (36) and MRSA (43), with analysis by total or set specific resolved peaks. 

RESULTS: The optimized MALDI-TOF-MS protocol involved α-cyano-4-hydroxycinnamic acid (CHCA) 

as matrix chemical (in 1:2 acetonitrile:H2O and 2% trifluoroacetic acid), with application as an 

overlay onto smeared cells (on-probe). On-probe application of chemical pretreatment was most 

effective at enhancing MALDI-TOF-MS spectral richness. Use of reductants and detergents as 

pretreatments were ineffective. The three most effective solvents/acid pretreatments -  

ethanol:formate, ethanol:acetate and formate:isopropanol  - each generated reproducible and 

distinct spectra over the 2,000 -10,000 m/z range. For the combined sets of clinical isolates (114), all 

three of these pretreatments increased the total number of resolved peaks in comparison with no 

pretreatment controls.  The ethanol:formate pretreatment gave 100% clustering of non-S. aureus 

staphylococci, based on total resolved peaks. The formate:isopropanol pretreatment generated the 
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largest increase in number of MRSA set specific peaks (from 18 to 32; 78% increase) and clustered 

the majority (77%) of the MRSA strains together, although compete discrimination of the  MSSA and 

MRSA was not achieved. 

CONCLUSION:  MALDI-TOF-MS discrimination of clinical isolates of staphylococci is enhanced 

through chemical pretreatment of cells. Three chemical pretreatments, not previously applied to 

staphylococci, are highlighted for enhancing spectral richness and offering new opportunities for 

improved discrimination of staphylococci, including MRSA and MSSA strains. 
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1. Introduction 

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) for 

rapid identification of microorganisms is well established, particularly for bacteria.  In 1996, Claydon 

et al. [9] and Holland et al. [14] showed that bacterial cells could be analysed directly by MALDI-TOF-

MS, using a simple technique known as intact cell MALDI-TOF-MS that requires minimal sample 

preparation, and identifies bacteria according to differences in cell wall composition. The merits and 

limitations of MALDI-TOF-MS biomedical mass spectrometry for identification of clinical etiological 

agents have recently been reviewed and evaluated, including assessment of the impact on time to 

identification and cost-effectiveness [3 ,27]. Despite considerable recent advances in the application 

of intact cell MALDI-TOF-MS for identification of bacteria, the differentiation of bacteria at the 

species level remains problematic. Commercially available MALDI-TOF-MS systems, such as the 

BrukerBiotyper, identify bacteria based on analysis of unique spectral profiles derived from whole 

cells or cell extracts, by comparison against databases of reference spectra (see [1] and references 

therein). Christensen et al. [8] applied the Bruker Daltonics microflex LT system to 90 well-

characterised gram-positive cocci and found that more than half of the collection of strains obtained 

low score (identification) values due to taxa not being included in the database. Alatoom et al. [1] 

evaluated the BrukerBiotyper system to identification of 305 clinical isolates of staphylococci, 

streptococci and related genera.  After exclusion of isolates not present in the Biotyper library, 69 

and 20% of isolates were identified to species-level using direct colony testing and preparatory 

extraction respectively; the latter involving analysis of supernatant samples following cell lysis with 

100% ethanol. These studies highlight a limitation for identification of gram-positive cocci through 

database comparison (i.e. the suitability/completeness of the database), as well as chemical 

extraction of cells as a means of enhancing individual spectral profiles leading to improved 

identification. Off-probe pretreatment of cells using cell-wall digesting enzymes has also been 

reported to enhance species specific MALDI-TOF-MS spectra from gram-positive bacteria [25] and 
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from yeasts [24].  Cassagne et al. [7] reported that complete extraction methods are better suited 

for MALDI-TOF-MS-based identification of yeasts in the clinical laboratory although they are more 

labour intensive. Knot et al. [19] compared direct smear (on-probe) and extraction methods on a 

taxonomically diverse collection of bacterial isolates and found the latter method yielded higher 

identification scores for the majority of isolates. 

 

Preparation of supernatant samples or off-probe pretreatment of cells prior to MALDI-TOF-MS 

analysis is time consuming compared to pretreatment of direct smears. Other studies have adopted 

various on-probe chemical pretreatments of cells as a means of enhancing MALDI-TOF-MS spectra. 

Madonna et al. [19] applied 40% ethanol as a bacterial pretreatment in MALDI-TOF-MS detection of 

proteins above 15 KDa. Discrimination of Escherichia coli strains by MALDI-TOF-MS using an 

extraction solvents comprising formate:isopropanol:water has also been reported [6,10]. Meetani et 

al. [22] reported new MALDI-TOF-MS peaks in the mass range 2-80 kDa following on-probe 

pretreatment of whole cell gram-positive and gram-negative bacteria with surfactants. Qian et al. 

[23] reported that simple on-probe pretreatment of yeast cells with 50% methanol significantly 

improved the mass signature quality. We have recently reported [18] on a range of on-probe 

chemical pretreatments of cells  – including various solvents, reductants, detergents - for enhanced 

discrimination of clinical yeasts by MALDI-TOF-MS. Furthermore, Zhang and Li [29] showed that 

MALDI-TOF-MS analysis with a two-layer matrix/sample preparation method can be used for direct 

analysis of protein digests with no or minimal sample cleanup after proteins are digested in a 

solution containing the surfactants, including sodium dodecyl sulfate (SDS). The feasibility of MALDI-

TOF-MS analysis for proteomic samples following treatment with the reducing agent dithrothreitol 

(DTT) [5] and β-mercaptoethanol [16] has also been demonstrated. These reports highlight a wide 

scope of potentially beneficial pretreatments of intact bacterial cell prior to their attempted 

discrimination by MALDI-TOF-MS analysis. 
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 MALDI-TOF-MS discrimination of bacterial strains within species generally presents a greater 

challenge than inter-species discrimination. The prevalence of methicillin resistant Staphylococcus 

aureus (MRSA) strains in hospital environments is recognised as a world-wide healthcare problem 

[26].  Early studies on optimisation of a MALDI-TOF-MS procedure for identification and 

discrimination of MRSA, has met with limited success. In a series of papers [13,17,28], Edwards-

Jones and co-workers investigated a range of growth, plating, instrument and data process 

parameters for MALDI-TOF-MS discrimination of MRSA from other S. aureus strains and 

Staphylococcus species. From an organism set comprised of 26 staphylococcal isolates, they 

demonstrated the potential for discrimination between staphylococcal species and showed 

discrimination between methicillin sensitive S. aureus (MSSA) and two major MRSA strains [28]. 

Direct deposition of cells onto the MALDI target plate, without careful regulation of absolute 

numbers of bacterial cells, was shown to provide the best and most reliable spectra [17]. This study, 

involving a selection of 10 clinical isolates, also demonstrated the potential for differentiation of two 

epidemic-MRSA strains. Du et al. [12] analysed 76 strains of S. aureus and reported that seven 

isolates lacking the mec A gene were incorrectly identified as MRSA by MALDI-TOF-MS. Bernardo et 

al. [4] compared the MALDI-TOF-MS spectra from to a well-characterised MSSA and a MRSA strain to 

those from clinical isolates of S. aureus. They reported the bacterial ‘fingerprints’ obtained proved to 

be specific for any given strain, but a uniform signature profile for MRSA could not be identified.  

 

Chemical pretreatment of cells prior to MALDI-TOF-MS analysis has not been systematically 

investigated for enhanced discrimination of S.aureus strains. We report here on optimisation of an 

MALDI-TOF-MS protocol for discrimination of clinical staphylococcal isolates, with a focus on 

discrimination of S. aureus from other species and on discrimination of MRSA from MSSA strains. 

MALDI-TOF-MS of a well-characterised S. aureus strains was optimised with respect to matrix 
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chemical(s), matrix solvent and target plating method.  Various chemical pretreatments (solvents, 

reductants, detergents) and pretreatment application methods were then evaluated for 

enhancement of spectral richness. The three most promising pretreatments were applied to MALDI-

TOF-MS discrimination of three set of clinical isolates comprising: non-S.aureus staphylococci (77 

isolates), MSSA (36) and MRSA (43). 

2. Materials and Methods 

2.1  Organisms and culture conditions 

Clinical isolates (114) from individual patients - obtained from the clinical microbiology laboratory of 

the Leicester Royal Infirmary-National Health Service (LRI-NHS) Trust, Leicester, UK - were included 

in the study. These isolates were previously identified as to the species level by standard laboratory 

procedures (including Gram staining and slide and tube coagulase) and by biochemical profiling 

using API® Staph (bioMérieux, Inc ., Durham, UK).  S. aureus strains were further distinguished as 

methicillin sensitive S. aureus (MSSA) or MRSA according to their sensitivity/resistance to oxacillin 

and cefoxitin, with testing according to the British Society Antimicrobial Chemotherapy (BSAC) 

guidelines.  Confirmation of MRSA strains was by detection of the penicillin binding protein 2' using 

MASTALEX™- MRSA (MAST Group Ltd., Merseyside, UK). Confirmation of the identification and the 

presence of the mec A in these strains was by testing with GenoType® MRSA (Hain Lifesciences UK 

Ltd., Byfleet, UK). The isolates were characterised as (number of isolates in parentheses): 

Staphylococcus auricularis (2); Staphylococcus capitis (3); Staphylococcus chromogenes (4); 

Staphylococcus cohnii (3); Staphylococcus epidermidis (2); Staphylococcus haemolyticus (3); 

Staphylococcus hominis (2); Staphylococcus intermedius (5); Staphylococcus lugdunensis (4); 

Staphylococcus saprophyticus (3); Staphylococcus schleiferi (3); Staphylococcus sciuri (3); 

Staphylococcus simulans (3); Staphylococcus warneri (3); Staphylococcus xylosus (5); MSSA (36); and 
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MRSA (30). S. aureus NCTC 10702 and 9315 (Public Health England, Salisbury, UK) were used as test 

strains for initial evaluation of MALDI-TOF-MS protocols.  

 

The bacteria were cultivated on Muller Hinton agar (CM0337B, Oxoid) in the absence or presence 

(MRSA strains) of oxacillin at 4mg mL-1. The agar was sterilised by autoclaving at 121oC for 20 min; 

filter sterilised oxacillin was added after cooling of the medium. Growth incubation was at 37oC for 

48h. 

 

2.2  MALDI-TOF-MS analysis 

2.2.1 Matrix system and plating method optimisation 

Three matrix chemicals - α-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA) and ferulic acid 

(FA) - were tested to select the most suitable matrix chemical for detection of bacterial sample peaks 

over the m/z 2,000 – 20,000 range. For each matrix chemical (10mg/mL of CHCA, SA or FA), four 

matrix solutions of 1:1 acetonitrile:water (ACN:H2O) with 0.3,  1, 2, 3 or 4 % trifluoroacetic acid (TFA) 

were prepared.  S. aureus NCTC 10702 was used as the test strain. Each of the 15 matrix variants 

were applied to bacterial samples by three methods: direct colony transfer methods A and B, and a 

sandwich method. Direct colony transfer Method A involved applying one colony onto the target 

plate and allowing to dry in ambient air. Matrix solution (1µL) was applied to the plated sample, and 

dried in ambient air for approximately 20min (based on [12]); the target plate was then incubated at 

60oC overnight to inactivate cells. Direct colony transfer Method B was as Method A but with the 

incubation at 60oC carried out prior to applying the matrix chemical. In the sandwich method, cells 

were mixed with wet matrix and, following drying, the cells were overlaid with a further 0.5µL of 

matrix solution and again dried (based on [11]); the target plate was then incubated at 60oC 
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overnight to inactivate cells. The influence of varying the ACN:H2O ratio from 1:1 to 3:2 and 2:1, with 

CHCA as matrix chemical, was also investigated. 

 

The quality of spectra and peak detection obtained through use of a single matrix chemical (CHCA, 

SA or FA) was compared to use of two or three matrix chemicals (combinations of CHCA, SA and/or 

FA). Single matrix chemical (10mg ml-1 matrix in 2:1 ACN:H2O with 2% TFA) solutions were prepared 

and combined in 1:1 or 1:1:1 ratios by volume (i.e. CHCA:SA, CHCA:FA, SA:FA or CHCA:SA:FA) in 

eppendorf tubes and applied to cells on the target plates by the direct colony transfer method. In 

other experiments, single matrix solutions were applied to target plates as separate layers in a bi- or 

tri-matrix combination. The following sequence of layers within the bi- or tri-matrix combinations 

were investigated: CHCA-FA; CHCA-SA; FA-CHCA; FA-SA; SA-CHCA; SA-FA; CHCA-FA-SA; CHCA-SA-FA; 

FA-CHCA-FA; FA-CHCA-SA; SA-CHCA-FA; SA-FA-CHCA.  

2.2.2 Pretreatment chemicals and their application 

Pretreatment chemicals (Table 1) were applied to bacterial cells by three different methods (i to iii), 

with target plating using a modification of the direct colony transfer Method B using CHCA in 2:1 

ACN:H2O with 2% TFA. Pretreatment methods: (i) on-probe pretreatment: overlay of pretreatment 

chemical (0.5 µl) onto plated cells immediately prior to application of matrix; (ii) in-solution 

pretreatment:   cells from one colony were washed in 500µL HPLC grade water, the cell pellet was 

resuspended in pretreatment solution (100µl), vortexed and incubated at room temperature for 

5min and cells again pelleted; (iii) in-solution pretreatment with cell washing: as (ii) but with washing 

off of pretreatment chemical(s) from cells using HPLC grade water. Matrix only and pretreatment 

only controls were also prepared. 

2.2.3  MALDI-TOF-MS spectra acquisition and data processing 

All bacterial strains were analysed on Kratos PCAxima CFRplus MALDI-TOX-MS instrument (Kratos 

Analytical, Manchester, UK) with data acquisition and analysis via Launchpad 2.8.4 software 
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(Shimadzu Biotech, Manchester, UK). Spectra were acquired over the m/z 2,000 – 20,000 range by 

combining 150 profiles (five laser shots per profile), obtained by manual firing in linear positive 

mode. Replicate spotting and analysis (typically n = 3-5) was carried out to confirm that each 

plating/pretreatment method produced consistent spectra (also see Fig. 1).   Sample chamber 

vacuum was 10-6 to 10-7 mbar. A solution of peptides and proteins (MS-CAL1, SigmaAldrich) with a 

molecular weight range of 757 to 16,952 Da was used to calibrate the mass spectrometer.    

 

The Launchpad software selected the most intense peaks within spectra and processing was 

optimised to obtain representative spectra for samples by adjusting the following peak processing 

settings (optimised value in parentheses): average method smoothing (30); baseline subtract (80); 

threshold (0.3mV); and pairwise cutoff (0.6). Peak lists were aligned using SPECLUST software (web-

based application; Alm et al. [2]) prior to analysis using SPSS 19 software. Hierarchical clustering for 

between group linkages was by the Jaccard method; a method particularly suited to handling 

asymmetric binary attributes by considering only those present in either one or both spectra. 

3. Results 

3.1   Matrix and plating method optimisation using S. aureus NCTC 10702 

Visual comparison of spectra acquired for S. aureus NCTC 10702 with CHCA as matrix in 2:1 ACN:H2O 

and 2% TFA showed the greatest number of resolved peaks by the direct colony transfer Method B, 

in comparison with the direct colony transfer Method A and sandwich methods. Changes to the TFA 

concentration reduced the number of resolved peaks within spectra over the m/z 2,000-10,000 

range.  Spectra acquired with SA or FA as matrix chemical over the range of TFA concentrations were 

poor in comparison with use of CHCA, with fewer resolved peaks and higher background 

interference observed for all three plating methods; the order for matrix chemical with regards to 

spectral richness was CHCA>SA>FA.  Changing the ACN:H2O, over the range given in Section 2.2.1, 

had little influence on the overall quality of spectra obtained using the three plating methods.  
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For bi- and tri-matrices combinations (in 2:1 ACN:H2O with 2% TFA), the quality of the spectra 

obtained from S. aureus NCTC 10702 was lower than that obtained for CHCA or SA as sole matrix 

chemical, regardless of whether applied to cells on the target plate as pre-mixed matrix combination 

or as separate layers.  

 

Based on the above, CHCA in 2:1 ACN:H2O and 2% TFA with target plating by direct colony transfer 

Method B was selected for studies on the influence of pretreatment chemicals in MALDI-TOF-MS 

discrimination of clinical isolates.  

3.2  Pretreatment chemicals 

Of the three pretreatment chemical application methods (i to iii, Section 2.2.2), the on-probe 

method (method i) was the most consistent at generating peak rich spectra from S. aureus NCTC 

10702. This method was used to compare the effectiveness of pretreatment chemicals for enhancing 

spectral richness obtained from two NCTC strains of S. aureus and from a clinical MRSA isolate. 

Evaluation of improved spectral richness was based on number of resolved peaks detected using the 

Launchpad software and overall visual inspection of spectra, both in comparison with no 

pretreatment control.   Only three of the pretreatment regimes shown in Table 1 enhance spectral 

richness for all three organisms according to these criteria. All detected peaks were within the m/z 

2,000 to 10,000 range, with none detected at higher m/z values. Application of ethanol:formate was 

the most promising of the three chemical pretreatment, producing the highest percentage increase 

in number of resolved peaks within spectra for each of the three organisms tested (Table 2). For all 

three chemical pretreatments, MALDI-TOF-MS spectra derived from replicate treatments were 

highly reproducible; spectra from three replicate analyses on ethanol:formate treated cells are 

shown in Fig.1. As illustrated in Fig. 2, each of the three chemical pretreatments generated spectra 



 

12 

 

that were clearly distinct, comprising common peaks, but also unique peaks that were not present in 

other pretreatment regimes. 

 

The three chemical pretreatments shown in Table 2 were further evaluated by analysing three sets 

of clinical isolates: non-S. aureus staphylococci (48 isolates); MSSA (36 isolates); MRSA (30 isolates). 

For the combined sets (114 isolates), all three pretreatments increased the total number of resolved 

peaks in comparison with no pretreatment controls, with the highest increase (18-19%) shown for 

the ethanol:formate and formate:isopropanol pretreatments. As illustrated in Fig. 3, these two 

pretreatments also produced the highest increase in number of set specific resolved peaks, at 15 

and 9% for ethanol:formate and formate:isopropanol respectively; the proportion of set specific 

peaks to total peaks for the three pretreatments was in the range 14 to 22%. “Set specific peaks” are 

those peaks found only in some or all spectra from a particular set of isolates. Strain clustering based 

on all resolved peaks within spectra showed that each of the three pretreatments enhanced 

clustering of organisms within one or more of the sets (Table 3).  Ethanol:formate pretreatment gave 

100% clustering on non-S. aureus staphylococci, and also marginally enhanced clustering of the 

MSSA set. Improved clustering of strains within the non-S.aureus staphylococci and MRSA sets was 

evident for the ethanol:acetate pretreatment, while the formate:isopropanol pretreatment 

marginally improved clustering of the MRSA strains. Based on set specific resolved peaks, all three 

pretreatments greatly enhanced clustering of the non-S. aureus staphylococcal strains (Table 3); 

clustering of the MRSA and non-S.aureus sets of clinical isolates is illustrated in Fig. 4. However, this 

was not evident for the MSSA and MRSA sets (Table 3). Based on total resolved peaks within the 

MSSA and MRSA sets only, ethanol:formate and formate:isopropanol pretreatments showed slight 

improvement in clustering of the MRSA set (Table 3). Based on set specific resolved peaks for the 

MSSA and MRSA sets, it was only possible to generate SPSS dendrograms for the 

formate:isopropanol pretreatment derived spectra. This reflects the large increase in number of 
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MRSA set specific peaks (from 18 to 32; 78% increase) produced by this pretreatment; there was 

little or no increase in MRSA specific peaks generated by the other two pretreatments (Table 3). This 

evident enhancement of MRSA set specific peaks through formate:isopropanol pretreatment led to 

clustering of the majority (77%) of the MRSA strains, although compete discrimination of the  MSSA 

and MRSA was not achieved. 

4. Discussion  

We have previously shown that pretreatment of yeasts with a cell wall digesting enzyme [24] or with 

formate:isopropanol enhances discrimination of yeasts by MALDI-TOF-MS [18]. Other researchers 

have applied various solvent, reductant or detergent chemicals in MALDI-TOF-MS analysis of intact 

microorganisms or proteins/peptides (Table 1). In the present work, following optimisation of a 

MALDI-TOF-MS protocol (with respect to matrix solution and plating method, pretreatment 

application method), 27 novel chemical pretreatments - as well as eight others reported on 

previously – were compared for their efficacy at enhancing spectral richness and for discrimination 

of the non-S. aureus staphylococci, MRSA and MSSA sets of clinical isolate. An on-probe method of 

pretreatment was found to be most effective, which has the advantage of being less time consuming 

than off-probe preparation of cell supernatants. Of the various categories of chemical 

pretreatments, only three solvents/acid mixtures enhanced the richness of MALDI-TOF-MS spectra 

derived from S. aureus, with each capable of generating reproducible and distinct spectra from a 

MRSA isolate. An ethanol:formate pretreatment generated spectra that separated non-S. aureus 

staphylococci from MRSA and MSSA isolates, based on clustering involving all resolved peaks. A 

formate:isopropanol pretreatment generated the large increase in number of MRSA set specific 

peaks (from 18 to 32; 78% increase), with clustering of the majority (77%) of the MRSA strains 

together, although compete discrimination of the MSSA and MRSA was not achieved. This is 

consistent with Camera et al. [8] who reported on the efficacy of formate:isopropanol pretreatment 

for MALDI-TOF-MS discrimination of E. coli strains. 
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MALDI-TOF-MS analysis in the linear mode preserves covalent hydrogen bonds and it is therefore 

unlikely that large biopolymers within the bacterial cell wall are cleaved to give fragments within the 

2,000-10,000 m/z range. Protein and peptide molecules associated with the bacterial cell wall are 

likely to contribute to diagnostic signals (peaks) within the spectra. However, the richness of spectra 

obtained suggests that other molecules are also ionised and contribute to spectral richness. 

Gluckmann et al. [15] reported that, based on different preparation protocols, distinct differences in 

the desorption/ionisation process for carbohydrates in contrast to peptides/proteins can be 

elucidated by MALDI-TOF-MS. These authors confirmed laser desorption and gas-phase cationisation 

as the principal mechanism in ionisation for neutral oligosaccharides, which can be initiated even for 

particulate analyte material or deposits onto a matrix surface. Interaction of pretreatment solvents 

with the bacterial cell wall leading to unfolding of cell surface molecules and exposure of smaller 

molecules to the matrix may account for the increased richness of spectral signals obtained. Solvent 

pretreatment may also promote release of cell membrane or cytosolic/ribosomal materials to the 

bacterial cell surface [23], giving rise to exposure of an abundance of medium-sized molecules to the 

matrix chemical. Majcherczyk et al. [21] compared MALDI-TOF-MS spectra from isogenic strains  of 

MRSA differing in their expression of resistance to methicillin with changes in pulsed-field 

electrophoresis profiles or peptidoglycan muropeptide digest patterns of these strains. They 

proposed that MALDI-TOF-MS might be useful to detect strain-specific differences in ionisable 

components released from bacterial surfaces and not from their peptidoglycan network.  

5. Conclusion 

We conclude that MALDI-TOF-MS discrimination of clinical isolates of staphylococci is enhanced 

through chemical pretreatment of cells. Three chemical pretreatments - ethanol:formate, 

ethanol:acetate and formate:isopropanol   -  not previously applied to MALDI-TOF-MS analysis of 
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staphylococci, are highlighted for enhancing spectral richness and offering new opportunities for 

improved discrimination of such isolates, including MRSA and MSSA strains. 
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Table 1. Chemical pretreatments for staphylococcal cells 
 
Pretreatment chemical    Reference/origin 

Solvent   

H2O     Control pretreatment 

 Acetonitrile (50%)   novel 

Methanol (50%)    Qian et al. [23] - yeasts and filamentous fungi  

Methanol:formate:H2O (5:1:4)  novel 

 Methanol:acetate:H2O (5:1:4)  novel 

 Methanol:TFA:H2O (25:3:22)  novel 

 Ethanol (40%)    Madonna et al. [20] - bacteria  

Ethanol:formate:H2O (4:1:5)  novel 

 Ethanol:acetate:H2O (4:1:5)  novel 

 Ethanol:TFA:H2O (20:3:27)  novel 

 Formic acid:isopropanol:H2O (17:33:50) Camara et al. [6]; Domin et al. [10]–bacteria 

Isopropoanol (50%)   novel 

Isopropanol:formate:H2O (5:1:4) novel 

Isopropanol:acetate:H2O (5:1:4)  novel 

Isopropanol:TFA:H2O (25:3:22)  novel 

Acetone (50%)    novel 

Acetone: formate:H2O (5:1:4)  novel 

Acetone:acetate:H2O (5:1:4)  novel 

Acetone:TFA:H2O (25:3:22)  novel 

Reductant  

DTT (20mmol L-1)   Bodzon-Kulakowshaet al. [5]– proteins 

DTT (20mmol L-1):formate:H2O (5:1:4) novel 

DTT (20mmol L-1):acetate:H2O (5:1:4) novel 
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DTT (20mmol L-1):TFA:H2O (25:3:22) novel 

 β-ME (2% v/v)     Jaafar, Moukadiri and Zueco [16]- proteins/peptides 

 β-ME (2%):formate:H2O (5:1:4)  novel 

β-ME (2%):acetate:H2O (5:1:4)  novel 

β-ME (2%):acetate:H2O (5:1:4)  novel 

Detergent  

CHAPS (0.1%)    Zhang and Li [29] - protein digests 

SDS (0.1%)    ibid 

 SDS (0.1%):formate:H2O (5:1:4)  novel 

 SDS (0.1%):acetate:H2O (5:1:4)  novel 

 SDS (0.1%):TFA:H2O (25:3:22)  novel 

 aBugBuster  x1 or x10 solution  Jenkins et al.[18] – yeasts 

 aBugbuster x10:formate:H2O (1:1:8) novel 

aBugbuster x10:acetae:H2O (1:1:8) novel 

aBugbuster x10:TFA:H2O (1:6:84) novel 

 

aNovagen®; DTT, dithiothreitol; β-ME,β-mercaptoethanol; CHAPS, 3-[(3-

cholamidopropyl)dimethylammonium]-1-propanesulfonate; SDS, sodium dodecyl sulphate; TFA, 

trifluoroacetic acid. 
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Table 2.  Chemical pretreatments for S. aureus affording greatest enhancement of spectral richness 

over the m/z  2,000 –  10,000 range 

 

     Organism and number of resolved peaks  

 

Pretreatment   S. aureus NCTC 10702 S. aureus NCTC 9315 MRSA (clinical) 

Ethanol:formate   57   53   41  

Ethanol:acetate    27   50   39  

Formate:isopropanol   30   48    40  

 

Ethanol:formate= ethanol:formate:H2O (5:1:4); Ethanol:acetate= ethanol:acetate:H2O (5:1:4); 

Formate:isopropanol = formate:isopropanol:H2O (17:33:50). Detection of peaks within spectra was 

as described in Section 2.2.3. Overall visual assessment of spectra also identified these three 

pretreatments as those that most improved the spectral richness for the test organisms. 
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Table 3. Comparison of effectiveness of three chemical pretreatments for discrimination of three 

sets of clinical staphylococci isolates by MALDI-TOF-MS 

    
Number of isolates in each sets clustered 

together (as percentage) 

Pretreatment and set comparison      

(number of peaks in SPSS analysis)   non-SA  MSSA  MRSA 

All sets: total resolved peaks 

No pretreatment (1437)    37 (77)  13 (36)  13 (43) 

Ethanol:formate (1706)    *48 (100) *16 (44) 11 (37) 

Ethanol:acetate (1517)    *41 (85) 13 (36)  *14 (47) 

Formate:isopropanol(1694)   36 (75)  11 (31)  *16 (53) 

All sets: set specific resolved peaks 

No pretreatment (203)    28 (58)  22 (61)  21 (70)  

Ethanol:formate(237)    *46 (96) 19 (53)  13 (43) 

Ethanol:acetate (210)    *47 (98) 13 (36)  11 (37) 

Formate:isopropanol(221)   *43 (90) 16 (44)  14 (47) 

MSSA vs. MRSA sets: total resolved peaks 

No pretreatment (619)    -  14 (39)  11 (37) 

Ethanol:formate(733)    -  14 (39)  *12 (40) 

Ethanol:acetate (706)    -  13 (36)  10 (33) 

Formate:isopropanol (701)   -  13 (36)  *13 (43) 

MSSA vs. MRSA sets: set specific resolved peaks  

 No pretreatment (8 MSSA, 18 MRSA)  -  dnf  dnf  

Ethanol:formate(6 MSSA, 23 MRSA)  -  dnf  dnf 

Ethanol:acetate (11 MSSA, 18 MRSA)  -  dnf  dnf 

Formate:isopropanol (10 MSSA, 32 MRSA) -  *22 (61) *23 (77) 
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non-SA, non-S. aureus staphylococci; dnf, dendrogram not formed by SPSS analysis; *, enhanced 
clustering relative to ‘no pretreatment’ control. 
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Figure legends 
 
Figure 1. Replicate MALDI-TOF-MS spectra generated from a clinical MRSA isolate following on-

probe pretreatment of cells with ethanol:formate:H2O (5:1:4).  The matrix chemical was CHCA in 2:1 

ACN:H2O and 2% TFA, with target plating by the direct colony transfer B method. 

Figure 2. Distinct MALDI-TOF- MS spectra generated from S. aureus NCTC 9315 following different 

on-probe chemical pretreatments of cells.  The matrix chemical was CHCA in 2:1 ACN:H2O and 2% 

TFA, with target plating by the direct colony transfer B method. 

Figure 3. Comparative increase in spectral richness (over the m/z 2,000 –  10,000 range) for  three 

strains of S. aureus following chemical pretreatment of cells.  The  percentage increases in number 

of resolved peaks was  relative to no-pretreatment controls.  Pretreatments: (A) 

ethanol:formate:H2O (5:1:4); (B) ethanol:acetate:H2O (5:1:4); (C) formate:isopropanol:H2O 

(17:33:50). Detection of peaks within spectra was as described in Section 2.2.3.  

Figure 4. Hierarchical clustering (Jaccard) showing separation of MRSA and non-S.aureus sets of 

clinical isolates, based on set specific peaks.  On-probe chemical pretreatment of cells was with 

ethanol:acetate:H2O (5:1:4); matrix chemical was CHCA in 2:1 ACN:H2O and 2% TFA, with target 

plating by the direct colony transfer B method. 


