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Abstract— Generally, Users perform searches to satisfy their information needs. Now a day’s lots of people are using search engine to satisfy 

information need. Server search is one of the techniques of searching the information. the Growth of data brings new changes in Server. The data 

usually proposed in timely fashion in server. If there is increase in latency then it may cause a massive loss to the enterprises. The similarity 

detection plays very important role in data. while there are many algorithms are used for similarity detection such as Shingle, Simhas TSA and 

Position Aware sampling algorithm. The Shingle Simhash and Traits read entire files to calculate similar values. It requires the long delay in 

growth of data set value. instead of reading entire Files PAS sample some data in the form of Unicode to calculate similarity characteristic 

value.PAS is the advance technique of  TSA. However slight modification of file will trigger the position of file content .Therefore the failure of 

similarity identification  is there due to some modifications.. This paper proposes an Enhanced Position-Aware Sampling algorithm (EPAS) to 

identify file similarity for the Server. EPAS concurrently samples data blocks from the modulated file to avoid the position shift  by the 

modifications. While there is  an  metric is proposed to measure the similarity between different files and make the possible detection probability 

close to the actual probability. In this paper describes a PAS algorithm to reduce the time overhead of similarity detection. Using PAS algorithm 

we can reduce the complication and time for identifying the similarity. Our result demonstrate that the EPAS significantly outperforms the 

existing well known algorithms in terms of time. Therefore, it is an effective approach of similarity identification for the Server. 
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I. INTRODUCTION 

The growth of the data management significantly increases  and 

the data risk and cost of data also increases . to address  this 

kind of problem many users transfer there data to the server. 

And we can access that data via internet. This kind of problem 

result in large volume of redundant data in server. The main 

reson for this is that multiple users tends to store similar files in 

the server . Here multiple users store multiple files in the 

server. Unfortunately the redundant data not only consume 

significant it esurses but also occupy bandwidth for this 

puposes the data deduplication is required .  

To overcome from all these problems we create the sampling 

similarity based identification algorithm for compression of 

Unicode data content in server. search techniques perform 

comparably despite contrary claims in the literature. During my 

evaluation of search effectiveness, I were surprised by the 

difficulty I had searching my data sets. In particular, 

straightforward implementations of many search techniques 

server not scale to databases with hundreds of thousands of 

tuples, which forced us to write “lazy” versions of their core 

algorithms and reduce their memory footprint. Even then, I 

were surprised by the excessive runtime of many search 

techniques. 

In the present data warehousing environment schemes there 

are lots of issues in server computing. Some advanced data 

manipulating schemes are required to extending the dats 

search paradigm to relational data has been an active area of 

research within the database and information retrieval 

community. It proves that the effectiveness of performance 

in retrieval tasks and data maintaining procedures. The 

outcome confirms previous claims regarding the 

unacceptable performance of these systems and underscores 

the need for standardization as exemplified by the IR 

community when evaluating these retrieval systems. 

Position Aware similarity identification algorithms belong to 

I/O bound and CPU bound tasks. Calculating the Unicode of 

similar files requires lots of CPU Corresponding cycles,  the 

computing  increases with the growth of data sets 

  Position Aware similarity identify algorithms normally    

require a large amount of time for detecting the similarity, 

which results in long delays and if there is large data sets. it 

require more time This makes it difficult to apply the 

algorithms to some applications. 
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In this paper, we propose a Position-Aware Similarity (PAS) 

identification algorithm to detect the similar files in large data 

sets. This method is very effective in dealing with file 

modification when performing similarity detection. And here 

we use Simhash algorithm called  in terms of precision and 

recall. Furthermore, the time overhead, CPU and memory 

occupation of PAS are much less than that of simhash. This is 

because the overhead of PAS is relatively stable. It is not 

increases with the growth of data size. 

 The remainder of this paper is organized as follows: we 

present related work in section 2. In section 3 we describe 

some background knowledge. Section 4 introduces the basic 

idea of PAS algorithm.Section 5 shows Sampling Based 

similarity identification. Section 6 shows the evaluation results 

of PAS algorithm. Section 7 shows Similarity Identification  

Techniques Work  Section 8 draws conclusions and Future 

use. 

II. RELATED WORK 

In related work it involved the Server technique and similarity 

detection algorithm to avoid the redundant data in server using 

Unicode data content. Here we design the sampling based 

similarity approach for the detection of  data similarity and 

perform the various task like upload file and delete files 

In the past decade, a lot of research efforts have been invested 

in identifying data similarity.Which we explain below. 

The first one is similar web page detection with web search 

engine. Detecting and removing similar web pages can save 

network  bandwidth, reduce storage consumption, and improve 

the quality of web search engine index. Andrei et al. [17], [20] 

proposed a similar web page detection technique called 

Shingle algorithm which utilizes set operation to detect 

similarity. Shingle is a typical sampling based approach 

employed to identify similar web pages. In order to reduce the 

size of shingle, Andrei presented Modm and Mins sampling 

methods. This algorithm is applied to AltaVista web search 

engine at present. Manku et al. [21] applied a Simhash 

algorithm to detect similarity in web documents belonging to a 

multi-billion page repository. Simhash algorithm practically 

runs at Google web search engine combining with Google file 

system [22] and MapReduce [23] to achieve batch queries. 

Elsayed et al. [24] presented a MapReduce algorithm for 

computing pairwise document similarity in large document 

collections. 

The second one is similar file detection in storage systems. In 

storage systems, data similarity detection and encoding play a 

crucial role in improving the resource utilization. Forman [25] 

presented an approach for finding similar files and applied the 

method to document repositories.This approach brings a great 

reduction in storage space consumption. Ouyang [26] 

presented a large-scale file compression technique based on 

cluster by using Shingle similarity detection technique. 

Ouyang uses Min-wise [27] sampling method to reduce the 

overhead of Shingle algorithm. Han et al. [28] presented fuzzy 

file block matching technique, which was first proposed for 

opportunistic use of content addressable storage. Fuzzy file 

block matching technique employs Shingle to represent the 

fuzzy hashing of file blocks for similarity detection. It uses 

Mins sampling method to decrease the overhead of shingling 

algorithm.  

The third one is plagiarism detection. Digital information can 

be easily copied and retransmitted. This feature causes owners 

copyright be easily violated. In purpose of protecting 

copyright and other related rights, we need plagiarism 

detection. Baker [29] described a program called dup which 

can be used to locate instances of duplication or near 

duplication in a software. Shivakumar [30] presented data 

structures for finding overlap between documents and 

implemented these data structures in SCAM.  

The forth one is remote file backup. Traditional remote file 

backup approaches take high bandwidth and consume a lot of 

resources. Applying similarity detection to remote file backup 

can greatly reduce bandwidth consumption. 

Teodosiu et al. [15] proposed a Traits algorithm to find out the 

client files which are similar to a given server file. Teodosiu 

implemented this algorithm in DFSR. Experimental results 

suggest that these optimizations may help reduce the 

bandwidth required to transfer file updates across a network. 

Muthitacharoen et al. [5] presented LBFS which exploits 

similarity between files or versions of the same file to save 

bandwidth. Cox et al. [31] presented a similaritybased 

mechanism for locating a single source file to perform peer-to-

peer backup. They implemented a system prototype called 

Pastiche.  

The fifth one is the similarity detection for specific domains. 

Hua et al. [32] explored and exploited data similarity which 

supports efficient data placement for cloud. They designed a 

novel multi-core-enabled and localitysensitive hashing that 

can accurately capture the differentiated 

similarity across data. Biswas et al. [33] proposed a cache 

architecture called Mergeable. Mergeable detectsdata 

similarities and merges cache blocks so as to decrease cache 

storage requirements. Experimental evaluation suggested that 

Mergeable reduces off-chip memory accesses and overall 

power usage. Vernica et al. [34] proposed a three-stage 

approach for end-to-end setsimilarity joins in parallel using the 

popular MapReduce framework. Deng et al. [35] proposed a 

MapReducebased framework Massjoin for scalable string 

similarity joins. The approach achieves both set-based 

similarity functions and character-based similarity 
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functions. Most of the above work focus on a specific 

application scenario, and the computational or similarity 

detection overhead are increased with the growth of data 

volume. In addition, the similarity detection metric may not be 

able to well measure the similarity between two files. 

Therefore, this paper proposes an EPAS algorithm and a new 

similarity detection metric to identify file similarity for the 

cloud. 

According to the analysis (see Section 4 and 5.3) and 

experimental results, it illustrates that the proposed similarity 

metric catch the similarity between metric catch the similarity 

between two files more accuratelythat that of traditional 

metric. Furthermore, the overhead of EPAS is fixed and 

minimized in contrast to previous work. 

III. BACKGROUND 

Here We used the hash key which is based on counting the 

occurrences of certain Unicode strings within a file. The keys, 

along with certain intermediate data, are stored in a relational 

database (Figure 1).A separate program then query the 

database for keys with similar values, and outputs the results. 

Our code was written in PHP, and developed simultaneously 

for the Windows platforms. While the code runs equally well 

on platforms, we used a Windows machine for primary 

development and for most data collection.          

File Unicode data 

 

 

 
Figure 1: SimHash produces two levels of file similarity data. 

the key function was implemented to account for file 

extensions. 

 Here We can not say that two files are different if they contain 

different extensions. Assign different values to any two files 

with different extension. To this we compute a hash to file 

extension with value between 0 and 1.if there is same 

extension then this will not affect the relation between files 

with same extension . 

I. POSITION-AWARE SIMILARITY ALGORITH 

In server if there is large similar data set with less overhead. 

Then we can use the similarity detection algorithm that is 

PAS. Here we use different symbols which are given in the 

table bellow. 

 

A. Traditional sampling algorithm 

Suppose we sample N data blocks of file A, each data block 

sizing Lenc is injected to a hash function. We then can obtain 

N fingerprint values that are collected as a fingerprint set 

SigA(N; Lenc). In this scenario, similarity detection problem 

can be transformed into a set intersection problem. By 

analogy, we will have a fingerprint set SigB(N; Lenc) of file 

According to equation (1), 

 
 

Table 1: Symbols used in following 

 

 

FIGURE. 2: THE SAMPLING POSITIONS OF TSA AND PAS 

the degree of similarity between file A and file B can be 

described as equation (1), where Sim(A;B) ranges s between 0 

and 1. If Sim(A;B) is reaching 1, it means the similarity of file 

A and file B are very high, vice verse. After selecting a 

threshold of the similarity, we can determine that file A is 

similar to file B when Sim(A;B) is satisfied. This TSA is 

described in algorithm 1 by using pseudo-code. 

 

 
TSA is simple, but it is very sensitive to file modifications. A 

small modification would cause the sampling positions shifted, 

thus resulting a failure. Suppose we have a file A sizing 56KB. 

We sample 6 data blocks and each data block sizes 1KB. 

According to Algorithm 1, file A has N= 6; Lenc = 1KB; 

FileSize = 56KB; LenR = 10KB. If we add 5KB data to file A 

to form file B, file Bwill have N = 6; Lenc = 1KB; FileSize = 

61KB; LenR = 11KB in terms of algorithm. 

 

 

 

 



International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 6 Issue: 6                                                                                                                                                   254 - 259 

______________________________________________________________________________________ 

257 

IJRITCC | June 2018, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 
Adding 5KB data to file A has three situations including the 

begging, the middle, and the end of the file A. File B1, B2, 

and B3 in figure 2(a) represent 

 
these three different situations. We can find that the above file 

modifications cause the sampling position shifted and result in 

an inaccuracy of similarity detection.  

For example, the six sampling positions of file A are 0KB, 

11KB, 22KB, 33KB, 44KB, and 55KB ((1 � 1) _ (1 + 10) = 

0KB; (2� 1) _ (1 +10) = 11KB; (3 � 1) _ (1 + 10) = 22KB; (4 

� 1)  (1 +10) = 33KB; (5 �1) _ (1 + 10) = 44KB; (6 � 1) _ (1 

+ 10) = 55KB), respectively. 

However, due to the added 5KB data, the six sampling 

positions of file B1,B2, and B3 are shifted to 0KB; 12KB; 

24KB; 36KB; 48KB, and 60KB((1 � 1) _ (1 + 11) =0KB; (2 

� 1) _ (1 + 11) = 12KB; (3 �1) _ (1 + 11) = 24KB; (4 � 1) _ 

(1 + 11) =36KB; (5 � 1) _ (1 + 11) = 48KB; (6 � 1) _ (1 + 

11) = 60KB), respectively. 

Although the Sim(A;B) is far from actual value when using 

TSA, the sampling method is very simple and takes 

much less overhead in contrast to the shingle algorithm and 

simhash algorithm. 

B. PAS algorithm 

FPP[17] exploits prefetching fingerprints belonging to the 

same file by leveraging file similarity, thus improving the 

performance of data deduplication systems. 

The experimental results suggest that FPP increases cache hit 

ratio and reduces the number of disk accesses greatly. FPP 

samples three data blocks in the beginning, the middle, and the 

end of files to determine that a forthcoming file is similar to 

the files stored in the backed storage system, by using the 

TSA. This method is sample and effective. However, as 

explained in section 4.1, a single bit modification would result 

in a failure. Therefore, PAS is proposed to solve this problem. 

II. CONCLUSION AND FUTURE SCOPE 

A. Conclusion 

In this paper , Overall we will study all the existing 

techniques which is available in market. Each system has 

some advantages and some disadvantages. Any existing 

system cannot fulfill all the requirement of Server search. 

They require more space and time; also some techniques 

are limited for particular dataset.  We Proposed an 

algorithm PAS to identify the file similarity of Unicode 

data in large data Set.Here many experiments are 

performed to select the parameters of PAS. PAS is very 

effective in detecting file similarity in contrast in 

similarity identification algorithm called Simhas. PAS 

required less time than Simhash. The Proposed technique 

is satisfying number of requirement of server search using 

different algorithms. It also shows the ranking of character 

value and not requires the knowledge of database queries. 

Compare to existing algorithm it is a fast process. 

B. Future Scope 

As a future work we can search the techniques which are 

useful for all the datasets, means only single technique 

can be use. Further research is necessary to investigate the 

experimental design decisions that have a significant 

impact on the evaluation of server search. 

Sampling based similarity identification opens up several 

directions for future work. The first one is using content 

based chunk algorithm to sample data blocks, since this 

approach can avoid content shifting incurred by data 

modification. The second one is employing file metadata 

to optimize the similarity detection. This is because the 

file size and type which are contained in the metadata of 

similar file are normally very close. 

Evaluate to presented systems it is a fast process and the 

Techniques are implausible to have performance 

characteristics that are similar to existing systems but be 

required to be used if cloud search systems are to scale to 

great datasets. The memory exploitation during a search 

has not been the focus of any earlier assessment 
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