278 research outputs found

    Modelling fungal colonies and communities:challenges and opportunities

    Get PDF
    This contribution, based on a Special Interest Group session held during IMC9, focuses on physiological based models of filamentous fungal colony growth and interactions. Fungi are known to be an important component of ecosystems, in terms of colony dynamics and interactions within and between trophic levels. We outline some of the essential components necessary to develop a fungal ecology: a mechanistic model of fungal colony growth and interactions, where observed behaviour can be linked to underlying function; a model of how fungi can cooperate at larger scales; and novel techniques for both exploring quantitatively the scales at which fungi operate; and addressing the computational challenges arising from this highly detailed quantification. We also propose a novel application area for fungi which may provide alternate routes for supporting scientific study of colony behaviour. This synthesis offers new potential to explore fungal community dynamics and the impact on ecosystem functioning

    Pd-catalyzed sp-sp<sup>3</sup>cross-coupling of benzyl bromides using lithium acetylides

    Get PDF
    Organolithium-based cross-coupling reactions have emerged as an indispensable method to construct C-C bonds. These transformations have proven particularly useful for the direct and fast coupling of various organolithium reagents (sp, sp2, and sp3) with aromatic (pseudo) halides (sp2). Here we present an efficient method for the cross-coupling of benzyl bromides (sp3) with lithium acetylides (sp). The reaction proceeds within 10 min at room temperature and can be performed in the presence of organolithium-sensitive functional groups such as esters, nitriles, amides and boronic esters. The potential application of the methodology is demonstrated in the preparation of key intermediates used in pharmaceuticals, chemical biology and natural products

    Automation of product packaging for industrial applications

    Full text link
    [EN] This work presents a robotic-based solution devised to automate the product packaging in industrial environments. Although the proposed approach is illustrated for the case of the shoe industry, it applies to many other products requiring similar packaging processes. The main advantage obtained with the automated task is that productivity could be significantly increased. The key algorithms for the developed robot system are: object detection using a computer vision system; object grasping; trajectory planning with collision avoidance; and operator interaction using a force/torque sensor. All these algorithms have been experimentally tested in the laboratory to show the effectiveness and applicability of the proposed approach.This work has been partly supported by Ministerio de Economia y Competitividad of the Spanish Government [Grant No. RTC201654086 and PRI-AIBDE-2011-1219], by the Deutscher Akademischer Austauschdienst (DAAD) of the German Government (Projekt-ID 54368155) and by ROBOFOOT project [Grant No. 260159] of the European Commission.Perez-Vidal, C.; Gracia, L.; De Paco, J.; Wirkus, M.; Azorin, J.; De Gea, J. (2018). Automation of product packaging for industrial applications. International Journal of Computer Integrated Manufacturing. 31(2):129-137. https://doi.org/10.1080/0951192X.2017.1369165S12913731

    Ready for Fall? Near-Term Effects of Voluntary Summer Learning Programs on Low-Income Students' Learning Opportunities and Outcomes

    Get PDF
    This report is the second of five volumes from a five-year study, funded by The Wallace Foundation and conducted by the RAND Corporation, designed as a randomized controlled trial that assesses student outcomes in three waves: in the fall after the 2013 summer program (reported here), at the end of the school year following the program, and after a second summer program in 2014 (to show the cumulative effects of two summer programs). The goal of the study is to answer one key question: Do voluntary, district-run summer programs that include academics and enrichment activities improve student academic achievement and other outcomes, such as social and emotional competence

    LFI 30 and 44 GHz receivers Back-End Modules

    Full text link
    The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency Instrument are broadband receivers (20% relative bandwidth) working at room temperature. The signals coming from the Front End Module are amplified, band pass filtered and finally converted to DC by a detector diode. Each receiver has two identical branches following the differential scheme of the Planck radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs P-HEMT devices, microstrip filters and Schottky diode detectors. Their manufacturing development has included elegant breadboard prototypes and finally qualification and flight model units. Electrical, mechanical and environmental tests were carried out for the characterization and verification of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules of Planck-LFI radiometers is given, with details of the tests done to determine their electrical and environmental performances. The electrical performances of the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth, equivalent noise temperature, 1/f noise and linearity are presented

    Macrophage Reprogramming with Anti-miR223-Loaded Artificial Protocells Enhances In Vivo Cancer Therapeutic Potential

    Get PDF
    Several immune cell‐expressed miRNAs (miRs) are associated with altered prognostic outcome in cancer patients, suggesting that they may be potential targets for development of cancer therapies. Here, translucent zebrafish (Danio rerio) is utilized to demonstrate that genetic knockout or knockdown of one such miR, microRNA‐223 (miR223), globally or specifically in leukocytes, does indeed lead to reduced cancer progression. As a first step toward potential translation to a clinical therapy, a novel strategy is described for reprogramming neutrophils and macrophages utilizing miniature artificial protocells (PCs) to deliver anti‐miRs against the anti‐inflammatory miR223. Using genetic and live imaging approaches, it is shown that phagocytic uptake of anti‐miR223‐loaded PCs by leukocytes in zebrafish (and by human macrophages in vitro) effectively prolongs their pro‐inflammatory state by blocking the suppression of pro‐inflammatory cytokines, which, in turn, drives altered immune cell‐cancer cell interactions and ultimately leads to a reduced cancer burden by driving reduced proliferation and increased cell death of tumor cells. This PC cargo delivery strategy for reprogramming leukocytes toward beneficial phenotypes has implications also for treating other systemic or local immune‐mediated pathologies

    Predicting green: really radical (plant) predictive processing

    Get PDF
    In this article we account for the way plants respond to salient features of their environment under the free-energy principle for biological systems. Biological self-organization amounts to the minimization of surprise over time. We posit that any self-organizing system must embody a generative model whose predictions ensure that (expected) free energy is minimized through action. Plants respond in a fast, and yet coordinated manner, to environmental contingencies. They pro-actively sample their local environment to elicit information with an adaptive value. Our main thesis is that plant behaviour takes place by way of a process (active inference) that predicts the environmental sources of sensory stimulation. This principle, we argue, endows plants with a form of perception that underwrites purposeful, anticipatory behaviour. The aim of the article is to assess the prospects of a radical predictive processing story that would follow naturally from the free-energy principle for biological systems; an approach that may ultimately bear upon our understanding of life and cognition more broadly

    Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR

    Get PDF
    Background: Considering the broad variation in the expression of housekeeping genes among tissues and experimental situations, studies using quantitative RT-PCR require strict definition of adequate endogenous controls. for glioblastoma, the most common type of tumor in the central nervous system, there was no previous report regarding this issue.Results: Here we show that amongst seven frequently used housekeeping genes TBP and HPRT1 are adequate references for glioblastoma gene expression analysis. Evaluation of the expression levels of 12 target genes utilizing different endogenous controls revealed that the normalization method applied might introduce errors in the estimation of relative quantities. Genes presenting expression levels which do not significantly differ between tumor and normal tissues can be considered either increased or decreased if unsuitable reference genes are applied. Most importantly, genes showing significant differences in expression levels between tumor and normal tissues can be missed. We also demonstrated that the Holliday Junction Recognizing Protein, a novel DNA repair protein over expressed in lung cancer, is extremely over-expressed in glioblastoma, with a median change of about 134 fold.Conclusion: Altogether, our data show the relevance of previous validation of candidate control genes for each experimental model and indicate TBP plus HPRT1 as suitable references for studies on glioblastoma gene expression.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAEPA-FMRUniv São Paulo, Fac Med, Dept Surg & Anat, BR-14049090 Ribeirao Preto, SP, BrazilUniv São Paulo, Fac Med, Dept Cellular & Mol Biol, BR-14049090 Ribeirao Preto, SP, BrazilUniv São Paulo, Fac Med, Dept Pathol, BR-14049090 Ribeirao Preto, SP, BrazilUniversidade Federal de São Paulo, Dept Neurol & Neurosurg, BR-04023900 São Paulo, BrazilUniv São Paulo, Sch Med, Dept Neurol, BR-01246903 São Paulo, BrazilUniv São Paulo, Fac Med, Dept Pediat, BR-14049090 Ribeirao Preto, SP, BrazilUniversidade Federal de São Paulo, Dept Neurol & Neurosurg, BR-04023900 São Paulo, BrazilFAPESP: 04/12133-6FAPESP: 06/57602-9CNPq: 485342/2006Web of Scienc
    corecore