4,834 research outputs found

    Determination of Soybean Oil, Protein and Amino Acid Residues in Soybean Seeds by High Resolution Nuclear Magnetic Resonance (NMRS) and Near Infrared (NIRS)

    Get PDF
    A detailed account is presented of our high resolution nuclear magnetic resonance (HR-NMR) and near infrared (NIR) calibration models, methodologies and validation procedures, together with a large number of composition analyses for soybean seeds. NIR calibrations were developed based on both HR-NMR and analytical chemistry reference data for oil and twelve amino acid residues in mature soybeans and soybean embryos. This is our first report of HR-NMR determinations of amino acid profiles of proteins from whole soybean seeds, without protein extraction from the seed. It was found that the best results for both oil and protein calibrations were obtained with a Partial Least Squares Regression (PLS-1) analysis of our extensive NIR spectral data, acquired with either a DA7000 Dual Diode Array (Si and InGaAs detectors) instrument or with several Fourier Transform NIR (FT-NIR) spectrometers equipped with an integrating sphere/InGaAs detector accessory. In order to extend the bulk soybean samples calibration models to the analysis of single soybean seeds, we have analized in detail the component NIR spectra of all major soybean constituents through spectral deconvolutions for bulk, single and powdered soybean seeds. Baseline variations and light scattering effects in the NIR spectra were corrected, respectively, by calculating the first-order derivatives of the spectra and the Multiplicative Scattering Correction (MSC). The single soybean seed NIR spectra are broadly similar to those of bulk whole soybeans, with the exception of minor peaks in single soybean NIR spectra in the region from 950 to 1,000 nm. Based on previous experience with bulk soybean NIR calibrations, the PLS-1 calibration model was selected for protein, oil and moisture calibrations that we developed for single soybean seed analysis. In order to improve the reliability and robustness of our calibrations with the PLS-1 model we employed standard samples with a wide range of soybean constituent compositions: from 34% to 55% for protein, from 11% to 22% for oil and from 2% to 16% for moisture. Such calibrations are characterized by low standard errors and high degrees of correlation for all major soybean constituents. Morever, we obtained highly resolved NIR chemical images for selected regions of mature soybean embryos that allow for the quantitation of oil and protein components. Recent developments in high-resolution FT-NIR microspectroscopy extend the NIR sensitivity range to the picogram level, with submicron spatial resolution in the component distribution throughout intact soybean seeds and embryos. Such developments are potentially important for biotechnology applications that require rapid and ultra- sensitive analyses, such as those concerned with high-content microarrays in Genomics and Proteomics research. Other important applications of FT-NIR microspectroscopy are envisaged in biomedical research aimed at cancer prevention, the early detection of tumors by NIR-fluorescence, and identification of single cancer cells, or single virus particles in vivo by super-resolution microscopy/ microspectroscopy

    Disordered Bose Einstein Condensates with Interaction in One Dimension

    Full text link
    We study the effects of random scatterers on the ground state of the one-dimensional Lieb-Liniger model of interacting bosons on the unit interval in the Gross-Pitaevskii regime. We prove that Bose Einstein condensation survives even a strong random potential with a high density of scatterers. The character of the wave function of the condensate, however, depends in an essential way on the interplay between randomness and the strength of the two-body interaction. For low density of scatterers or strong interactions the wave function extends over the whole interval. High density of scatterers and weak interaction, on the other hand, leads to localization of the wave function in a fragmented subset of the interval

    ArgR is an essential local transcriptional regulator of the arcABC-operon in Streptococcus suis and crucial for biological fitness in acidic environment

    Get PDF
    Streptococcus suis is one of the most important pathogens in pigs and can also cause severe infections in humans. Despite its clinical relevance very little is known about the factors contributing to its virulence. Recently, we identified a new putative virulence factor in Streptococcus suis, the arginine deiminase system (ADS), an arginine catabolic enzyme system encoded by the arcABC-operon, which enables Streptococcus suis to survive in acidic environment. In this study, we focused on ArgR, an ADS associated regulator belonging to the ArgR/AhrC arginine repressor family. Using an argR knock-out strain we could show that ArgR is essential for arcABC-operon expression and necessary for the biological fitness of Streptococcus suis. By cDNA expression microarray analyses and quantitative real time RT-PCR we found that the arcABC-operon is the only gene cluster regulated by ArgR, which is in contrast to many other bacteria. Reporter gene analysis with gfp under the control of the arcABC promoter demonstrated that ArgR is able to activate the arcABC promoter. Electrophoretic mobility shift assays with fragments of the arcABC promoter and recombinant ArgR, and chromatin immunoprecipitation with antibodies directed against ArgR revealed that ArgR interacts with the arcABC promoter in vitro and in vivo by binding to a region from -147 to 72 bp upstream of the transcriptional start point. Overall our results show that in Streptococcus suis ArgR is an essential, system specific transcriptional regulator of the ADS directly interacting with the arcABC promoter in vivo

    Distinct Migratory Properties of M1, M2, and Resident Macrophages Are Regulated by α\u3csub\u3ed\u3c/sub\u3eβ\u3csub\u3e2\u3c/sub\u3eand α\u3csub\u3em\u3c/sub\u3eβ\u3csub\u3e2\u3c/sub\u3eIntegrin-Mediated Adhesion

    Get PDF
    Chronic inflammation is essential mechanism during the development of cardiovascular and metabolic diseases. The outcome of diseases depends on the balance between the migration/accumulation of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in damaged tissue. The mechanism of macrophage migration and subsequent accumulation is still not fully understood. Currently, the amoeboid adhesion-independent motility is considered essential for leukocyte migration in the three-dimensional environment. We challenge this hypothesis by studying the contribution of leukocyte adhesive receptors, integrins αMβ2, and αDβ2, to three-dimensional migration of M1-polarized, M2-polarized, and resident macrophages. Both integrins have a moderate expression on M2 macrophages, while αDβ2 is upregulated on M1 and αMβ2 demonstrates high expression on resident macrophages. The level of integrin expression determines its contribution to macrophage migration. Namely, intermediate expression supports macrophage migration, while a high integrin density inhibits it. Using in vitro three-dimensional migration and in vivo tracking of adoptively-transferred fluorescently-labeled macrophages during the resolution of inflammation, we found that strong adhesion of M1-activated macrophages translates to weak 3D migration, while moderate adhesion of M2-activated macrophages generates dynamic motility. Reduced migration of M1 macrophages depends on the high expression of αDβ2, since αD-deficiency decreased M1 macrophage adhesion and improved migration in fibrin matrix and peritoneal tissue. Similarly, the high expression of αMβ2 on resident macrophages prevents their amoeboid migration, which is markedly increased in αM-deficient macrophages. In contrast, αD- and αM-knockouts decrease the migration of M2 macrophages, demonstrating that moderate integrin expression supports cell motility. The results were confirmed in a diet-induced diabetes model. αD deficiency prevents the retention of inflammatory macrophages in adipose tissue and improves metabolic parameters, while αM deficiency does not affect macrophage accumulation. Summarizing, β2 integrin-mediated adhesion may inhibit amoeboid and mesenchymal macrophage migration or support mesenchymal migration in tissue, and, therefore, represents an important target to control inflammation

    Disorder-induced cavities, resonances, and lasing in randomly-layered media

    Full text link
    We study, theoretically and experimentally, disorder-induced resonances in randomly-layered samples,and develop an algorithm for the detection and characterization of the effective cavities that give rise to these resonances. This algorithm enables us to find the eigen-frequencies and pinpoint the locations of the resonant cavities that appear in individual realizations of random samples, for arbitrary distributions of the widths and refractive indices of the layers. Each cavity is formed in a region whose size is a few localization lengths. Its eigen-frequency is independent of the location inside the sample, and does not change if the total length of the sample is increased by, for example, adding more scatterers on the sides. We show that the total number of cavities, NcavN_{\mathrm{cav}}, and resonances, NresN_{\mathrm{res}}, per unit frequency interval is uniquely determined by the size of the disordered system and is independent of the strength of the disorder. In an active, amplifying medium, part of the cavities may host lasing modes whose number is less than NresN_{\mathrm{res}}. The ensemble of lasing cavities behaves as distributed feedback lasers, provided that the gain of the medium exceeds the lasing threshold, which is specific for each cavity. We present the results of experiments carried out with single-mode optical fibers with gain and randomly-located resonant Bragg reflectors (periodic gratings). When the fiber was illuminated by a pumping laser with an intensity high enough to overcome the lasing threshold, the resonances revealed themselves by peaks in the emission spectrum. Our experimental results are in a good agreement with the theory presented here.Comment: minor correction

    Origin of the spin reorientation transitions in (Fe1x_{1-x}Cox_{x})2_{2}B alloys

    Get PDF
    Low-temperature measurements of the magnetocrystalline anisotropy energy KK in (Fe1x_{1-x}Cox_{x})2_{2}B alloys are reported, and the origin of this anisotropy is elucidated using a first-principles electronic structure analysis. The calculated concentration dependence K(x)K(x) with a maximum near x=0.3x=0.3 and a minimum near x=0.8x=0.8 is in excellent agreement with experiment. This dependence is traced down to spin-orbital selection rules and the filling of electronic bands with increasing electronic concentration. At the optimal Co concentration, KK depends strongly on the tetragonality and doubles under a modest 3% increase of the c/ac/a ratio, suggesting that the magnetocrystalline anisotropy can be further enhanced using epitaxial or chemical strain.Comment: 4 pages + supplementary material, 6 figures. Accepted in Applied Physics Letter

    Features of radiation changes in electrical properties of InAlN/GaN HEMTs

    Get PDF
    The effect of the proton, electron, gamma - rays, and fast neutron irradiation on the parameters of InAlN/Ga

    Palladium-Catalyzed C(sp<sup>3</sup>) C(sp<sup>2</sup>) Cross-Coupling of (Trimethylsilyl)methyllithium with (Hetero)Aryl Halides

    Get PDF
    The palladium-catalyzed direct cross-coupling of a range of organic chlorides and bromides with the bifunctional C(sp(3))-(trimethylsilyl)methyllithium reagent is reported. The use of Pd-PEPPSI-IPent as the catalyst allows for the preparation of structurally diverse and synthetically versatile benzyl- and allylsilanes in high yields under mild conditions (room temperature) with short reaction times.</p
    corecore