1,017 research outputs found
CT Radiomic Features and Clinical Biomarkers for Predicting Coronary Artery Disease
This study was aimed to investigate the predictive value of the radiomics features extracted from pericoronaric adipose tissue & mdash; around the anterior interventricular artery (IVA) & mdash; to assess the condition of coronary arteries compared with the use of clinical characteristics alone (i.e., risk factors). Clinical and radiomic data of 118 patients were retrospectively analyzed. In total, 93 radiomics features were extracted for each ROI around the IVA, and 13 clinical features were used to build different machine learning models finalized to predict the impairment (or otherwise) of coronary arteries. Pericoronaric radiomic features improved prediction above the use of risk factors alone. In fact, with the best model (Random Forest + Mutual Information) the AUROC reached 0.820 +/- 0.076 . As a matter of fact, the combined use of both types of features (i.e., radiomic and clinical) allows for improved performance regardless of the feature selection method used. Experimental findings demonstrated that the use of radiomic features alone achieves better performance than the use of clinical features alone, while the combined use of both clinical and radiomic biomarkers further improves the predictive ability of the models. The main contribution of this work concerns: (i) the implementation of multimodal predictive models, based on both clinical and radiomic features, and (ii) a trusted system to support clinical decision-making processes by means of explainable classifiers and interpretable features
Characterisation of the L-mode Scrape Off Layer in MAST: decay lengths
This work presents a detailed characterisation of the MAST Scrape Off Layer
in L-mode. Scans in line averaged density, plasma current and toroidal magnetic
field were performed. A comprehensive and integrated study of the SOL was
allowed by the use of a wide range of diagnostics. In agreement with previous
results, an increase of the line averaged density induced a broadening of the
midplane density profile.Comment: 30 pages, 11 figure
A computational study on temperature variations in mrgfus treatments using prf thermometry techniques and optical probes
Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-up in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds are currently emerging in the clinical practice as a noninvasive technology for therapy. Indeed, the sound waves can be used to increase the temperature inside the target solid tumors, leading to apoptosis or necrosis of neoplastic tissues. The Magnetic resonance-guided focused ultrasound surgery (MRgFUS) technology represents a valid application of this ultrasound property, mainly used in oncology and neurology. In this paper; patient safety during MRgFUS treatments was investigated by a series of experiments in a tissue-mimicking phantom and performing ex vivo skin samples, to promptly identify unwanted temperature rises. The acquired MR images, used to evaluate the temperature in the treated areas, were analyzed to compare classical proton resonance frequency (PRF) shift techniques and referenceless thermometry methods to accurately assess the temperature variations. We exploited radial basis function (RBF) neural networks for referenceless thermometry and compared the results against interferometric optical fiber measurements. The experimental measurements were obtained using a set of interferometric optical fibers aimed at quantifying temperature variations directly in the sonication areas. The temperature increases during the treatment were not accurately detected by MRI-based referenceless thermometry methods, and more sensitive measurement systems, such as optical fibers, would be required. In-depth studies about these aspects are needed to monitor temperature and improve safety during MRgFUS treatments
Microscopic derivation of the Jaynes-Cummings model with cavity losses
In this paper we provide a microscopic derivation of the master equation for
the Jaynes-Cummings model with cavity losses. We single out both the
differences with the phenomenological master equation used in the literature
and the approximations under which the phenomenological model correctly
describes the dynamics of the atom-cavity system. Some examples wherein the
phenomenological and the microscopic master equations give rise to different
predictions are discussed in detail.Comment: 9 pages, 3 figures New version with minor correction Accepted for
publication on Physical Review
Recommended from our members
Medication decision-making for patients with renal insufficiency in inpatient and outpatient care at a US Veterans Affairs Medical Centre: a qualitative, cognitive task analysis.
BackgroundMany studies identify factors that contribute to renal prescribing errors, but few examine how healthcare professionals (HCPs) detect and recover from an error or potential patient safety concern. Knowledge of this information could inform advanced error detection systems and decision support tools that help prevent prescribing errors.ObjectiveTo examine the cognitive strategies that HCPs used to recognise and manage medication-related problems for patients with renal insufficiency.DesignHCPs submitted documentation about medication-related incidents. We then conducted cognitive task analysis interviews. Qualitative data were analysed inductively.SettingInpatient and outpatient facilities at a major US Veterans Affairs Medical Centre.ParticipantsPhysicians, nurses and pharmacists who took action to prevent or resolve a renal-drug problem in patients with renal insufficiency.OutcomesEmergent themes from interviews, as related to recognition of renal-drug problems and decision-making processes.ResultsWe interviewed 20 HCPs. Results yielded a descriptive model of the decision-making process, comprised of three main stages: detect, gather information and act. These stages often followed a cyclical path due largely to the gradual decline of patients' renal function. Most HCPs relied on being vigilant to detect patients' renal-drug problems rather than relying on systems to detect unanticipated cues. At each stage, HCPs relied on different cognitive cues depending on medication type: for renally eliminated medications, HCPs focused on gathering renal dosing guidelines, while for nephrotoxic medications, HCPs investigated the need for particular medication therapy, and if warranted, safer alternatives.ConclusionsOur model is useful for trainees so they can gain familiarity with managing renal-drug problems. Based on findings, improvements are warranted for three aspects of healthcare systems: (1) supporting the cyclical nature of renal-drug problem management via longitudinal tracking mechanisms, (2) providing tools to alleviate HCPs' heavy reliance on vigilance and (3) supporting HCPs' different decision-making needs for renally eliminated versus nephrotoxic medications
Recommended from our members
A Survey on Nature-Inspired Medical Image Analysis: A Step Further in Biomedical Data Integration
Robustness Analysis of DCE-MRI-Derived Radiomic Features in Breast Masses: Assessing Quantization Levels and Segmentation Agreement
Featured Application The use of highly robust radiomic features is fundamental to reduce intrinsic dependencies and to provide reliable predictive models. This work presents a study on breast tumor DCE-MRI considering the radiomic feature robustness against the quantization settings and segmentation methods. Machine learning models based on radiomic features allow us to obtain biomarkers that are capable of modeling the disease and that are able to support the clinical routine. Recent studies have shown that it is fundamental that the computed features are robust and reproducible. Although several initiatives to standardize the definition and extraction process of biomarkers are ongoing, there is a lack of comprehensive guidelines. Therefore, no standardized procedures are available for ROI selection, feature extraction, and processing, with the risk of undermining the effective use of radiomic models in clinical routine. In this study, we aim to assess the impact that the different segmentation methods and the quantization level (defined by means of the number of bins used in the feature-extraction phase) may have on the robustness of the radiomic features. In particular, the robustness of texture features extracted by PyRadiomics, and belonging to five categories-GLCM, GLRLM, GLSZM, GLDM, and NGTDM-was evaluated using the intra-class correlation coefficient (ICC) and mean differences between segmentation raters. In addition to the robustness of each single feature, an overall index for each feature category was quantified. The analysis showed that the level of quantization (i.e., the 'bincount' parameter) plays a key role in defining robust features: in fact, in our study focused on a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) dataset of 111 breast masses, sets with cardinality varying between 34 and 43 robust features were obtained with 'binCount' values equal to 256 and 32, respectively. Moreover, both manual segmentation methods demonstrated good reliability and agreement, while automated segmentation achieved lower ICC values. Considering the dependence on the quantization level, taking into account only the intersection subset among all the values of 'binCount' could be the best selection strategy. Among radiomic feature categories, GLCM, GLRLM, and GLDM showed the best overall robustness with varying segmentation methods
MedGA: A novel evolutionary method for image enhancement in medical imaging systems
Medical imaging systems often require the application of image enhancement techniques to help physicians in anomaly/abnormality detection and diagnosis, as well as to improve the quality of images that undergo automated image processing. In this work we introduce MedGA, a novel image enhancement method based on Genetic Algorithms that is able to improve the appearance and the visual quality of images characterized by a bimodal gray level intensity histogram, by strengthening their two underlying sub-distributions. MedGA can be exploited as a pre-processing step for the enhancement of images with a nearly bimodal histogram distribution, to improve the results achieved by downstream image processing techniques. As a case study, we use MedGA as a clinical expert system for contrast-enhanced Magnetic Resonance image analysis, considering Magnetic Resonance guided Focused Ultrasound Surgery for uterine fibroids. The performances of MedGA are quantitatively evaluated by means of various image enhancement metrics, and compared against the conventional state-of-the-art image enhancement techniques, namely, histogram equalization, bi-histogram equalization, encoding and decoding Gamma transformations, and sigmoid transformations. We show that MedGA considerably outperforms the other approaches in terms of signal and perceived image quality, while preserving the input mean brightness. MedGA may have a significant impact in real healthcare environments, representing an intelligent solution for Clinical Decision Support Systems in radiology practice for image enhancement, to visually assist physicians during their interactive decision-making tasks, as well as for the improvement of downstream automated processing pipelines in clinically useful measurements
- …