18 research outputs found

    Mangifera indica L. extract (Vimang) improves the aversive memory in spinocerebellar ataxia type 2 transgenic mice.

    No full text
    Context: The spinocerebellar ataxia type 2 (SCA-2) is a progressive neurodegenerative disorder without specific therapy identified, and it is related to the loss of function in the cerebellum, mitochondrial dysfunction, oxidative stress and neurotoxic processes. Scientific evidence indicates that Mangifera indica L. aqueous extract (MiE) and its major constituent (mangiferin) display antioxidant, anti-inflammatory and neuroprotective actions. Aims: To investigate the MiE and mangiferin effects on behavioral outcomes of neurological function in SCA-2 transgenic mice. Methods: The SCA-2 transgenic mice were daily and orally administered during 12 months with MiE (10, 50, and 100 mg/kg), mangiferin (10 mg/kg) or vehicle. It was evaluated locomotion (open-field), aversive memory (inhibitory avoidance) and declarative memory (object recognition). To explore possible cellular mechanisms underlying the in vivo effects was also evaluated their effects on nerve grow factor (NGF) and tumor necrosis factor-α (TNF-α) levels in the human glioblastoma cell line U138-MG supernatant. Results: MiE administration did not affect the object recognition memory, but mangiferin did. The natural extract improved selectively the aversive memory in SCA-2 mice, indicating that MiE can affect behavioral parameters regarding fear-related memory. MiE also induced a significant increase in supernatant levels of NGF and TNF-α in vitro in human U138-MG glioblastoma cells. Conclusions: The results suggest that MiE enhances the aversive memory through a mechanism that might involve an increase in neurotrophin and cytokine levels. These findings constitute the basis for the use of the natural extract in the prevention/treatment of memory deficits in SCA-2

    Sub-micron level investigation reveals the inaccessibility of stabilized carbon in soil microaggregates

    Get PDF
    Abstract Direct evidence-based approaches are vital to evaluating newly proposed theories on the persistence of soil organic carbon and establishing the contributions of abiotic and biotic controls. Our primary goal was to directly identify the mechanisms of organic carbon stabilization in native-state, free soil microaggregates without disrupting the aggregate microstructure using scanning transmission x-ray microscopy coupled with near edge x-ray absorption fine structure spectroscopy (STXM-NEXAFS). The influence of soil management practices on microaggregate associated-carbon was also assessed. Free, stable soil microaggregates were collected from a tropical agro-ecosystem in Cruz Alta, Brazil. The long-term experimental plots (>25 years) comparing two tillage systems: no-till and till with a complex crop rotation. Based on simultaneously collected multi-elemental associations and speciation, STXM-NEXAFS successfully provided submicron level information on organo-mineral associations. Simple organic carbon sources were found preserved within microaggregates; some still possessing original morphology, suggesting that their stabilization was not entirely governed by the substrate chemistry. Bulk analysis showed higher and younger organic carbon in microaggregates from no-till systems than tilled systems. These results provide direct submicron level evidence that the surrounding environment is involved in stabilizing organic carbon, thus favoring newly proposed concepts on the persistence of soil organic carbon

    Non-DNA-binding platinum anticancer agents: Cytotoxic activities of platinum–phosphato complexes towards human ovarian cancer cells

    No full text
    DNA is believed to be the molecular target for the cytotoxic activities of platinum (Pt) anticancer drugs. We report here a class of platinum(II)- and platinum(IV)-pyrophosphato complexes that exhibit cytotoxicity comparable with and, in some cases, better than cisplatin in ovarian cell lines (A2780, A2780/C30, and CHO), yet they do not show any evidence of covalent binding to DNA. Moreover, some of these compounds are quite effective in cisplatin- and carboplatin-resistant cell line A2780/C30. The lack of DNA binding was demonstrated by the absence of a detectable Pt signal by atomic absorption spectroscopy using isolated DNA from human ovarian cells treated with a platinum(II)-pyrophosphato complex, (trans-1,2-cyclohexanediamine)(dihydrogen pyrophosphato) platinum(II), (pyrodach-2) and from NMR experiments using a variety of nucleotides including single- and double-stranded DNA. Furthermore, pyrodach-2 exhibited reduced cellular accumulations compared with cisplatin in cisplatin- and carboplatin-resistant human ovarian cells, yet the IC50 value for the pyrophosphato complex was much less than that of cisplatin. Moreover, unlike cisplatin, pyrodach-2 treated cells overexpressed fas and fas-related transcription factors and some proapoptotic genes such as Bak and Bax. Data presented in this report collectively indicate that pyrodach-2 follows different cytotoxic mechanisms than does cisplatin. Unlike cisplatin, pyrodach-2 does not undergo aquation during 1 week and is quite soluble and stable in aqueous solutions. Results presented in this article represent a clear paradigm shift not only in expanding the molecular targets for Pt anticancer drugs but also in strategic development for more effective anticancer drugs
    corecore