54 research outputs found

    Neuropathology of 16p13.11 deletion in epilepsy

    Get PDF
    16p13.11 genomic copy number variants are implicated in several neuropsychiatric disorders, such as schizophrenia, autism, mental retardation, ADHD and epilepsy. The mechanisms leading to the diverse clinical manifestations of deletions and duplications at this locus are unknown. Most studies favour NDE1 as the leading disease-causing candidate gene at 16p13.11. In epilepsy at least, the deletion does not appear to unmask recessive-acting mutations in NDE1, with haploinsufficiency and genetic modifiers being prime candidate disease mechanisms. NDE1 encodes a protein critical to cell positioning during cortical development. As a first step, it is important to determine whether 16p13.11 copy number change translates to detectable brain structural alteration. We undertook detailed neuropathology on surgically resected brain tissue of two patients with intractable mesial temporal lobe epilepsy (MTLE), who had the same heterozygous NDE1-containing 800 kb 16p13.11 deletion, using routine histological stains and immunohistochemical markers against a range of layer-specific, white matter, neural precursor and migratory cell proteins, and NDE1 itself. Surgical temporal lobectomy samples from a MTLE case known not to have a deletion in NDE1 and three non-epilepsy cases were included as disease controls. We found that apart from a 3 mm hamartia in the temporal cortex of one MTLE case with NDE1 deletion and known hippocampal sclerosis in the other case, cortical lamination and cytoarchitecture were normal, with no differences between cases with deletion and disease controls. How 16p13.11 copy changes lead to a variety of brain diseases remains unclear, but at least in epilepsy, it would not seem to be through structural abnormality or dyslamination as judged by microscopy or immunohistochemistry. The need to integrate additional data with genetic findings to determine their significance will become more pressing as genetic technologies generate increasingly rich datasets. Detailed examination of brain tissue, where available, will be an important part of this process in neurogenetic disease specifically

    Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: A postmortem study

    Get PDF
    Purpose Clinical, experimental, and neuroimaging data all indicate that the thalamus is involved in the network of changes associated with temporal lobe epilepsy (TLE), particularly in association with hippocampal sclerosis (HS), with potential roles in seizure initiation and propagation. Pathologic changes in the thalamus may be a result of an initial insult, ongoing seizures, or retrograde degeneration through reciprocal connections between thalamic and limbic regions. Our aim was to carry out a neuropathologic analysis of the thalamus in a postmortem (PM) epilepsy series, to assess the distribution, severity, and nature of pathologic changes and its association with HS. Methods Twenty-four epilepsy PM cases (age range 25-87 years) and eight controls (age range 38-85 years) were studied. HS was classified as unilateral (UHS, 11 cases), bilateral (BHS, 4 cases) or absent (No-HS, 9 cases). Samples from the left and right sides of the thalamus were stained with cresyl violet (CV), and for glial firbillary acidic protein (GFAP) and synaptophysin. Using image analysis, neuronal densities (NDs) or field fraction staining values (GFAP, synaptophysin) were measured in four thalamic nuclei: anteroventral nucleus (AV), lateral dorsal nucleus (LD), mediodorsal nucleus (MD), and ventrolateral nucleus (VL). The results were compared within and between cases. Key Findings The severity, nature, and distribution of thalamic pathology varied between cases. A pattern that emerged was a preferential involvement of the MD in UHS cases with a reduction in mean ND ipsilateral to the side of HS (p = 0.05). In UHS cases, greater field fraction values for GFAP and lower values for synaptophysin and ND were seen in the majority of cases in the MD ipsilateral to the side of sclerosis compared to other thalamic nuclei. In addition, differences in the mean ND between classical HS, atypical HS, and No-HS cases were noted in the ipsilateral MD (p < 0.05), with lower values observed in HS. Significance Our study demonstrates that stereotypical pathologic changes, as seen in HS, are not clearly defined in the thalamus. This may be partly explained by the heterogeneity of our PM study group. With quantitation, there is some evidence for preferential involvement of the MD, suggesting a potential role in TLE, which requires further investigation. Ā© Wiley Periodicals, Inc. Ā© 2013 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of the International League Against Epilepsy

    Variability of sclerosis along the longitudinal hippocampal axis in epilepsy: A post mortem study

    Get PDF
    Detailed neuropathological studies of the extent of hippocampal sclerosis (HS) in epilepsy along the longitudinal axis of the hippocampus are lacking. Neuroimaging studies of patients with temporal lobe epilepsy support that sclerosis is not always localised. The extent of HS is of relevance to surgical planning and poor outcomes may relate to residual HS in the posterior remnant. In 10 post mortems from patients with long histories of drug refractory epilepsy and 3 controls we systematically sampled the left and right hippocampus at seven coronal anatomical levels along the body to the tail. We quantified neuronal densities in CA1 and CA4 subfields at each level using Cresyl Violet (CV), calretinin (CR), calbindin (CB) and Neuropeptide Y (NPY) immunohistochemistry. In the dentate gyrus we graded the extent of granule cell dispersion, patterns of CB expression, and synaptic reorganisation with CR and NPY at each level. We identified four patterns of HS based on patterns of pyramidal and interneuronal loss and dentate gyrus reorganisation between sides and levels as follows: (1) symmetrical HS with anteriorā€“posterior (AP) gradient, (2) symmetrical HS without AP gradient, (3) asymmetrical HS with AP gradient and (4) asymmetrical cases without AP gradient. We confirmed in this series that HS can extend into the tail. The patterns of sclerosis (classical versus atypical or none) were consistent between all levels in less than a third of cases. In conclusion, this series highlights the variability of HS along the longitudinal axis. Further studies are required to identify factors that lead to focal versus diffuse HS

    A quantitative study of white matter hypomyelination and oligodendroglial maturation in focal cortical dysplasia type II.

    Get PDF
    A diagnostic feature of focal cortical dysplasia (FCD) type II on magnetic resonance imaging (MRI) is increased subcortical white matter (WM) signal on T2 sequences corresponding to hypomyelination, the cause of which is unknown. We aimed to quantify WM pathology in FCD type II and any deficiency in the numbers and differentiation of oligodendroglial (OL) cell types within the dysplasia

    Dravet syndrome as epileptic encephalopathy: Evidence from long-term course and neuropathology

    Get PDF
    Dravet syndrome is an epilepsy syndrome of infantile onset, frequently caused by SCN1A mutations or deletions. Its prevalence, long-term evolution in adults and neuropathology are not well known. We identified a series of 22 adult patients, including three adult post-mortem cases with Dravet syndrome. For all patients, we reviewed the clinical history, seizure types and frequency, antiepileptic drugs, cognitive, social and functional outcome and results of investigations. A systematic neuropathology study was performed, with post-mortem material from three adult cases with Dravet syndrome, in comparison with controls and a range of relevant paediatric tissue. Twenty-two adults with Dravet syndrome, 10 female, were included, median age 39 years (range 20ā€“66). SCN1A structural variation was found in 60% of the adult Dravet patients tested, including one post-mortem case with DNA extracted from brain tissue. Novel mutations were described for 11 adult patients; one patient had three SCN1A mutations. Features of Dravet syndrome in adulthood include multiple seizure types despite polytherapy, and age-dependent evolution in seizure semiology and electroencephalographic pattern. Fever sensitivity persisted through adulthood in 11 cases. Neurological decline occurred in adulthood with cognitive and motor deterioration. Dysphagia may develop in or after the fourth decade of life, leading to significant morbidity, or death. The correct diagnosis at an older age made an impact at several levels. Treatment changes improved seizure control even after years of drug resistance in all three cases with sufficient follow-up after drug changes were instituted; better control led to significant improvement in cognitive performance and quality of life in adulthood in two cases. There was no histopathological hallmark feature of Dravet syndrome in this series. Strikingly, there was remarkable preservation of neurons and interneurons in the neocortex and hippocampi of Dravet adult post-mortem cases. Our study provides evidence that Dravet syndrome is at least in part an epileptic encephalopathy

    Neuropathology of 16p13.11 Deletion in Epilepsy

    Get PDF
    16p13.11 genomic copy number variants are implicated in several neuropsychiatric disorders, such as schizophrenia, autism, mental retardation, ADHD and epilepsy. The mechanisms leading to the diverse clinical manifestations of deletions and duplications at this locus are unknown. Most studies favour NDE1 as the leading disease-causing candidate gene at 16p13.11. In epilepsy at least, the deletion does not appear to unmask recessive-acting mutations in NDE1, with haploinsufficiency and genetic modifiers being prime candidate disease mechanisms. NDE1 encodes a protein critical to cell positioning during cortical development. As a first step, it is important to determine whether 16p13.11 copy number change translates to detectable brain structural alteration. We undertook detailed neuropathology on surgically resected brain tissue of two patients with intractable mesial temporal lobe epilepsy (MTLE), who had the same heterozygous NDE1-containing 800 kb 16p13.11 deletion, using routine histological stains and immunohistochemical markers against a range of layer-specific, white matter, neural precursor and migratory cell proteins, and NDE1 itself. Surgical temporal lobectomy samples from a MTLE case known not to have a deletion in NDE1 and three non-epilepsy cases were included as disease controls. We found that apart from a 3 mm hamartia in the temporal cortex of one MTLE case with NDE1 deletion and known hippocampal sclerosis in the other case, cortical lamination and cytoarchitecture were normal, with no differences between cases with deletion and disease controls. How 16p13.11 copy changes lead to a variety of brain diseases remains unclear, but at least in epilepsy, it would not seem to be through structural abnormality or dyslamination as judged by microscopy or immunohistochemistry. The need to integrate additional data with genetic findings to determine their significance will become more pressing as genetic technologies generate increasingly rich datasets. Detailed examination of brain tissue, where available, will be an important part of this process in neurogenetic disease specifically

    Uncovering genomic causes of co-morbidity in epilepsy: Gene-driven phenotypic characterization of rare microdeletions

    Get PDF
    Background Patients with epilepsy often suffer from other important conditions. The existence of such co-morbidities is frequently not recognized and their relationship with epilepsy usually remains unexplained. Methodology/Principal Findings We describe three patients with common, sporadic, non-syndromic epilepsies in whom large genomic microdeletions were found during a study of genetic susceptibility to epilepsy. We performed detailed gene-driven clinical investigations in each patient. Disruption of the function of genes in the deleted regions can explain co-morbidities in these patients. Conclusions/Significance Co-morbidities in patients with epilepsy can be part of a genomic abnormality even in the absence of (known) congenital malformations or intellectual disabilities. Gene-driven phenotype examination can also reveal clinically significant unsuspected condition

    The application of cortical layer markers in the evaluation of cortical dysplasias in epilepsy

    Get PDF
    The diagnostic criteria for focal cortical dysplasia type I (FCD I) remain to be well and consistently defined. Cortical layer-specific markers (CLM) provide a potential tool for the objective assessment of any dyslamination. We studied expression patterns of recognised CLM using immunohistochemistry for N200, ER81, Otx1, Map1b (subsets of V/VI projection neurones), Pax6, Tbr1, Tbr2 (differentially expressed in cortical neurones from intermediate progenitor cells), Cux 1 (outer cortical layers) and MASH1 (ventricular zone progenitors). Dysplasia subtypes included FCD I and II, dysplasias adjacent to hippocampal sclerosis (HS) or dysembryoplastic neuroepithelial tumours (DNTs); all were compared to neonatal and adult controls. Laminar expression patterns in normal cortex were observed with Tbr1, Map1b, N200 and Otx1. FCDI cases in younger patients were characterised by abnormal expression in layer II for Tbr1 and Otx1. FCDII showed distinct labelling of balloon cells (Pax6, ER81 and Otx1) and dysmorphic neurones (Tbr 1, N200 and Map1b) supporting origins from radial glia and intermediate progenitor cells, respectively. In temporal lobe sclerosis cases with dysplasia adjacent to HS, Tbr1 and Map1b highlighted abnormal orientation of neurones in layer II. Dyslamination was not confirmed in the perilesional cortex of DNT with CLM. Finally, immature cell types (Otx1, Pax6 and Tbr2) were noted in varied pathologies. One possibility is activation of progenitor cell populations which could contribute to the pathophysiology of these lesions

    Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology

    Get PDF
    Dravet syndrome is an epilepsy syndrome of infantile onset, frequently caused by SCN1A mutations or deletions. Its prevalence, long-term evolution in adults and neuropathology are not well known. We identified a series of 22 adult patients, including three adult post-mortem cases with Dravet syndrome. For all patients, we reviewed the clinical history, seizure types and frequency, antiepileptic drugs, cognitive, social and functional outcome and results of investigations. A systematic neuropathology study was performed, with post-mortem material from three adult cases with Dravet syndrome, in comparison with controls and a range of relevant paediatric tissue. Twenty-two adults with Dravet syndrome, 10 female, were included, median age 39 years (range 20ā€“66). SCN1A structural variation was found in 60% of the adult Dravet patients tested, including one post-mortem case with DNA extracted from brain tissue. Novel mutations were described for 11 adult patients; one patient had three SCN1A mutations. Features of Dravet syndrome in adulthood include multiple seizure types despite polytherapy, and age-dependent evolution in seizure semiology and electroencephalographic pattern. Fever sensitivity persisted through adulthood in 11 cases. Neurological decline occurred in adulthood with cognitive and motor deterioration. Dysphagia may develop in or after the fourth decade of life, leading to significant morbidity, or death. The correct diagnosis at an older age made an impact at several levels. Treatment changes improved seizure control even after years of drug resistance in all three cases with sufficient follow-up after drug changes were instituted; better control led to significant improvement in cognitive performance and quality of life in adulthood in two cases. There was no histopathological hallmark feature of Dravet syndrome in this series. Strikingly, there was remarkable preservation of neurons and interneurons in the neocortex and hippocampi of Dravet adult post-mortem cases. Our study provides evidence that Dravet syndrome is at least in part an epileptic encephalopathy
    • ā€¦
    corecore