17 research outputs found

    Sodium Selenide Toxicity Is Mediated by O2-Dependent DNA Breaks

    Get PDF
    Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H2Se/HSe−/Se2−). Among the genes whose deletion caused hypresensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The ‱OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O2-dependent radical-based mechanism

    The Effect of Selenium Supplementation in the Prevention of DNA Damage in White Blood Cells of Hemodialyzed Patients: A Pilot Study

    Get PDF
    Patients with chronic kidney disease (CKD) have an increased incidence of cancer. It is well known that long periods of hemodialysis (HD) treatment are linked to DNA damage due to oxidative stress. In this study, we examined the effect of selenium (Se) supplementation to CKD patients on HD on the prevention of oxidative DNA damage in white blood cells. Blood samples were drawn from 42 CKD patients on HD (at the beginning of the study and after 1 and 3 months) and from 30 healthy controls. Twenty-two patients were supplemented with 200 Όg Se (as Se-rich yeast) per day and 20 with placebo (baker's yeast) for 3 months. Se concentration in plasma and DNA damage in white blood cells expressed as the tail moment, including single-strand breaks (SSB) and oxidative bases lesion in DNA, using formamidopyrimidine glycosylase (FPG), were measured. Se concentration in patients was significantly lower than in healthy subjects (P < 0.0001) and increased significantly after 3 months of Se supplementation (P < 0.0001). Tail moment (SSB) in patients before the study was three times higher than in healthy subjects (P < 0.01). After 3 months of Se supplementation, it decreased significantly (P < 0.01) and was about 16% lower than in healthy subjects. The oxidative bases lesion in DNA (tail moment, FPG) of HD patients at the beginning of the study was significantly higher (P < 0.01) compared with controls, and 3 months after Se supplementation it was 2.6 times lower than in controls (P < 0.01). No changes in tail moment was observed in the placebo group. In conclusion, our study shows that in CKD patients on HD, DNA damage in white blood cells is higher than in healthy controls, and Se supplementation prevents the damage of DNA

    Biological functions of selenium and its potential influence on Parkinson's disease

    Full text link

    Contribution of the Yeast Saccharomyces cerevisiae Model to Understand the Mechanisms of Selenium Toxicity

    No full text
    International audienceSelenium (Se) is an essential trace element for mammals. It is involved in redox functions as the amino acid selenocysteine, translationally inserted in the active site of a few proteins. However, at high doses it is toxic and the mechanisms underlying this toxicity are poorly understood. Because of the high level of conservation of its genes and pathways with those of higher organisms and the powerful genetic techniques that it offers, Saccharomyces cerevisiae is an attractive model organism to study the molecular basis of Se toxicity. High-throughput technologies developed in this yeast include genome-wide screening of bar-coded systematic deletion sets, as well as whole-transcriptome, -proteome, and -metabolome analysis.This chapter focuses on the contribution of S. cerevisiae to the understanding of the mechanisms of selenocompound toxicity, combining results from classical biochemistry with genome-wide analyses and more detailed gene-by-gene approaches. Experimental data demonstrate that toxicity is compound specific. Inorganic Se induces DNA damage whereas selenoamino acids cause proteotoxicity
    corecore