562 research outputs found

    Three-dimensional flow instability in a lid-driven isosceles triangular cavity

    Get PDF
    Linear three-dimensional modal instability of steady laminar two-dimensional states developing in a lid-driven cavity of isosceles triangular cross-section is investigated theoretically and experimentally for the case in which the equal sides form a rectangular corner. An asymmetric steady two-dimensional motion is driven by the steady motion of one of the equal sides. If the side moves away from the rectangular corner, a stationary three-dimensional instability is found. If the motion is directed towards the corner, the instability is oscillatory. The respective critical Reynolds numbers are identified both theoretically and experimentally. The neutral curves pertinent to the two configurations and the properties of the respective leading eigenmodes are documented and analogies to instabilities in rectangular lid-driven cavities are discussed

    Femtosecond laser impact on calcium phosphate bioceramics assessed by micro-Raman spectroscopy and osteoblastic behaviour

    Get PDF
    The present work is an investigation of the biological response to the presence of grooves 3 µm deep, 15 µm wide and spaced by 100 µm, produced with femtosecond laser on ß-tricalcium phosphate (ß-TCP). The heat affected zone generated by the laser irradiation was investigated. Micro-Raman spectroscopy showed a transformation from ß-TCP phase into a-TCP phase, localised inside the grooves. The X Ray Diffraction analyses, correlated with micro-Raman data, confirmed that the use of femtosecond pulsed laser enables to limit the thermal impact. A selection of optimised process parameters allowed to obtain ß-TCP micro-patterned surfaces avoiding any phase transformation. The increase of the wettability with the micro-patterning, compared to smooth surfaces, was highlighted. An improvement of the osteoblastic proliferation was also demonstrated. Finally, the tendency of cell elongation along the grooves direction showed the ability of osteoblastic cells to adapt their morphology to the support topography on which they grow.The authors are grateful to the JECS Trust for funding the visit of Marie Lasgorceix to the Laboratory INEB (Contract N°2015106). Marie Lasgorceix also acknowledges the Walloon Region for financial support, within the “BEWARE” program (convention n°1510392) co-funded by Wallonia and European Union (FP7 – Marie Curie Actions) . The authors are grateful to Dr Sylvain Desprez (Materia Nova, Mons, Belgium) for micro-Raman analyses. This publication is based on the work of COST Action MP1301, funded by COST (European Cooperation in Science and Technology) www.cost.eu

    MoO3/CuI hybrid buffer layer for the optimization of organic solar cells based on a donor-acceptor triphenylamine

    Get PDF
    We investigate the effect of anode buffer layers (ABLs) on the performances of multi-layer heterojunction solar cells with thienylenevinylene-triphenylamine with peripheral dicyanovinylene groups (TDCV-TPA) as donor material and fullerene C-60 as acceptor. The deposition of a CuI layer between the ITO anode and the electron donor significantly improves the short-circuit current density (J(sc)) and fill factor (FF) but reduces the open-circuit voltage (V-oc). On the other hand, a MoO3 buffer layer increases the V-oc but leads to limited J(sc) and FF values, thus reducing power conversion efficiency (PCE). In this context, we show that the use of a hybrid anode buffer layer MoO3/CuI leads to a considerable improvement of the cells performances and a PCE of 2.50% has been achieved. These results are discussed on the basis of the dual function of MoO3 and CuI. While both of them reduce the hole injection barrier, CuI improves the conductivity of the organic film through an improvement of molecular order while MoO3 prevents leakage current through the diode. Finally the results of a cursory study of the ageing process provide further support to this interpretation of the effects of the various buffer layers. (C) 2012 Elsevier B.V. All rights reserved

    One step synthesis of D-A-D chromophores as active materials for organic solar cells by basic condensation

    Get PDF
    Donor-Acceptor-Donor conjugated systems are synthesized in good yield by double condensation of aromatic aldehydes of triarylamines with 2,3-diaminomaleonitrile under microwave activation with trifluoroacetic acid as catalyst. The electronic properties of the compounds are investigated and discussed and a first evaluation of their potential as donor material in organic photovoltaic cells is presented

    Exciton enhanced dye sensitized solar cells

    Get PDF
    Date du colloque&nbsp;: 05/2009</p

    Surface structuring of β-TCP and transition to α-TCP induced by femtosecond laser processing

    Get PDF
    Tricalcium phosphate (Ca3(PO4)2, TCP), is one of the most studied and used as material for bioresorbable implants. The β phase has a slower dissolution dynamic and ensures mechanical support for a longer time in biological environment, while a faster release of ions characterize the α phase that trigger a stronger biological response. In this work a femtosecond laser system was used to process β-TCP pellets surface. The femtosecond laser processing results in surface morphology modification, by turning the flat mirror polished surface into a rough and opaque one. The morphological and phisycochemical characteristics of material surface were studied by means of SEM, AFM, Raman, XRD and contact angle measurement. The processed surface showed the formation of micro and nano roughness alongside, furthermore a partial phase transformation from β-TCP to α-TCP was detected. A significant improvement in surface wettability for three different liquids (i.e.water, ethylene glycol and diiodo-methane) is reported. This implies an increase in surface free energy as well. The combination of α and β phase, together with the increased roughness obtained by laser processing, could positively affect the cell adhesion and metabolic activity

    Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Get PDF
    This paper discusses the influence of primary biological aerosols (PBA) on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere

    PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    Full text link
    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project which will aim at characterizing one of these foreground sources, the polarization of the dust continuum emission in the diffuse interstellar medium. The PILOT experiment will also constitute a test-bed for using multiplexed bolometer arrays for polarization measurements. We present the results of ground tests obtained just before the first flight of the instrument.Comment: 17 pages, 13 figures. Presented at SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be published in Proc. SPIE volume 915
    corecore