226 research outputs found

    The Role of Carbonate Factories and Sea Water Chemistry on Basin-Wide Ramp to High-Relief Carbonate Platform Evolution: Triassic, Nanpanjiang Basin, South China

    Get PDF
    The end-Permian extinction and its aftermath altered carbonate factories globally for millions of years, but its impact on platform geometries remains poorly understood. Here, the evolution in architecture and composition of two exceptionally exposed platforms in the Nanpanjiang Basin are constrained and compared with geochemical proxies to evaluate controls on platform geometries. Geochemical proxies indicate elevated siliciclastic and nutrient fluxes in the basal Triassic, at the Induan—Olenekian boundary and in the uppermost Olenekian. Cerium/Ce* shifts from high Ce/Ce* values and a lack of Ce anomaly indicating anoxia during the Lower Triassic to a negative Ce anomaly indicating oxygenation in the latest Olenekian and Anisian. Uranium and Mo depletion represents widespread anoxia in the world\u27s oceans in the Early Triassic with progressive oxygenation in the Anisian. Carbonate factories shifted from skeletal in the Late Permian to abiotic and microbial in the Early Triassic before returning to skeletal systems in the Middle Triassic, Anisian coincident with declining anoxia. Margin facies shifted to oolitic grainstone in the Early Triassic with development of giant ooids and extensive marine cements. Anisian margins, in contrast, are boundstone with a diverse skeletal component. The shift in platform architecture from ramp to steep, high-relief, flat-topped profiles is decoupled from carbonate compositions having occurred in the Olenekian prior to the onset of basin oxygenation and biotic stabilisation of the margins. A basin-wide synchronous shift from ramp to high-relief platforms points to a combination of high subsidence rate and basin starvation coupled with high rates of abiotic and microbial carbonate accumulation and marine cement stabilisation of oolitic margins as the primary causes for margin up-building. High sea water carbonate saturation resulting from a lack of skeletal sinks for precipitation, and basin anoxia promoting an expanded depth of carbonate supersaturation, probably contributed to marine cement stabilisation of margins that stimulated the shift from ramp to high-relief platform architecture

    Proliferation of \u3cem\u3eChondrodonta\u3c/em\u3e as a Proxy of Environmental Instability at the Onset of OAE1a: Insights from Shallow-Water Limestones of the Apulia Carbonate Platform

    Get PDF
    Chondrodonta is an opportunistic, oyster-like bivalve, common in shallow-water carbonates of the Cretaceous Tethyan Realm. Despite its high abundance and widespread geographic distribution, the precise relationship between the early Aptian proliferation and environmental perturbations resulting from the Oceanic Anoxic Event 1a (OAE1a), has not been investigated. Stratigraphic and geochemical analyses of the lower Aptian Chondrodonta bedsets within the inner platform limestones of the Apulia Carbonate Platform (Gargano Promontory, southern Italy) are conducted to assess the environmental controls on the Chondrodonta proliferation and its timing and causal relationship to OAE1a. Chondrodonta occurs with sparse to common individuals within requieniid rudist floatstone–rudstones, forms monospecific biostromes during the early phase of stressed environmental conditions and then rapidly disappears at the peak of OAE1a. It proliferates in dysoxic seawater with relatively increased trophic sources, which correlate to increasing nutrient levels in the nearby pelagic realm. Chondrodonta-rich beds are associated worldwide with the onset of OAE1a and occur in a transitional context between a stable and a strongly stressed environment, where the opportunistic behaviour of Chondrodonta is rather efficient. Increasing nutrient load and unstable environmental conditions right below the peak of OAE1a created an environmental ‘window’ favourable for Chondrodonta to proliferate, outplaying the less tolerant benthos (for example, rudists). The occurrence, duration and position of the environmental window were controlled by local palaeogeographic and hydrodynamic settings (i.e. low energy, decreased seawater oxygenation and circulation). Further increase in inhospitable conditions, leading to OAE1a, constituted an upper threshold for Chondrodonta and allowed mesotrophic taxa like Bacinella–Lithocodium and orbitolinids to dominate the benthic communities. The present study suggests that the proliferation of Chondrodonta in shallow-water platform carbonates can be used as proxy for the initial phase of ecological stress related to OAE1a

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work

    P2X receptors: epithelial ion channels and regulators of salt and water transport.

    Get PDF
    When the results from electrophysiological studies of renal epithelial cells are combined with data from in vivo tubule microperfusion experiments and immunohistochemical surveys of the nephron, the accumulated evidence suggests that ATP-gated ion channels, P2X receptors, play a specialized role in the regulation of ion and water movement across the renal tubule and are integral to electrolyte and fluid homeostasis. In this short review, we discuss the concept of P2X receptors as regulators of salt and water salvage pathways, as well as acknowledging their accepted role as ATP-gated ion channels

    Strategies to build a positive and inclusive Antarctic field work environment

    Get PDF
    Support from National Science Foundation (NSF: Grants 1738913, 1738896, 1738942, 1738992, 1738896, 1738934) and Natural Environment Research Council (NERC: Grants NE/S006788/1, NE/S006605/1, NE/S00677X/1). This research was supported in part by the NOAA cooperative agreement NA17OAR4320101. Logistics provided by NSF-U.S. Antarctic Program and NERC-British Antarctic Survey. ITGC Contribution No. ITGC-084.To increase inclusivity, diversity, equity and accessibility in Antarctic science, we must build more positive and inclusive Antarctic field work environments. The International Thwaites Glacier Collaboration (ITGC) has engaged in efforts to contribute to that goal through a variety of activities since 2018, including creating an open-access 'Field and Ship Best Practices' guide, engaging in pre-field season team dynamics meetings, and surveying post-field season reflections and experiences. We report specific actions taken by ITGC and their outcomes. We found that strong and supported early career researchers brought new and important perspectives regarding strategies for transforming culture. We discovered that engaged and involved senior leadership was also critical for expanding participation and securing funding to support efforts. Pre-field discussions involving all field team members were particularly helpful for setting expectations, improving sense of belonging, describing field work best practices, and co-creating a positive work culture.Publisher PDFPeer reviewe

    Sedimentary Signatures of Persistent Subglacial Meltwater Drainage From Thwaites Glacier, Antarctica

    Get PDF
    Subglacial meltwater drainage can enhance localized melting along grounding zones and beneath the ice shelves of marine-terminating glaciers. Efforts to constrain the evolution of subglacial hydrology and the resulting influence on ice stability in space and on decadal to millennial timescales are lacking. Here, we apply sedimentological, geochemical, and statistical methods to analyze sediment cores recovered offshore Thwaites Glacier, West Antarctica to reconstruct meltwater drainage activity through the pre-satellite era. We find evidence for a long-lived subglacial hydrologic system beneath Thwaites Glacier and indications that meltwater plumes are the primary mechanism of sedimentation seaward of the glacier today. Detailed core stratigraphy revealed through computed tomography scanning captures variability in drainage styles and suggests greater magnitudes of sediment-laden meltwater have been delivered to the ocean in recent centuries compared to the past several thousand years. Fundamental similarities between meltwater plume deposits offshore Thwaites Glacier and those described in association with other Antarctic glacial systems imply widespread and similar subglacial hydrologic processes that occur independently of subglacial geology. In the context of Holocene changes to the Thwaites Glacier margin, it is likely that subglacial drainage enhanced submarine melt along the grounding zone and amplified ice-shelf melt driven by oceanic processes, consistent with observations of other West Antarctic glaciers today. This study highlights the necessity of accounting for the influence of subglacial hydrology on grounding-zone and ice-shelf melt in projections of future behavior of the Thwaites Glacier ice margin and marine-based glaciers around the Antarctic continent

    SRT1720 improves survival and healthspan of obese mice

    Get PDF
    Sirt1 is an NAD+-dependent deacetylase that extends lifespan in lower organisms and improves metabolism and delays the onset of age-related diseases in mammals. Here we show that SRT1720, a synthetic compound that was identified for its ability to activate Sirt1 in vitro, extends both mean and maximum lifespan of adult mice fed a high-fat diet. This lifespan extension is accompanied by health benefits including reduced liver steatosis, increased insulin sensitivity, enhanced locomotor activity and normalization of gene expression profiles and markers of inflammation and apoptosis, all in the absence of any observable toxicity. Using a conditional SIRT1 knockout mouse and specific gene knockdowns we show SRT1720 affects mitochondrial respiration in a Sirt1- and PGC-1α-dependent manner. These findings indicate that SRT1720 has long-term benefits and demonstrate for the first time the feasibility of designing novel molecules that are safe and effective in promoting longevity and preventing multiple age-related diseases in mammals
    corecore