376 research outputs found

    Nonlinear lensing mechanisms in a cloud of cold atoms

    Get PDF
    We present an experimental study of nonlinear lensing of near-resonant light by a cloud of laser-cooled rubidium atoms, specifically aimed at understanding the role of the interaction time between the light and the atomic vapor. We identify four different nonlinear mechanisms, each associated with a different time constant: electronic nonlinearity, Zeeman optical pumping, hyperfine optical pumping and radiation pressure. Our observations can be quite accurately reproduced using a simple rate equation model which allows for a straightforward discussion of the various effects. The results are important for planning more refined experiments on transverse nonlinear optics and self-organization in samples of cold atoms

    Large Faraday rotation of resonant light in a cold atomic cloud

    Get PDF
    We experimentally studied the Faraday rotation of resonant light in an optically-thick cloud of laser-cooled rubidium atoms. Measurements yield a large Verdet constant in the range of 200 000 degrees/T/mm and a maximal polarization rotation of 150 degrees. A complete analysis of the polarization state of the transmitted light was necessary to account for the role of the probe laser's spectrum

    Speckle Statistics in Adaptively Corrected Images

    Full text link
    (abridged) Imaging observations are generally affected by a fluctuating background of speckles, a particular problem when detecting faint stellar companions at small angular separations. Knowing the distribution of the speckle intensities at a given location in the image plane is important for understanding the noise limits of companion detection. The speckle noise limit in a long-exposure image is characterized by the intensity variance and the speckle lifetime. In this paper we address the former quantity through the distribution function of speckle intensity. Previous theoretical work has predicted a form for this distribution function at a single location in the image plane. We developed a fast readout mode to take short exposures of stellar images corrected by adaptive optics at the ground-based UCO/Lick Observatory, with integration times of 5 ms and a time between successive frames of 14.5 ms (λ=2.2\lambda=2.2 μ\mum). These observations temporally oversample and spatially Nyquist sample the observed speckle patterns. We show, for various locations in the image plane, the observed distribution of speckle intensities is consistent with the predicted form. Additionally, we demonstrate a method by which IcI_c and IsI_s can be mapped over the image plane. As the quantity IcI_c is proportional to the PSF of the telescope free of random atmospheric aberrations, this method can be used for PSF calibration and reconstruction.Comment: 7 pages, 4 figures, ApJ accepte

    Microlensing and the Search for Extraterrestrial Life

    Get PDF
    Are microlensing searches likely to discover planets that harbor life? Given our present state of knowledge, this is a difficult question to answer. We therefore begin by asking a more narrowly focused question: are conditions on planets discovered via microlensing likely to be similar to those we experience on Earth? In this paper I link the microlensing observations to the well-known "Goldilocks Problem" (conditions on the Earth-like planets need to be "just right"), to find that Earth-like planets discovered via microlensing are likely to be orbiting stars more luminous than the sun. This means that light from the planetary system's central star may contribute a significant fraction of the baseline flux relative to the star that is lensed. Such blending of light from the lens with light from the lensed source can, in principle, limit our ability to detect these events. This turns out not to be a significant problem, however. A second consequence of blending is the opportunity to determine the spectral type of the lensed spectral type of the lensed star. This circumstance, plus the possibility that finite-source-size effects are important, implies that some meaningful follow-up observations are likely to be possible for a subset Earth-like planets discovered via microlensing. In addition, calculations indicate that reasonable requirements on the planet's density and surface gravity imply that the mass of Earth-like planets is likely to be within a factor of 15\sim 15 of an Earth mass.Comment: 15 pages, 2 figures. To be published in the Astrophysical Journa

    First experimental demonstration of temporal hypertelescope operation with a laboratory prototype

    Full text link
    In this paper, we report the first experimental demonstration of a Temporal HyperTelescope (THT). Our breadboard including 8 telescopes is firstly tested in a manual cophasing configuration on a 1D object. The Point Spread Function (PSF) is measured and exhibits a dynamics in the range of 300. A quantitative analysis of the potential biases demonstrates that this limitation is related to the residual phase fluctuation on each interferometric arm. Secondly, an unbalanced binary star is imaged demonstrating the imaging capability of THT. In addition, 2D PSF is recorded even if the telescope array is not optimized for this purpose.Comment: Accepted for publication in MNRAS. 11 pages, 25 figure

    Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach

    Get PDF
    International audienceWe present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquad-rina pachyderma, Neogloboquadrina incompta, Neoglobo-quadrina dutertrei, Globigerina bulloides, Globigeri-noides ruber, Globigerinoides sacculifer, Globigerinella si-phonifera and Orbulina universa). By using the main physiological rates of foraminifers (nutrition, respiration, symbi-otic photosynthesis), this model estimates their growth as a function of temperature, light availability, and food concentration. Model parameters are directly derived or calibrated from experimental observations and only the influence of food concentration (estimated via Chlorophyll-a concentration) was calibrated against field observations. Growth rates estimated from the model show positive correlation with observed abundance from plankton net data suggesting close coupling between individual growth and population abundance. This observation was used to directly estimate potential abundance from the model-derived growth. Using satellite data, the model simulate the dominant foraminifer species with a 70.5% efficiency when compared to a data set of 576 field observations worldwide. Using outputs of a biogeochemical model of the global ocean (PISCES) instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%). Compared to core tops observations, the model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when using either satellite data either PISCES results. This model allows prediction of the season and water depth at which each species has its maximum abundance potential. This offers promising perspectives for both an improved quantification of paleoceanographic reconstructions and for a better understanding of the foraminiferal role in the marine carbon cycle

    A New Channel for the Detection of Planetary Systems Through Microlensing: I. Isolated Events Due to Planet Lenses

    Get PDF
    We propose and evaluate the feasibility of a new strategy to search for planets via microlensing. This new strategy is designed to detect planets in "wide" orbits, i.e., with orbital separation, aa greater than 1.5RE\sim 1.5 R_E. Planets in wide orbits may provide the dominant channel for the microlensing discovery of planets, particularly low-mass (e.g., Earth-mass) planets. This paper concentrates on events in which a single planet serves as a lens, leading to an isolated event of short duration. We point out that a distribution of events due to lensing by stars with wide-orbit planets is necessarily accompanied by a distribution of shorter- duration events. The fraction of events in the latter distribution is proportional to the average value of q\sqrt{q}, where qq is the ratio between \pl and stellar masses. The position of the peak or peaks also provides a measure of the mass ratios typical of planetary systems. We study detection strategies that can optimize our ability to discover isolated short-duration events due to lensing by planets, and find that monitoring employing sensitive photometry is particularly useful. If planetary systems similar to our own are common, even modest changes in detection strategy should lead to the discovery of a few isolated events of short duration every year. We therefore also address the issue of the contamination due to stellar populations of any microlensing signal due to low-mass MACHOs. We describe how, even for isolated events of short duration, it will be possible to test the hypothesis that the lens was a planet instead of a low-mass MACHO, if the central star of the planetary system contributes a measurable fraction of the baseline flux.Comment: 37 pages, 6 figure. To be published in the Astrophysical Journal. This is part one of a series of papers on microlensing by planetary systems containing wide-orbit planets; the series represents a reorganization and extension of astro-ph/971101

    Hanle effect in coherent backscattering

    Get PDF
    We study the shape of the coherent backscattering (CBS) cone obtained when resonant light illuminates a thick cloud of laser-cooled rubidium atoms in presence of a homogenous magnetic field. We observe new magnetic field-dependent anisotropies in the CBS signal. We show that the observed behavior is due to the modification of the atomic radiation pattern by the magnetic field (Hanle effect in the excited state).Comment: 4 pages, 3 figure
    corecore