445 research outputs found
Nonlinear lensing mechanisms in a cloud of cold atoms
We present an experimental study of nonlinear lensing of near-resonant light by a cloud of laser-cooled rubidium atoms, specifically aimed at understanding the role of the interaction time between the light and the atomic vapor. We identify four different nonlinear mechanisms, each associated with a different time constant: electronic nonlinearity, Zeeman optical pumping, hyperfine optical pumping and radiation pressure. Our observations can be quite accurately reproduced using a simple rate equation model which allows for a straightforward discussion of the various effects. The results are important for planning more refined experiments on transverse nonlinear optics and self-organization in samples of cold atoms
First images on the sky from a hyper telescope
We show star images obtained with a miniature ``densified pupil imaging
interferometer'' also called a hyper-telescope. The formation of such images
violates a ``golden rule of imaging interferometers'' which appeared to forbid
the use of interferometric arrangements differing from a Fizeau interferometer.
These produce useless images when the sub-apertures spacing is much wider than
their size, owing to diffraction through the sub-apertures. The hyper-telescope
arrangement solves these problems opening the way towards multi-kilometer
imaging arrays in space. We experimentally obtain an intensity gain of 24 +- 3X
when a densified-pupil interferometer is compared to an equivalent Fizeau-type
interferometer and show images of the double star alpha Gem. The initial
results presented confirm the possibility of directly obtaining high resolution
and high dynamic range images in the recombined focal plane of a large
interferometer if enough elements are used.Comment: 6 pages, LaTeX, standard A&A macros + BibTeX macros. Accepted for
publication in Astronomy and Astrophysics Supplement
Large Faraday rotation of resonant light in a cold atomic cloud
We experimentally studied the Faraday rotation of resonant light in an
optically-thick cloud of laser-cooled rubidium atoms. Measurements yield a
large Verdet constant in the range of 200 000 degrees/T/mm and a maximal
polarization rotation of 150 degrees. A complete analysis of the polarization
state of the transmitted light was necessary to account for the role of the
probe laser's spectrum
Speckle Statistics in Adaptively Corrected Images
(abridged) Imaging observations are generally affected by a fluctuating
background of speckles, a particular problem when detecting faint stellar
companions at small angular separations. Knowing the distribution of the
speckle intensities at a given location in the image plane is important for
understanding the noise limits of companion detection. The speckle noise limit
in a long-exposure image is characterized by the intensity variance and the
speckle lifetime. In this paper we address the former quantity through the
distribution function of speckle intensity. Previous theoretical work has
predicted a form for this distribution function at a single location in the
image plane. We developed a fast readout mode to take short exposures of
stellar images corrected by adaptive optics at the ground-based UCO/Lick
Observatory, with integration times of 5 ms and a time between successive
frames of 14.5 ms ( m). These observations temporally
oversample and spatially Nyquist sample the observed speckle patterns. We show,
for various locations in the image plane, the observed distribution of speckle
intensities is consistent with the predicted form. Additionally, we demonstrate
a method by which and can be mapped over the image plane. As the
quantity is proportional to the PSF of the telescope free of random
atmospheric aberrations, this method can be used for PSF calibration and
reconstruction.Comment: 7 pages, 4 figures, ApJ accepte
Microlensing and the Search for Extraterrestrial Life
Are microlensing searches likely to discover planets that harbor life? Given
our present state of knowledge, this is a difficult question to answer. We
therefore begin by asking a more narrowly focused question: are conditions on
planets discovered via microlensing likely to be similar to those we experience
on Earth? In this paper I link the microlensing observations to the well-known
"Goldilocks Problem" (conditions on the Earth-like planets need to be "just
right"), to find that Earth-like planets discovered via microlensing are likely
to be orbiting stars more luminous than the sun. This means that light from the
planetary system's central star may contribute a significant fraction of the
baseline flux relative to the star that is lensed. Such blending of light from
the lens with light from the lensed source can, in principle, limit our ability
to detect these events. This turns out not to be a significant problem,
however. A second consequence of blending is the opportunity to determine the
spectral type of the lensed spectral type of the lensed star. This
circumstance, plus the possibility that finite-source-size effects are
important, implies that some meaningful follow-up observations are likely to be
possible for a subset Earth-like planets discovered via microlensing. In
addition, calculations indicate that reasonable requirements on the planet's
density and surface gravity imply that the mass of Earth-like planets is likely
to be within a factor of of an Earth mass.Comment: 15 pages, 2 figures. To be published in the Astrophysical Journa
Optical pattern formation with a 2-level nonlinearity
We present an experimental and theoretical investigation of spontaneous
pattern formation in the transverse section of a single retro-reflected laser
beam passing through a cloud of cold Rubidium atoms. In contrast to previously
investigated systems, the nonlinearity at work here is that of a 2-level atom,
which realizes the paradigmatic situation considered in many theoretical
studies of optical pattern formation. In particular, we are able to observe the
disappearance of the patterns at high intensity due to the intrinsic saturable
character of 2-level atomic transitions.Comment: 5 pages, 4 figure
First experimental demonstration of temporal hypertelescope operation with a laboratory prototype
In this paper, we report the first experimental demonstration of a Temporal
HyperTelescope (THT). Our breadboard including 8 telescopes is firstly tested
in a manual cophasing configuration on a 1D object. The Point Spread Function
(PSF) is measured and exhibits a dynamics in the range of 300. A quantitative
analysis of the potential biases demonstrates that this limitation is related
to the residual phase fluctuation on each interferometric arm. Secondly, an
unbalanced binary star is imaged demonstrating the imaging capability of THT.
In addition, 2D PSF is recorded even if the telescope array is not optimized
for this purpose.Comment: Accepted for publication in MNRAS. 11 pages, 25 figure
Detection of faint companions through stochastic speckle discrimination
We propose a new post-processing technique for the detection of faint
companions from a sequence of adaptive optics corrected short exposures. The
algorithm exploits the difference in shape between the on-axis and off-axis
irradiance distributions and it does not require the signal to be above the
noise level. We show that the method is particularly useful in dealing with
static speckles. Its application to real and simulated data gives excellent
results in the low-signal regime where it outperforms the standard approach of
computing signal-to-noise ratio on one long exposure. We also show that
accurate noise estimation in adaptive optics images of close companions is
rendered impossible due to the presence of static speckles. This new method
provides means of reliable estimation of the confidence intervals for the
detection hypothesis.Comment: accepted for publication in Ap
Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach
International audienceWe present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquad-rina pachyderma, Neogloboquadrina incompta, Neoglobo-quadrina dutertrei, Globigerina bulloides, Globigeri-noides ruber, Globigerinoides sacculifer, Globigerinella si-phonifera and Orbulina universa). By using the main physiological rates of foraminifers (nutrition, respiration, symbi-otic photosynthesis), this model estimates their growth as a function of temperature, light availability, and food concentration. Model parameters are directly derived or calibrated from experimental observations and only the influence of food concentration (estimated via Chlorophyll-a concentration) was calibrated against field observations. Growth rates estimated from the model show positive correlation with observed abundance from plankton net data suggesting close coupling between individual growth and population abundance. This observation was used to directly estimate potential abundance from the model-derived growth. Using satellite data, the model simulate the dominant foraminifer species with a 70.5% efficiency when compared to a data set of 576 field observations worldwide. Using outputs of a biogeochemical model of the global ocean (PISCES) instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%). Compared to core tops observations, the model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when using either satellite data either PISCES results. This model allows prediction of the season and water depth at which each species has its maximum abundance potential. This offers promising perspectives for both an improved quantification of paleoceanographic reconstructions and for a better understanding of the foraminiferal role in the marine carbon cycle
- …