19 research outputs found

    k-strip: A novel segmentation algorithm in k-space for the application of skull stripping

    Full text link
    Objectives: Present a novel deep learning-based skull stripping algorithm for magnetic resonance imaging (MRI) that works directly in the information rich k-space. Materials and Methods: Using two datasets from different institutions with a total of 36,900 MRI slices, we trained a deep learning-based model to work directly with the complex raw k-space data. Skull stripping performed by HD-BET (Brain Extraction Tool) in the image domain were used as the ground truth. Results: Both datasets were very similar to the ground truth (DICE scores of 92\%-98\% and Hausdorff distances of under 5.5 mm). Results on slices above the eye-region reach DICE scores of up to 99\%, while the accuracy drops in regions around the eyes and below, with partially blurred output. The output of k-strip often smoothed edges at the demarcation to the skull. Binary masks are created with an appropriate threshold. Conclusion: With this proof-of-concept study, we were able to show the feasibility of working in the k-space frequency domain, preserving phase information, with consistent results. Future research should be dedicated to discovering additional ways the k-space can be used for innovative image analysis and further workflows.Comment: 11 pages, 6 figures, 2 table

    The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments

    Full text link
    The GERDA and Majorana experiments will search for neutrinoless double-beta decay of germanium-76 using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both GERDA and Majorana.Comment: 4 pages, 1 figure, proceedings for TAUP201

    EFTfitter: A tool for interpreting measurements in the context of effective field theories

    Get PDF
    Over the past years, the interpretation of measurements in the context of effective field theories has attracted much attention in the field of particle physics. We present a tool for interpreting sets of measurements in such models using a Bayesian ansatz by calculating the posterior probabilities of the corresponding free parameters numerically. An example is given, in which top-quark measurements are used to constrain anomalous couplings at the Wtb-vertex.The authors would like to thank Fabian Bach, Kathrin Becker, Dominic Hirschbühl and Mikolaj Misiak for their help and for the fruitful discussions. In particular, the authors would like to thank Fabian Bach for providing the code for the single-top cross sections. N.C. acknowledges the support of FCT-Portugal through the contract IF/00050/2013/CP1172/CT00

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF
    The observation of neutrinoless double-beta decay (0νββ{\nu}{\beta}{\beta}) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of \sim0.1 count /(FWHM\cdott\cdotyr) in the region of the signal. The current generation 76^{76}Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ{\nu}{\beta}{\beta} signal region of all 0νββ{\nu}{\beta}{\beta} experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76^{76}Ge experiment. The collaboration aims to develop a phased 0νββ{\nu}{\beta}{\beta} experimental program with discovery potential at a half-life approaching or at 102810^{28} years, using existing resources as appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017

    Measurement of the top quark mass in the lepton plus jets final state with the matrix element method

    Get PDF
    We present a measurement of the top quark mass with the matrix element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the matrix element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty. Using a data set of 0.4fb-1 taken with the D0 experiment at Run II of the Fermilab Tevatron Collider, the mass of the top quark is measured using topological information to be: mtopℓ+jets(topo)=169. 2-7.4+5.0(stat+JES)-1.4+1.5(syst)GeV, and when information about identified b jets is included: mtopℓ+jets(b-tag)=170.3-4.5+4.1(stat+JES)-1.8+1.2(syst) GeV. The measurements yield a jet energy scale consistent with the reference scale. © 2006 The American Physical Society

    Characterization, Simulation and Test Beam Data Analysis of Stitched Passive CMOS Strip Sensors

    Full text link
    In the passive CMOS Strips Project, strip sensors were designed at the University of Bonn and produced by LFoundry in 150 nm technology, with an additional backside processing from IZM Berlin. Up to five individual reticules were connected by stitching at the foundry in order to obtain the typical strip lengths required for the LHC Phase-II upgrade of ATLAS or CMS trackers. After dicing, sensors were tested in a probe station and characterised with a Sr90-source as well as laser-based edge- and top-TCT systems. Sensors were also simulated using Sentaurus TCAD. At last, detector modules were constructed from several sensors and thoroughly studied in two beam campaigns at DESY. All of these measurements were performed before and after irradiation. This contribution provides an overview of simulation results, summarises the laboratory measurements and in particular presents first test beam results for irradiated and unirradiated passive CMOS strip sensors. We are demonstrating that large area sensors with sufficient radiation hardness can be obtained by stitching during the CMOS process, and presenting our plans for the next submission in the framework of this project.Comment: The paper was withdrawn from the publication in JINST journal and will not be publishe
    corecore