71 research outputs found

    Comparison of 30 THz impulsive burst time development to microwaves, H-alpha, EUV, and GOES soft X-rays

    Full text link
    The recent discovery of impulsive solar burst emission in the 30 THz band is raising new interpretation challenges. One event associated with a GOES M2 class flare has been observed simultaneously in microwaves, H-alpha, EUV, and soft X-ray bands. Although these new observations confirm some features found in the two prior known events, they exhibit time profile structure discrepancies between 30 THz, microwaves, and hard X-rays (as inferred from the Neupert effect). These results suggest a more complex relationship between 30 THz emission and radiation produced at other wavelength ranges. The multiple frequency emissions in the impulsive phase are likely to be produced at a common flaring site lower in the chromosphere. The 30 THz burst emission may be either part of a nonthermal radiation mechanism or due to the rapid thermal response to a beam of high-energy particles bombarding the dense solar atmosphere.Comment: accepted to Astronomy and Astrophysic

    LOFAR tied-array imaging of Type III solar radio bursts

    Get PDF
    Context. The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (< 100 MHz), the Sun has not been imaged extensively because of

    Noise storm continua: power estimates for electron acceleration

    Full text link
    We use a generic stochastic acceleration formalism to examine the power LinL_{\rm in} (ergs−1{\rm erg s^{-1}}) input to nonthermal electrons that cause noise storm continuum emission. The analytical approach includes the derivation of the Green's function for a general second-order Fermi process, and its application to obtain the particular solution for the nonthermal electron distribution resulting from the acceleration of a Maxwellian source in the corona. We compare LinL_{\rm in} with the power LoutL_{\rm out} observed in noise storm radiation. Using typical values for the various parameters, we find that Lin∌1023−26L_{\rm in} \sim 10^{23-26} ergs−1{\rm erg s^{-1}}, yielding an efficiency estimate η≥Lout/Lin\eta \equiv L_{\rm out}/L_{\rm in} in the range 10^{-10} \lsim \eta \lsim 10^{-6} for this nonthermal acceleration/radiation process. These results reflect the efficiency of the overall process, starting from electron acceleration and culminating in the observed noise storm emission.Comment: Accepted for publication in Solar Physic

    Spectrum of Solar Type I Continuum Noise Storm in the 50 - 80 MHz band, and Plasma characteristics in the associated source region

    Full text link
    Continuum observations of a solar noise storm in the frequency range of 50 - 80 MHz observed with the Gauribidanur radio spectrograph during 2000 September, 26 & 27, are presented here. The radio spectral index of the noise storm continuum in the band 50 - 80 MHz is found to be ~3.65 during the above period. The Noise Storm continuum radiation is explained as a consequence of the non-thermal, plasma emission mechanism. The beam-density of suprathermal electrons is estimated for the coronal plasma near the source region of storm radiation. Supplementary evidence for the density-estimate is provided by way of analysing the imaging data from the SXT on-board the Yohkoh spacecraft, and the LASCO, MDI, and EIT on board the SoHO spacecraft.Comment: 43 pages; 5 tables; 15 figures (9 color). ApJ (Part I : accepted

    Tracking of an electron beam through the solar corona with LOFAR

    Get PDF
    The Sun's activity leads to bursts of radio emission, among other phenomena. An example is type-III radio bursts. They occur frequently and appear as short-lived structures rapidly drifting from high to low frequencies in dynamic radio spectra. They are usually interpreted as signatures of beams of energetic electrons propagating along coronal magnetic field lines. Here we present novel interferometric LOFAR (LOw Frequency ARray) observations of three solar type-III radio bursts and their reverse bursts with high spectral, spatial, and temporal resolution. They are consistent with a propagation of the radio sources along the coronal magnetic field lines with nonuniform speed. Hence, the type-III radio bursts cannot be generated by a monoenergetic electron beam, but by an ensemble of energetic electrons with a spread distribution in velocity and energy. Additionally, the density profile along the propagation path is derived in the corona. It agrees well with three-fold coronal density model by Newkirk (1961, ApJ, 133, 983).Financial support was provided by the German Federal Ministry of Education and Research (BMBF in the framework of the Verbundforschung, D-LOFAR 05A11BAA)

    The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes

    Get PDF
    CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage

    Sources of SEP Acceleration during a Flare-CME Event

    Full text link
    A high-speed halo-type coronal mass ejection (CME), associated with a GOES M4.6 soft X-ray flare in NOAA AR 0180 at S12W29 and an EIT wave and dimming, occurred on 9 November 2002. A complex radio event was observed during the same period. It included narrow-band fluctuations and frequency-drifting features in the metric wavelength range, type III burst groups at metric--hectometric wavelengths, and an interplanetary type II radio burst, which was visible in the dynamic radio spectrum below 14 MHz. To study the association of the recorded solar energetic particle (SEP) populations with the propagating CME and flaring, we perform a multi-wavelength analysis using radio spectral and imaging observations combined with white-light, EUV, hard X-ray, and magnetogram data. Velocity dispersion analysis of the particle distributions (SOHO and Wind in situ observations) provides estimates for the release times of electrons and protons. Our analysis indicates that proton acceleration was delayed compared to the electrons. The dynamics of the interplanetary type II burst identify the burst source as a bow shock created by the fast CME. The type III burst groups, with start times close to the estimated electron release times, trace electron beams travelling along open field lines into the interplanetary space. The type III bursts seem to encounter a steep density gradient as they overtake the type II shock front, resulting in an abrupt change in the frequency drift rate of the type III burst emission. Our study presents evidence in support of a scenario in which electrons are accelerated low in the corona behind the CME shock front, while protons are accelerated later, possibly at the CME bow shock high in the corona.Comment: Solar Physics, November 2007, in pres

    Tracking of an electron beam through the solar corona with LOFAR

    Get PDF
    © ESO 2018. The Sun's activity leads to bursts of radio emission, among other phenomena. An example is type-III radio bursts. They occur frequently and appear as short-lived structures rapidly drifting from high to low frequencies in dynamic radio spectra. They are usually interpreted as signatures of beams of energetic electrons propagating along coronal magnetic field lines. Here we present novel interferometric LOFAR (LOw Frequency ARray) observations of three solar type-III radio bursts and their reverse bursts with high spectral, spatial, and temporal resolution. They are consistent with a propagation of the radio sources along the coronal magnetic field lines with nonuniform speed. Hence, the type-III radio bursts cannot be generated by a monoenergetic electron beam, but by an ensemble of energetic electrons with a spread distribution in velocity and energy. Additionally, the density profile along the propagation path is derived in the corona. It agrees well with three-fold coronal density model by (1961, ApJ, 133, 983)
    • 

    corecore