238 research outputs found

    Long-term organic carbon preservation enhanced by iron and manganese.

    Get PDF
    The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles1. The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear2-8. Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction5, although reaction kinetics at marine sedimentary temperatures are thought to be slow9,10. More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals11-13, but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs4. Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model14, we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr-1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr-1 variation in sedimentary organic preservation over the past 300 million years6, we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time

    Shear Strength Parameters of Improved Peat by Chemical Stabilizer.

    Get PDF
    The present research aimed to discuss the applicability of cationic grouts in geotechnical engineering. The effects of several cationic stabilizers such as monovalent (sodium silicate), divalent (calcium oxide and calcium chloride), and trivalent (aluminum hydroxide) were investigated on shear strength improvement of tropical peat samples. The unconfined compressive strength (UCS) tests were performed after the time frame of 7, 21, and 30 days as curing time, respectively. Apart from the physicochemical characteristics of the stabilized peat, scanning electron microscopy and energy-dispersive X-ray spectroscopy tests were also carried out to study the ongoing microstructural changes. It is to be noted that the shear strength values for peat samples rose to 8, 6, 6, and 4 % of sodium silicate, calcium oxide, calcium chloride, and aluminum hydroxide, respectively. The highest observed UCS outcome is the one taken from the calcium oxide where the UCS of treated peat after 30-day curing time increased to 76 kPa. The strength changes resulted from the various cationic stabilizers can best be explained via the consideration within the mineralogical composition as well as those physicochemical changes happening in the peat

    A Formally Verified NAT

    Get PDF
    We present a Network Address Translator (NAT) written in C and proven to be semantically correct according to RFC 3022, as well as crash-free and memory-safe. There exists a lot of recent work on network verification, but it mostly assumes models of network functions and proves properties specific to network configuration, such as reachability and absence of loops. Our proof applies directly to the C code of a network function, and it demonstrates the absence of implementation bugs. Prior work argued that this is not feasible (i.e., that verifying a real, stateful network function written in C does not scale) but we demonstrate otherwise: NAT is one of the most popular network functions and maintains per-flow state that needs to be properly updated and expired, which is a typical source of verification challenges. We tackle the scalability challenge with a new combination of symbolic execution and proof checking using separation logic; this combination matches well the typical structure of a network function. We then demonstrate that formally proven correctness in this case does not come at the cost of performance. The NAT code, proof toolchain, and proofs are available at https://vignat.github.io

    Cost-effectiveness of public health strategies for COVID-19 epidemic control in South Africa

    Get PDF
    Background Healthcare resource constraints in low and middle-income countries necessitate selection of cost-effective public health interventions to address COVID-19. Methods We developed a dynamic COVID-19 microsimulation model to evaluate clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal, South Africa. Interventions assessed were Healthcare Testing (HT), where diagnostic testing is performed only for those presenting to healthcare centres; Contact Tracing (CT) in households of cases; Isolation Centres (IC), for cases not requiring hospitalisation; community health worker-led Mass Symptom Screening and diagnostic testing for symptomatic individuals (MS); and Quarantine Centres (QC), for contacts who test negative. Given uncertainties about epidemic dynamics in South Africa, we evaluated two main epidemic scenarios over 360 days, with effective reproduction numbers (R e ) of 1.5 and 1.2. We compared HT, HT+CT, HT+CT+IC, HT+CT+IC+MS, HT+CT+IC+QC, and HT+CT+IC+MS+QC, considering strategies with incremental cost-effectiveness ratio (ICER) <US1,290/yearoflifesaved(YLS)tobecosteffective.FindingsWithRe1.5,HTresultedinthemostCOVID19deathsandlowestcostsover360days.ComparedwithHT,HT+CT+IC+MSreducedmortalityby761,290/year-of-life saved (YLS) to be cost-effective. Findings With R e 1.5, HT resulted in the most COVID-19 deaths and lowest costs over 360 days. Compared with HT, HT+CT+IC+MS reduced mortality by 76%, increased costs by 16%, and was cost-effective (ICER 350/YLS). HT+CT+IC+MS+QC provided the greatest reduction in mortality, but increased costs by 95% compared with HT+CT+IC+MS and was not cost-effective (ICER 8,000/YLS).WithRe1.2,HT+CT+IC+MSwastheleastcostlystrategy,andHT+CT+IC+MS+QCwasnotcosteffective(ICER8,000/YLS). With R e 1.2, HT+CT+IC+MS was the least costly strategy, and HT+CT+IC+MS+QC was not cost-effective (ICER 294,320/YLS). Interpretation In South Africa, a strategy of household contact tracing, isolation, and mass symptom screening would substantially reduce COVID-19 mortality and be cost-effective. Adding quarantine centres for COVID-19 contacts is not cost-effective

    Cost-effectiveness of public health strategies for COVID-19 epidemic control in South Africa: a microsimulation modelling study

    Get PDF
    Background: Health-care resource constraints in low-income and middle-income countries necessitate the identification of cost-effective public health interventions to address COVID-19. We aimed to develop a dynamic COVID-19 microsimulation model to assess clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal province, South Africa. Methods: We compared different combinations of five public health interventions: health-care testing alone, where diagnostic testing is done only for individuals presenting to health-care centres; contact tracing in households of cases; isolation centres, for cases not requiring hospital admission; mass symptom screening and molecular testing for symptomatic individuals by community health-care workers; and quarantine centres, for household contacts who test negative. We calibrated infection transmission rates to match effective reproduction number (Re) estimates reported in South Africa. We assessed two main epidemic scenarios for a period of 360 days, with an Re of 1·5 and 1·2. Strategies with incremental cost-effectiveness ratio (ICER) of less than US3250peryearoflifesavedwereconsideredcosteffective.Wealsodidsensitivityanalysesbyvaryingkeyparameters(Revalues,moleculartestingsensitivity,andefficaciesandcostsofinterventions)todeterminetheeffectonclinicalandcostprojections.Findings:WhenRewas15,healthcaretestingaloneresultedinthehighestnumberofCOVID19deathsduringthe360dayperiod.Comparedwithhealthcaretestingalone,acombinationofhealthcaretesting,contacttracing,useofisolationcentres,masssymptomscreening,anduseofquarantinecentresreducedmortalityby943250 per year of life saved were considered cost-effective. We also did sensitivity analyses by varying key parameters (Re values, molecular testing sensitivity, and efficacies and costs of interventions) to determine the effect on clinical and cost projections. Findings: When Re was 1·5, health-care testing alone resulted in the highest number of COVID-19 deaths during the 360-day period. Compared with health-care testing alone, a combination of health-care testing, contact tracing, use of isolation centres, mass symptom screening, and use of quarantine centres reduced mortality by 94%, increased health-care costs by 33%, and was cost-effective (ICER 340 per year of life saved). In settings where quarantine centres were not feasible, a combination of health-care testing, contact tracing, use of isolation centres, and mass symptom screening was cost-effective compared with health-care testing alone (ICER $590 per year of life saved). When Re was 1·2, health-care testing, contact tracing, use of isolation centres, and use of quarantine centres was the least costly strategy, and no other strategies were cost-effective. In sensitivity analyses, a combination of health-care testing, contact tracing, use of isolation centres, mass symptom screening, and use of quarantine centres was generally cost-effective, with the exception of scenarios in which Re was 2·6 and when efficacies of isolation centres and quarantine centres for transmission reduction were reduced. Interpretation: In South Africa, strategies involving household contact tracing, isolation, mass symptom screening, and quarantining household contacts who test negative would substantially reduce COVID-19 mortality and would be cost-effective. The optimal combination of interventions depends on epidemic growth characteristics and practical implementation considerations

    Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment

    Get PDF
    The coprecipitation of organic carbon with iron minerals is important for its preservation in soils and sediments, but the mechanisms for carbon-iron interactions and thus the controls on organic carbon cycling are far from understood. Here we coprecipitate carboxylic acids with iron (oxyhydr)oxide ferrihydrite and use near-edge X-ray absorption fine structure spectroscopy and wet chemical treatments to determine the relationship between sequestration mechanism and organic carbon stability against its release and chemical oxidative remineralisation. We show that organic carbon sequestration, stabilisation and persistence increase with an increasing number of carboxyl functional groups. We suggest that carboxyl-richness provides an important control on organic carbon preservation in the natural environment. Our work offers a mechanistic basis for understanding the stability and persistence of organic carbon in soils and sediments, which might be used to develop an overarching relationship between organic functional group-richness, mineral interactions and organic carbon preservation in the Earth system

    Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants

    Get PDF
    Cys2-His2 zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129 zinc finger sets from Drosophila using a bacterial one-hybrid system. This data set contains the DNA-binding specificities for at least one encoded ZFP from 70 unique genes and 23 alternate splice isoforms representing the largest set of characterized ZFPs from any organism described to date. These recognition motifs can be used to predict genomic binding sites for these factors within the fruit fly genome. Subsets of fingers from these ZFPs were characterized to define their orientation and register on their recognition sequences, thereby allowing us to define the recognition diversity within this finger set. We find that the characterized fingers can specify 47 of the 64 possible DNA triplets. To confirm the utility of our finger recognition models, we employed subsets of Drosophila fingers in combination with an existing archive of artificial zinc finger modules to create ZFPs with novel DNA-binding specificity. These hybrids of natural and artificial fingers can be used to create functional zinc finger nucleases for editing vertebrate genomes

    Impact of postdilatation on performance of bioresorbable vascular scaffolds in patients with acute coronary syndrome compared with everolimus-eluting stents: A propensity score-matched analysis from a multicenter “real-world” registry

    Get PDF
    Background: Safety and efficacy of bioresorbable vascular scaffolds (BRS) and the role of postdilatation on outcome in acute coronary syndrome (ACS) patients compared with those of everolimus-eluting stents (EES) remain unknown. The aim of the study is to compare the safety and efficacy of BRS with EES in ACS and to investigate the role of BRS postdilatation. Methods: Consecutive ACS patients undergoing BRS implantation in 8 centers were com­pared with those with EES before and after propensity score matching. Major adverse cardiac event (MACE), myocardial infarction, and target lesion revascularization (TLR) were the primary endpoint. Sensitivity analysis was performed according to postdilatation after BRS implantation. We enrolled 303 BRS and 748 EES patients; 215 from each group were com­pared after matching, and 117 (55.2%) BRS patients were treated with postdilatation. Results: After a median follow-up of 24.0 months, MACE rates were higher in BRS patients than in EES patients (9.3% vs. 4.7%, p &lt; 0.001), mainly driven by TLR (6.1% vs. 1.9%, p &lt; 0.001). Stent thrombosis increased in the BRS group (2.8% vs. 0.9%, p = 0.01). How­ever, after sensitivity analysis, MACE rates in BRS patients with postdilatation were signifi­cantly lower than in those without, comparable to EES patients (6.0% vs. 12.6% vs. 4.7%, p &lt; 0.001). The same trend was observed for TLR (3.4% vs. 8.4% vs. 1.9%, p &lt; 0.001). Stent thrombosis rates were higher in both the BRS groups than in EES patients (2.6% vs. 3.2% vs. 0.9%, p = 0.045). Conclusions: Postdilatation appears effective when using BRS in ACS patients. MACE rates are comparable to those of EES, although scaffold thrombosis is not negligible. Randomized prospective studies are required for further investigation
    corecore