
A Formally Verified NAT
Arseniy Zaostrovnykh

EPFL, Switzerland

arseniy.zaostrovnykh@epfl.ch

Solal Pirelli

EPFL, Switzerland

solal.pirelli@epfl.ch

Luis Pedrosa

EPFL, Switzerland

luis.pedrosa@epfl.ch

Katerina Argyraki

EPFL, Switzerland

katerina.argyraki@epfl.ch

George Candea

EPFL, Switzerland

george.candea@epfl.ch

ABSTRACT
We present a Network Address Translator (NAT) written in C and

proven to be semantically correct according to RFC 3022, as well

as crash-free and memory-safe. There exists a lot of recent work

on network verification, but it mostly assumes models of network

functions and proves properties specific to network configuration,

such as reachability and absence of loops. Our proof applies directly

to the C code of a network function, and it demonstrates the absence

of implementation bugs. Prior work argued that this is not feasible

(i.e., that verifying a real, stateful network function written in C

does not scale) but we demonstrate otherwise: NAT is one of the

most popular network functions and maintains per-flow state that

needs to be properly updated and expired, which is a typical source

of verification challenges. We tackle the scalability challenge with a

new combination of symbolic execution and proof checking using

separation logic; this combinationmatcheswell the typical structure

of a network function. We then demonstrate that formally proven

correctness in this case does not come at the cost of performance.

The NAT code, proof toolchain, and proofs are available at [58].

CCS CONCEPTS
•Networks→Middle boxes / network appliances; • Software
and its engineering→ Formal software verification;

KEYWORDS
Network-Function Verification; Lazy Proofs; Symbolic Execution

ACM Reference format:
Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, KaterinaArgyraki, andGeorge

Candea. 2017. A Formally Verified NAT. In Proceedings of SIGCOMM ’17, Los
Angeles, CA, USA, August 21-25, 2017, 14 pages.
DOI: https://doi.org/10.1145/3098822.3098833

1 INTRODUCTION
This work is about designing and implementing software network

functions (NFs) that are proven to be secure and correct. Software

NFs have always been popular in low-rate environments, such as

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the Owner/Author. Publication rights licensed to ACM.

ISBN 978-1-4503-4653-5/17/08. . . $15.00

DOI: https://doi.org/10.1145/3098822.3098833

home gateways or wireless access points. More recently, they have

also appeared in experimental IP routers [20] and industrial mid-

dleboxes [8] that support multi-Gbps line rates. Moreover, we are

witnessing a push for virtual network functions that can be de-

ployed on general-purpose platforms on demand, much like virtual

machines are being deployed in clouds.

There exists a lot of prior work on network verification, but,

to the best of our knowledge, none that reasons about both the

security and semantic correctness of NF implementations. Most

of that work relies on models of NFs that are different from their

implementations, hence it cannot reason about the latter (although

we should note that NF models can be very effective in reasoning

about network configuration [24, 25, 30–32, 38, 39, 46, 52, 55, 59]).

One exception is Dobrescu et al. [19], which introduced the notion

of software data-plane verification, and which proves low-level

properties for NF implementations written in Click (i.e., C++) [35].

That work, however, cannot prove semantic correctness of stateful

NFs, because it does not reason about state. For instance, even

though Dobrescu et al. prove crash-freedom and bounded execution

for a specific NAT implementation, they cannot prove that it is

semantically correct, due to not having a way to reason about the

content of the flow table (e.g., whether entries are added or expired

correctly).

Our contribution is a NAT function, written in C and using the

DPDK packet-processing library [21], which we prove to implement

the semantics specified in RFC 3022 [53] and to be crash-free and

memory-safe. We chose this particular NF because it is arguably

one of the most popular ones, yet it has proven hard to get right

over time: the NAT on various Cisco devices can be crashed [17] or

hung [15] using carefully crafted inputs; similar problems exist in

Juniper’s NAT [16], the NAT in Windows Server [40], and NATs

based on NetFilter [18]. Moreover, like many NFs, NATs maintain

per-flow state that needs to be properly updated and expired, which

is a typical source of verification challenges.

We implemented our NAT in C, because this is the language

typically used for high-performance packet processing, and it ben-

efits from a rich and stable ecosystem that includes DPDK. Given

that we anyway wrote our NAT from scratch—and our approach,

in general, requires refactoring—we did consider using a more

verification-friendly language. In the end, however, we considered

that NF developers are more likely to adopt our toolset if it allows

them to code in a familiar language and leverage existing expertise

and tools, even if they have to follow extra constraints (such as

using a specific library of data structures) and annotate their code.

Recent work argues that verifying the C implementation of a real,

stateful NF is infeasible with symbolic execution [55], but we show

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148033853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3098822.3098833
https://doi.org/10.1145/3098822.3098833

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea

that it can be done if symbolic execution is combined with other

verification techniques.

The rationale behind our approach is that different verification

techniques are best suited for different types of code. The beauty of

symbolic execution [9] lies in its ease of use: it enables automatic

code analysis, hence can be used by developers without verification

expertise. The challenge with symbolic execution is its notorious

lack of scalability: applying it to real C code typically leads to path

explosion [19, 55]. The part of real NF code that typically leads to

unmanageable path explosion is the one that manipulates state.

Hence, we split NF code into two parts: (1) A library of data

structures that keep all the “difficult” state, which we then formally

prove to be correct—this takes time and formal methods expertise,

but can be amortized if the library is re-used across multiple NFs;

and (2) stateless code that uses the library, which we automatically

and quickly verify using symbolic execution. The challenge lies in

combining the results of these two verification techniques, and for

that we developed a technique we call “lazy proofs”. A lazy proof

consists of sub-proofs structured in a way that top-level proofs

proceed assuming lower level properties, and the latter are proven

lazily a posteriori. For example, symbolic execution requires the use

of models that must be correct; we first do the symbolic execution

and only afterward validate automatically the correctness of the

models. This approach enables us to avoid having to prove that our

models are universally valid—which is hard—but instead only prove

that they are valid for the specific NF and the specific properties

we verified earlier with symbolic execution. This is much easier.

We show that formally verifying the correctness of our NAT does

not come at the price of performance: compared to an unverified

NAT written on top of DPDK, our verified NAT offers similar la-

tency and less than 10% throughput penalty. Any DPDK-based NAT

we experimented with, verified or not, significantly outperformed

NetFilter, the popular Linux built-in NAT.

The rest of the paper is structured as follows: after providing

background (§2), we illustrate our approach with a simple exam-

ple (§3), state formally what we proved about our NAT (§4), describe

our verification process (§5), and report on our experimental evalua-

tion (§6). Then we discuss limitations and future work (§7), present

related work (§8), and conclude (§9).

2 BACKGROUND
Our work falls in the general area of “data-plane verification.” This

term is typically used to denote two different types of approaches:

One category of work treats as one big data plane the combination

of the configured data planes of network devices in a network,

and reasons about network properties (reachability, loops, etc.)—

we refer to this as “network verification.” An orthogonal category

reasons about properties of the data-plane software running on

individual devices, and reasons about software properties (crash

freedom, bounded execution time, memory safety, etc.)—we refer

to this as “NF verification.” In network verification, the goal is to

demonstrate that a particular property (e.g., that a packet with

certain header features will always reach a given destination) holds

in a specific network with particular NFs configured and connected

in a particular way. In NF verification, the goal is to prove that

a particular property (e.g., there exists no input packet that can

trigger a buffer overflow in the NF) holds for all networks and

workloads, i.e., regardless of how the NF is configured or connected.

There is a rich body of work on network verification [24, 25, 30–

32, 38, 39, 46, 52, 55, 59]. In contrast, there is much less work on NF

verification [19].

The success of network verification depends on the success of

NF verification: Network verification relies on models of the NFs

that compose the network, whether these models are informally

captured in an RFC or more formally in a SEFL model [55], NICE

model [10], etc. However, a model-based proof that a packet will

always reach a destination is trivially invalidated by an implemen-

tation bug in a middlebox that causes that packet to be dropped, in

violation of the model. There are ways of testing whether such a

model is faithful to a given implementation [55], but there is a big

gap between testing and verification: a successfully tested model

can still exhibit behaviors that do not occur in the implementation,

and vice versa. NF verification can, however, ensure that an NF

implementation deployed in the real network is indeed faithful to

the model used for verifying the network.

Our work belongs to the category of NF verification and aims

to improve the state of the art on two fronts: (1) verify high-level

semantic properties, such as the correct implementation of an RFC,

and (2) verify NFs that are stateful. Dobrescu et al. [19] did verify a

stateful NAT, but proved only low-level properties (crash freedom

and bounded execution), therefore not encountering some of the

harder challenges of stateful NFs. We aim to resolve these chal-

lenges, while not placing on operators the burden of writing or

adapting models, and at the same time keeping the NF implemen-

tations’ performance in the same ballpark as that of non-verified

NFs. In this paper we report on our first step in this effort: the

development of a stateful, well-performing NF, which we prove to

implement the NAT semantics as understood from RFC 3022, in

addition to being free of crashes, memory bugs, leaks, and other

low-level properties.

3 THE VIGOR APPROACH
To verify our NAT, we developed a verification toolchain that we

call Vigor, which includes a library of verified data structures, called

libVig. We envision the software development process with Vigor

to revolve around three distinct developer roles with a clear sep-

aration of concerns: libVig developers, standards developers who

write contracts in formal logic to specify public standards, and NF

developers who implement these standards with verified NFs. The

first two roles require expertise in software verification and formal

methods, but their time and effort investment can be amortized

across the many NFs that share common components and imple-

ment the same standards in different ways. Developers in the latter

role, however, should need little to no expertise in verification. It

is they who are the true beneficiaries of Vigor, as they can now

write code that they prove correct with relative ease. In this paper,

the authors took on all three roles, but we envision that eventually

the roles could be taken on by different specialized teams or even

different organizations.

We illustrate the use and functioning of Vigor with a trivially

simple NF that implements the discard protocol [48]: an infinite

A Formally Verified NAT SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

loop receives packets from one interface, discards the ones sent to

port 9, and forwards the rest through another interface.

Code. The NF developer does two extra things relative to writing
standard code: she annotates loops and encapsulates state in libVig

data structures that Vigor can reason about. Fig. 1 shows our verified

implementation. It includes an annotated event loop (VIGOR_LOOP

on l.6) and a ring buffer (r on l.4) for absorbing bursts, which is

accessed through four calls (ll.9, 11, 12, 13). Network interaction

happens via three functions: receive (l.10) non-blockingly reads

an inbound packet and stores it in the output argument, returning

success or failure; can_send (l.12) checks if a new packet can be

sent; and send (l.14) sends the packet pointed to by its argument.

1#define CAP 512
2int main() {
3 struct packet p;
4 struct ring *r = ring_create(CAP);
5 if (!r) return 1;
6 while(VIGOR_LOOP(1))
7 {
8 loop_iteration_begin(&r);
9 if (!ring_full(r))
10 if (receive(&p) && p.port != 9)
11 ring_push_back(r, &p);
12 if (!ring_empty(r) && can_send()) {
13 ring_pop_front(r, &p);
14 send(&p);
15 }
16 loop_iteration_end(&r);
17 }
18 return 0;
19}

Figure 1: Verified implementation of the discard protocol.

Loop invariants. Our verification process requires loop invari-

ants to reason about the effect of loops. Currently, the NF developer

writes these invariants manually, in formal logic (Fig. 2, ll.1-5) and

in C (ll.7-9). In future work, we hope to be able to extract them

automatically from the code using existing techniques [23, 47], or

at least to automatically help the NF developer formulate them.

1/*@
2 fixpoint bool packet_constraints_fp(packet p) {
3 switch(p) { case packet(port): return port != 9; }
4 }
5 @*/
6

7static bool packet_constraints(struct packet* p) {
8 return p->port != 9;
9}

Figure 2: An invariant preserved by the loop in Fig. 1 is that
∀packet p ∈ rinд r ,packet_constraints(p) == true.

Target properties. Vigor proves that this NF never crashes (an
example of a low-level property) and that it never yields a packet

with target port 9 (an example of a semantic property). For the

latter, the gist of the proof is to show that the code never pushes

onto the ring packets with target port 9, and that the ring never

alters the stored packets; these two properties imply that a popped

packet can never have target port 9. There are three steps:

Step 1: Function contracts & proofs. For each method of a

libVig data type
1
, the libVig developer writes a contract, i.e., a

formal specification of what the method guarantees; she also writes

a formal proof that the implementation of that method satisfies the

contract. This is a significant undertaking, but can be amortized

across the potentially many NFs that will use the same data type.

Fig. 3 shows the contract (ll.2-6) and the implementation of the

ring_pop_front function, which removes the packet at the front of

the ring
2
. The contract says that this function will not damage the

ring, will remove the packet at the front of the ring, and will honor

certain constraints that hold for all packets in the ring (l.6), as long as

the ringwas in a good state and honored these constraints before the

function was called (l.2). In the contract, packet_constraints_fp is

an abstract function, i.e., the contract says that ring_pop_front will

honor any packet constraints as long as these hold before it is called.

TheNF developer can provide desired constraints when using libVig;

in this example, the provided constraint (Fig. 2) conveniently serves

as a loop invariant too. §5.1.2 has the details on libVig contracts.

1void ring_pop_front(struct ring* r, struct packet* p)
2/*@ requires ringp(r, ?packet_constraints_fp, ?lst, ?cap) &*&
3 lst != nil &*& packetp(p, _); @*/
4/*@ ensures ringp(r, packet_constraints_fp, tail(lst), cap) &*&
5 packetp(p, head(lst)) &*&
6 true == packet_constraints_fp(head(lst)); @*/
7{
8 //@ extract_first(r);
9 struct packet* src_pkt = r->array + r->begin;
10 p->port = src_pkt->port;
11 r->len = r->len - 1;
12 r->begin = r->begin + 1;
13 if (r->cap <= r->begin) {
14 r->begin = 0;
15 //@ stitch_with_empty_overflow(r);
16 } else {
17 //@ stitch_with_empty(r);
18 }
19}

Figure 3: Excerpt from the implementation of
ring_pop_front() and its formal contract.

Step 2: Exhaustive symbolic execution. (a) Vigor replaces all
function calls that access state or interact with the network with

calls to a symbolic model. For example, the symbolic model for

ring_pop_front (model (a) in Fig. 4) returns a packet with fully

symbolic content (i.e., a packet whose content could be anything

whatsoever) constrained via packet_constraints to have its target

1
We use the terms “data structure” and “data type” interchangeably, with the under-

standing that the data structure state is encapsulated behind a well-defined interface.

2
This implementation is only an illustrative example. In a our verified NAT, and in

most real implementations, we would not copy packets field by field (Fig. 3, l.10) but

rather return a pointer to the packet.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea

port different from 9. Despite its simplicity, this model captures all

the behavior of ring_pop_front that matters in our context, namely

that it never yields a packet with target port 9. (b) Once all func-

tion calls have been replaced with calls to symbolic models, Vigor

symbolically executes the resulting code. Even though Vigor is sym-

bolically executing real C code, this step terminates quite quickly,

because the models are stateless and with few branching points

(like the one in Fig. 4), and the loop annotations help prevent un-

necessary unrolling. This exhaustive symbolic execution has two

outcomes, both assuming the symbolicmodel is valid: First, it proves

that the target low-level property (i.e., that the NF cannot crash for

any input) holds. Second, it produces all the feasible function-call

sequences that could result from running the code, along with the

constraints on program state that hold after each call. Fig. 5 shows

one such call sequence that results when the ring is full. For details

on exhaustive symbolic execution, see §5.2.1.

Model (a)

1void ring_pop_front(struct ring* r, struct packet* p) {
2 FILL_SYMBOLIC(p, sizeof(struct packet), "popped_packet");
3 ASSUME(packet_constraints(p));
4}

Model (b)

1void ring_pop_front(struct ring* r, struct packet* p) {
2 FILL_SYMBOLIC(p, sizeof(struct packet), "popped_packet");
3 // No constraint on the packet's target port.
4}

Model (c)

1void ring_pop_front(struct ring* r, struct packet* p) {
2 p->port = 0;
3}

Figure 4: Symbolic models of ring_pop_front.

Step 3: Lazy model validation. (a) For each function call that

accesses state, in each feasible call sequence, Vigor verifies that the

symbolic model used to produce the speculative verification via

symbolic execution in Step 2 was, in retrospect, valid for that call.
This validity means that the output of the model is a superset (in the

sense of constrained symbolic state) of the output that the actual

implementation could produce. For example, consider the call to

ring_pop_front (Fig. 5, l.13): Vigor extracts the constraints on sym-

bolic program state that held right after the model was symbolically

executed in Step 2; inserts, right after the call, an assertion for these

so-called path constraints (l.16); and asks a proof checker to verify

that this assertion is compatible with ring_pop_front’s contract

(details in §5.2.3). The proof checker concludes that it is, and in

particular that the output of the model (a packet whose target port

can be anything but 9) is a superset of the output specified by the

function’s contract, hence also of the function’s implementation

(since Step 1 proved that the implementation satisfies the contract).

(b) Vigor verifies that, after every packet send(), not shown in Fig. 5,

the target semantic property holds, i.e., the output packet does not

have target port 9. More details appear in §5.2.2.

Invalid models. An invalid model will cause either Step 2 or

Step 3 to fail, but it will never lead to an incorrect proof. For example,

1struct ring* arg1;
2struct packet arg2;
3

4loop_invariant_produce(&(arg1));
5//@ open loop_invariant(_);
6bool ret1 = ring_full(arg1);
7//@ assume(ret1 == true);
8bool ret2 = ring_empty(arg1);
9//@ assume(ret2 == false);
10bool ret3 = can_send();
11//@ assume(ret3 == true);
12//@ close packetp(&(arg2), packet((&(arg2))->port));
13ring_pop_front(arg1, &(arg2));
14//@ open packetp(&(arg2), _);
15

16//@ assert(arg2.port != 9);

Figure 5: Example function-call sequence that results from
Step 2, annotated by Vigor with an assertion of a path con-
straint (l.16).

model (b) in Fig. 4 is too abstract for our purpose: it returns a

packet whose content could be anything at all, including having a

target port 9. This is an “over-approximate” model in verification

speak. If Vigor uses this model in Step 2, then Step 3b fails: since

the model can return packets with target port 9, Vigor cannot

verify for all call sequences that the output packet does not have

target port 9. Conversely, model (c) in Fig. 4 is too specific for our

purpose: it always returns a packet with target port 0, i.e., it is

an “under-approximate” model. If Vigor uses this model in Step

2, then Step 3a fails: Recall that, for each call, Vigor obtains the

path constraints that held right after the model was symbolically

executed in Step 2, and inserts, right after the call, an assertion

for these path constraints. With this model, the assertion would

be //@ assert(arg2.port == 0). The proof checker cannot confirm

that this assertion is always true, because ring_pop_front’s contract

(Fig. 3, ll.4–6) specifies a wider range for arg2.port than 0.

This section illustrated how Vigor stitches symbolic execution

with proof verification via the function-call sequences. There are a

couple other steps involved in the proof (omitted here for clarity)

that we describe fully in §5.

4 PROVEN PROPERTIES
We verified our NAT (which we call VigNAT) using the approach

outlined in §3. We now describe the specific properties we verify.

4.1 Semantic Properties
We proved that VigNAT correctly implements the semantics spec-

ified in the Traditional NAT RFC [53]. For this, we wrote a NAT

specification that formalizes our interpretation of the RFC, and

which we believe to be consistent with typical NAT implementa-

tions. The specification [58] has 300 lines of separation logic [51]

and took 3 person-days to complete.

We started from formally describing NAT behavior as shown in

Fig. 6, in terms of the effect that a packet arrival has on abstract

state (flow_table). There are three static configuration parameters:

the capacity of the flow table (CAP), the flow timeout (Texp), and the

A Formally Verified NAT SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

1Packet P arrives at time t → P is accepted
2 → expire_flows(t)
3 → update_flow(P, t)
4 → forward(P)
5

6expire_flows(t) := ∀G ∈ flow_table
7 s.t. G.timestamp +Texp <= t :
8 remove G from flow_table
9

10update_flow(P, t) := if (F (P) ∈ flow_table) {
11 ∀G ∈ flow_table s.t. F (P) = G :
12 set G.timestamp = t
13 } else {
14 if (P .iface = internal) {
15 if (size(flow_table) < CAP) {
16 insert F (P) in flow_table
17 }
18 }
19 }
20forward(P) := if (F (P) ∈ flow_table) {
21 if (P .iface = internal) {
22 → S.data = P .data
23 → S.iface = external
24 → S.dst_ip = P .dst_ip
25 → S.dst_port = P .dst_port
26 → S.src_ip = EXT_IP
27 → S.src_port = F(P).ext_port
28 → send packet S
29 } else {
30 → S.data = P .data
31 → S.iface = internal
32 → S.dst_ip = F(P).int_ip
33 → S.dst_port = F(P).int_port
34 → S.src_ip = P .src_ip
35 → S.src_port = P .src_port
36 → send packet S
37 }
38 } else {
39 drop packet P
40 }

Figure 6: A conceptual summary of the formal specification
of the NAT semantic properties (based on RFC 3022).

IP address of the external interface (EXT_IP). The F (P) function ex-

tracts from the flow table the packet flow ID, based on its source and

destination IP addresses and ports. With every packet arrival (l.1),

the NAT finds and removes expired flows (l.2), updates the flow

table according to the received packet (l.3), then potentially rewrites

the packet and forwards it (l.4). To update the flow table, the NAT

finds all entries with the same flow ID as the received packet and

updates their timestamps (ll.10–12); if there are no matching entries

(l.13), and if the packet arrived at the internal interface (l.14), and

if the flow table is not full (l.15), then the NAT adds a new entry

in the flow table (l.16). If, at this point, there exists an entry in the

flow table with the packet’s flow ID (l.20), then the NAT forwards

the packet, modifying its headers depending on whether the packet

arrived at the internal or external interface; otherwise, it drops the

packet (l.39).

We wrote a formal machine-readable specification of NAT se-

mantics, organized along similar lines. It merges expire_flows,

update_flow, and forward into a single decision tree. The tree con-

sists of branches over the conditions shown in Fig. 6 (pre-conditions),

such as P .iface = internal, and assertions that check the correspond-
ing output (post-conditions), such as “packet P is dropped” or

“S.dst_ip equals P .dst_ip.” Both pre- and post-conditions are writ-

ten in separation logic, formulated as predicates on abstract NAT

state and/or incoming/outgoing packets. The decision tree covers

both branches of each pre-condition, so it provides a complete spec-

ification of how the NAT behaves under every circumstance. We

formally verify that the C implementation of VigNAT implements

the behavior in this formal specification derived from Fig. 6.

Finally, since VigNATmaintains its state in libVig data structures,

we also prove that it uses these data structures correctly (§5.2.4),

i.e., that the data structures’ pre-conditions are satisfied.

4.2 Low-Level Properties
Besides NAT semantics, we also prove that VigNAT is free of the fol-

lowing undesired behaviors: buffer over/underflow, invalid pointer

dereferences, misaligned pointers, out-of-bounds array indexing,

accessing memory that is not owned by the accessor, use after free,

double free, type conversions that would overflow the destination,

division by zero, problematic bit shifts, and integer over/underflow.

Proving these properties boils down to proving that a set of as-

sertions introduced in the VigNAT code—either by default in the

KLEE symbolic execution engine [9] or using the LLVM undefined

behavior sanitizers [42, 43, 57]—always hold.

5 DESIGN AND IMPLEMENTATION
In this section, we describe the design of VigNAT and howwe verify

its properties, as well as a few implementation-related highlights.

Full details and source code are available at [58].

While the goal of the work presented in this paper is specifically

to build a formally verified NAT, our broader goal is to find a prac-

tical way to verify any stateful NF, so we took a more principled

approach than strictly necessary. In our view, practicality consists

of the simultaneous achievement of two design goals: competitive

performance and low verification effort. The latter has three com-

ponents: writing the code in a way that can be verified, writing

the proof, and verifying the proof. Vigor supports C, and thus does

not impose an undue burden on writing the NF code, so we focus

on devising a technique for productively writing and verifying a

realistic NF.

Well-known verification approaches that are relevant to this task

include whole-program theorem proving (e.g., seL4 [34]) or per-

path/per-state techniques like symbolic execution [19, 55]. With

the former, verifying a property proof is relatively fast, but writing

the proof is a slow, often manual job. With the latter, verifying

a property in a real NF can take long, even forever, due to path

explosion [19, 55], but is easy to automate. To verify a stateful NF,

neither approach seems practical on its own.

In our approach, we decompose the proof into parts, and prove

each part with whichever technique is suited for that part; after that,

we stitch the proofs together. We posit that most NFs consist of one

part that is common across many NFs (thus making it worthwhile

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea

P1

P3

P2

P4

P5

 VigNAT satisfies semantic
properties (Validator + Proof Checker)

 VigNAT satisfies
low-level properties
(Symb Exec Engine)

 VigNAT stateless code uses
libVig according to libVig's interface
contracts (Validator + Proof Checker)

 libVig model is faithful to
the libVig interface contracts
(Validator + Proof Checker)

 libVig implementation
behaves according to the libVig

contracts (Proof Checker)

Figure 7: Structure of the VigNAT correctness proof. Pi (X) ←
Pj symbolizes that the proof of property Pi is done by X un-
der the assumption that Pj holds.

to invest manual effort in proving its correctness) and another

part that is different in each NF (and thus its verification should

be automatic). We also posit that, over time, NFs will converge to

using a stable, common set of data types to encapsulate NF state,

and the difference between NFs will result primarily from how their

stateless code employs these data types. For VigNAT, we put all

NF state in data structures that reside in a library, and use human-

assisted theorem proving to verify the correctness of this library.

We then use symbolic execution to prove the correctness of the

stateless code.

The challenge is how to stitch together the results of the two

verification techniques. We developed lazy proofs, a way to auto-

matically interface symbolic execution to a proof checker based on

separation logic. We built a Validator that implements this tech-

nique and glues sub-proofs together into the final proof that VigNAT

implements the NAT RFC [53].

The VigNAT proof consists of five sub-proofs, shown in Fig. 7.

The top-level proof objective P1 is to show that VigNAT exhibits

correct NAT semantics. The proof of P1 assumes three things: First,

the code must work properly in a basic sense, such as not crashing

and having no overflows (P2). Second, the implementations of the

library data structures must work as specified in their interface

contracts (P3)—e.g., looking up a just-added flow should return that

flow. Third, the stateless part of the NF must use the data structures

in a way that is consistent with their interfaces (P4)—e.g., a pointer
to the flow table is never mistakenly passed in as a pointer to a flow

entry. Assuming P2 ∧ P3 ∧ P4, the Validator produces a proof of P1
that is mechanically verified by the proof checker.

These three assumptions must of course be proven. To prove

P2—that VigNAT satisfies low-level properties—Vigor symbolically

executes the stateless code and checks that the properties hold

along each execution path. For this to scale, we employ abstract

symbolic models of the library data structures. Therefore, the proof

of P2 must assume that these models are correct (P5), that the data
structure implementations satisfy their interfaces (P3), and that

the stateless code correctly uses the stateful data structures (P4). If
any of these three assumptions were missing, the proof would not

work
3
. To prove P3, we employ relatively straightforward (but still

tedious) theorem proving to show that the library implementation

satisfies the contracts that define its interface.

It is in the proof of P4 and P5 that we find a second scalability

benefit of the lazy proofs technique: Not only does it allow us to

stitch together proofs done with different tools (thereby allowing

us to employ for each sub-proof whichever tool offers the optimal

benefit-to-effort ratio) but also makes it possible to get away with

proving weaker properties. For example, instead of proving that

P5 is universally true and then using this proof to further prove

P2, we first prove P2 assuming P5, and afterward only prove that

P5 holds for the specific way in which the proof of P2 relies on P5.
This use-case-specific proof of P5 is easier than proving P5 for all
possible use cases.

We now describe Vigor’s data structure library and its correct-

ness proof (§5.1), our “lazy proofs” technique and its use for proving

the correctness of VigNAT’s semantics (§5.2), and conclude with

a summary of the Vigor workflow (§5.3) and of the assumptions

underlying our approach (§5.4).

5.1 A Library of Verified NF Data Types
VigNAT consists of stateless application logic that manipulates state

stored in data structures, like hash tables and arrays, provided by

the Vigor library (libVig). For example, in §3, we placed incoming

packets into a ring data structure from libVig. Generally speaking,

stateless NF code should be free of any dynamically allocated state

and complex data structures. It can retain basic program state, such

as statically allocated scalar variables as well as structs of scalars.

Dealing with explicit state in the verification of imperative, non-

typesafe programs is hard, mainly due to the difficulty of tracking

memory ownership and type information, as well as disentangling

pointer aliases. For example, the question of which memory a void*

pointer could ever reference is often undecidable. Functional, type-

safe languages (Haskell, ML, etc.) are appealing for verification,

but to us it was paramount to both support C (preliminary evi-

dence [60] suggests C to be widely popular among NF developers)

and enable verification of a fully stateful NF. We accomplish both

by encapsulating NF state behind libVig’s interface and adopting a

disciplined use of pointers. While this approach is not compatible

with all software, we believe it is a good match for NFs.

Besides data types for NFs, libVig also provides a formal interface

specification that defines the behavior of these data types, along

with a proof that the libVig implementation obeys the specification.

To enable symbolic execution of stateless NF code, libVig also pro-

vides symbolic models of its data types. We verify libVig once, and

the proof carries over to any NF that uses the library.

This subsection details the libVig implementation (§5.1.1), de-

scribes our use of abstraction and contracts to formally specify

libVig’s semantics (§5.1.2), shows how we prove that the implemen-

tation satisfies its interface specification (§5.1.3), and presents the

symbolic models of libVig’s data structures (§5.1.4) to be used by a

symbolic execution engine.

3
It may seem strange that assumptions P3 and P4 are needed both for the proof of

low-level properties and that of semantic properties, but this is because “satisfying

interface contracts” relates both to high-level interface semantics and to basics like

proper data encapsulation.

A Formally Verified NAT SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

5.1.1 libVig implementation. Competitive performance is an

important design goal, and libVig is a good place to optimize for

performance. A key design decision we made is to preallocate all
of libVig’s memory. While this lacks the flexibility of dynamically

allocating at runtime, it offers control over memory layout, mak-

ing it possible to control cache placement and save the run-time

memory management overhead. The cost of preallocation is neg-

ligible (e.g., VigNAT’s peak resident set size is 27 MB during our

experiments), and we believe preallocation is fully compatible with

how real NFs use state. In terms of verification with Vigor’s proof

checker, static allocation does not offer noticeable benefits over

dynamic allocation, but may do so for other checkers.

As of this writing, libVig provides several basic data structures

that we needed to develop VigNAT: a flow table, implemented as a

double-keyed hash map, a network flow abstraction, a ring buffer,
an expirator abstraction for tracking and expiring flows, a batcher
for grouping homogeneous items, a port allocator to keep track of

allocated ports, and a classic hash table, array, and vector. libVig

also provides an nf_time abstraction for accessing system time and

a dpdk layer on top of the DPDK framework.

5.1.2 Using abstraction and contracts to formally specify libVig
semantics. We specify the semantics of libVig data types in terms

of abstract state that the data types’ methods operate on. This is

the same approach we took in formalizing the NAT RFC (§4.1).

The pre-conditions and post-conditions for each method form the

contracts that define what each data type is supposed to do.

Fig. 8 shows a snippet of a get method for the libVig flow table.

The pre-condition is on lines 3-6 and the post-condition on lines 7-

14. The contracts are meant for the Validator’s and proof checker’s

consumption, but they can also serve as documentation, when

ambiguous natural language or reading source code fall short.

Each requires pre-condition states the requirements for the func-

tion to run: a relationship between its arguments and the abstract

state, or amemory ownership token for a pointer. Each ensures post-

condition specifies what holds after the completion of the method:

a relationship between the arguments and the return value, the up-

dated value at a certain memory location, or a memory ownership

token.

We adopt a “sanitary” policy on the use of pointers: stateless

code can pass/receive pointers across the libVig interface, but the

libVig data structure remains opaque to the caller. Stateless code

can copy pointers, assign them, compare them for equality, but not

dereference them. Vigor automatically checks that stateless code

obeys this discipline (§5.2.4).

5.1.3 Verifying libVig correctness (P3). Once the formalization

of the interface is complete, we write the proof, i.e., we annotate

the code with assertions, loop invariants, etc. and define lemmas

for the intermediate steps of the proof.

The proof checker starts by assuming the pre-condition (ll.3-6)

and steps through every code statement while developing its set of

assumptions. When it encounters a branch condition, it explores

both branches. Inlined annotations (lines 16-18, 20-22, 24, 28-30)

help the checker along the way to understand the transformations

of abstract state, and it verifies that they indeed correspond to

the transformations of concrete machine state. On memory ac-

cesses (l.19), the proof checker checks the validity of the address

1int dmap_get_by_first_key /*@ <K1,K2,V> @*/
2 (struct DoubleMap* map, void* key, int* index)
3/*@ requires dmappingp<K1,K2,V>(map, ?kp1, ?kp2, ?hsh1, ?hsh2,
4 ?fvp, ?bvp, ?rof, ?vsz,
5 ?vk1, ?vk2, ?rp1, ?rp2, ?m)
6 &*& kp1(key, ?k1) &*& *index |-> ?i; @*/
7/*@ ensures dmappingp<K1,K2,V>(map, kp1, kp2, hsh1, hsh2,
8 fvp, bvp, rof, vsz,
9 vk1, vk2, rp1, rp2, m) &*&
10 kp1(key, k1) &*& (dmap_has_k1_fp(m, k1) ?
11 (result == 1 &*& *index |-> ?ind &*&
12 ind == dmap_get_k1_fp(m, k1) &*&
13 true == rp1(k1, ind)) :
14 (result == 0 &*& *index |-> i)); @*/
15{
16 /*@ open dmappingp(map, kp1, kp2, hsh1, hsh2,
17 fvp, bvp, rof, vsz,
18 vk1, vk2, rp1, rp2, m); @*/
19 map_key_hash *hsh_a = map->hsh_a;
20 //@ map_key_hash *hsh_b = map->hsh_b;
21 //@ assert [?x]is_map_key_hash(hsh_b, kp2, hsh2);
22 //@ close [x]hide_map_key_hash(map->hsh_b, kp2, hsh2);
23 int hash = hsh_a(key);
24 //@ open [x]hide_map_key_hash(map->hsh_b, kp2, hsh2);
25 int res = map_get(map->bbs_a, map->kps_a, map->khs_a,
26 map->inds_a, key, map->eq_a,
27 hash, index, map->keys_capacity);
28 /*@ close dmappingp(map, kp1, kp2, hsh1, hsh2,
29 fvp, bvp, rof, vsz,
30 vk1, vk2, rp1, rp2, m); @*/
31 return res;
32}

Figure 8: Top-level get method in the libVig flow table data
type. index is an output parameter for the index of the en-
try whose first key matches key. The method returns 1 if the
entry is found, 0 otherwise.

and the memory ownership token. On method calls (l.23), it checks

the pre-condition of the called method and then assumes its post-

condition, in essence replacing the call with an assumption of the

callee’s post-condition (it verifies separately that the post-condition

indeed holds whenever the callee returns). When reaching a return

point (l.31), the proof checker checks the post-condition.

Implementation: In Vigor, we use the VeriFast proof checker [28],

which works for C programs annotated with pre-conditions and

post-conditions written in separation logic [51]. Annotating code

is not an easy task, especially for non-experts. However, separation

logic is relatively friendly: It is an extension of classic Hoare logic

designed for low-level imperative programs that use sharedmutable

data structures. It has a good notion of memory ownership, which

makes it easy to express transfer of ownership through pointers.

Separation logic supports local reasoning [44], in that specifications

and proofs of a method refer only to the memory used by that

method, not the entire global state.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea

libVig contains 2.2 KLOC of C, 4K lines of pre- and post-conditions

and accompanying definitions, and 21.8K lines of proof code (in-

lined annotations). The human effort of writing the proof is about

2 person-months. VeriFast verifies the proof in less than 1 minute.

5.1.4 Symbolic models for libVig data types. Symbolic execu-

tion [6, 9, 14, 27, 33, 50] is the method we use for verifying VigNAT’s

low-level properties (P2) in §5.2.1. This approach entails having a

symbolic execution engine execute the NF with symbolic rather

than concrete values. A symbolic value represents simultaneously

multiple possible values (e.g., an unconstrained symbolic packet

header represents all possible packet headers). Assignment state-

ments are functions of their symbolic arguments, while conditional

statements split execution into two paths, each with symbolic state

correspondingly constrained by the branch condition.

When symbolically executing the VigNAT stateless code, which

calls into libVig, we do not wish to also symbolically execute the

libVig implementation, because that would lead to path explosion.

Therefore, we abstract libVig with a symbolic model that simulates

the effect of calling into libVig and keeps track of the side effects

in a per-execution-path manner. The symbolic model differs from

the formal contracts in two ways: it is executable code, and it may

be imperfect—it might miss some possible behaviors of the libVig

implementation, or exhibit behaviors that could never occur.

As we discuss in the next section, writing a good symbolic model

is hard, and our lazy proof technique helps deal with this challenge:

it tolerates imperfections in a symbolic model while at the same

time formally guaranteeing that accepted imperfections do not

affect the overall proof of the NF.

5.2 Lazy Proofs
Our proposed lazy proofs technique glues together a symbolic ex-

ecution engine (SEE) with a proof checker to produce proofs of

NF properties that were previously out of reach. Together with the

stateful/stateless separation described earlier, this constitutes the

cornerstone of how we verify VigNAT.

The main idea is to use an SEE to enumerate all execution paths

through the stateless NF code, and (a) record for each path a sym-

bolic trace of how the stateless code interacted with the outside

world and with libVig; and (b) verify that P2 (low-level properties)
holds on each path. The Validator then transforms the symbolic

traces (i.e., a representation of all possible observable behaviors of

VigNAT’s stateless code) into mechanically checkable proofs that

P4, P5, and ultimately P1 (NAT semantics) hold.

Not only do lazy proofs allow us to use the right tool for each

desired property but they also resolve the modeling challenge: writ-

ing a symbolic model of libVig requires reconciling two conflicting

objectives. On the one hand, the model must remove enough details,

i.e., be abstract enough to make symbolic execution terminate in

useful time—after all, it is abstraction that reduces the number of

paths to explore symbolically. On the other hand, the model must

be detailed enough to capture enough libVig behaviors to be faithful

to the libVig implementation in the context of the properties being

verified. How good the model is depends directly on which details

are relevant to the proof vs. not, which in turn depends both on

the properties to be proven and on the code that uses the model.

Thus, devising a good model is often an iterative process that con-

verges after multiple attempts onto a good model customized to

the code and the property to be proven. Spending time proving the

faithfulness (P5) of draft models before actually knowing that they

are fit for proving P2 would be wasteful. With lazy proofs, we can

now first attempt the proof of P2 assuming the model is OK and,

if the model indeed helps prove the desired property, only then

invest in validating the model (P5). From a practical standpoint, this

approach makes it cheap to write models, because we don’t need to

spend time ironing out the very last bugs; instead we rely on Vigor

to surface these bugs over time.

Said differently, lazy proofs exploit the fact that an application

typically uses only a subset of the semantics offered by its libraries.

So, instead of proving that the libVig model accurately captures all

of libVig’s semantics, we only prove that it does so for the semantics

used by VigNAT.

We now describe the proof of P2—low-level properties (§5.2.1),
the Vigor Validator and how it uses symbolic traces to prove P1—
correctness of VigNAT’s semantics (§5.2.2), and finally how the

Validator proves correctness of the libVig symbolic model (§5.2.3)

and correctness of how libVig is used by the stateless code (§5.2.4).

5.2.1 Proving that VigNAT satisfies low-level properties. Low-
level coding mistakes, like the misuse of memory, can cause a pro-

gram to crash or behave erratically, so proving the absence of such

mistakes is essential to proving higher level semantic properties.

As described in §4.2, the desired low-level properties refer to the ab-

sence of bugs such as buffer over/underflow, out-of-bounds memory

accesses, double free, arithmetic over/underflow, and others.

To prove the absence of such bugs, Vigor performs exhaustive
symbolic execution (ESE), using an SEE to enumerate all execution

paths through the stateless part of the NF. The SEE explores all

feasible branches at conditional statements, therefore ESE is fully

precise: it enumerates only feasible paths, i.e., paths for which

there exists a set of inputs that takes the program down that path,

and does not miss any feasible paths. Low-level properties are

stated as asserts, and for each feasible execution path the SEE

reasons symbolically about whether there exists an input that could

violate the assert. In order to make this approach feasible, Vigor

first replaces all calls to libVig with calls to the libVig model; this

abstracts away all state handling code, thereby removing almost all

constructs that lead to path explosion, such as loosely constrained

symbolic pointers. Next, we make the SEE aware of loop bounds

by marking the loop guard of an infinite loop with VIGOR_LOOP and

providing loop invariants, so that the SEE can transform the loops

to avoid unnecessary loop unrolling (e.g., by havocing [1]). This

eliminates the last source of path explosion in VigNAT.

If the assert for each low-level property holds on every feasible

path during ESE, then we have a proof that that stateless code is

free of low-level bugs, since ESE reasons about all possible inputs

without enumerating those inputs. The formal proof that libVig

behaves according to its interface contracts (§5.1.3) guarantees that

libVig too is free of low-level bugs, otherwise its proof would not

verify. This means that all VigNAT code satisfies the low-level

properties. If this was not stateless code but a stateful program, ESE

would likely not complete. Yet, in our case, the SEE checks all 108

paths through VigNAT’s stateless code in less than 1 minute.

A Formally Verified NAT SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Of course, the proof makes certain basic assumptions, like com-

piler correctness (more in §5.4), and most importantly it assumes

that the libVig model is correct (P5) and the stateless code uses

VigNAT data structures correctly (P4). Verifying these assumptions

a posteriori requires a Validator and symbolic traces, which we

describe in the next subsection.

Implementation. In Vigor we use the KLEE SEE [9]. It checks

out-of-the-box several low-level properties, and we add the checks

from LLVM’s undefined behavior sanitizers [42, 43, 57]. We modi-

fied KLEE in several ways: First, we added loop invariant support,

and we enabled KLEE to automatically find the variables that may

change inside a loop and havoc [1] them. The NF developer still

has to manually insert the assertions and assumptions for the loop

invariants, but KLEE can now use them to avoid enumerating un-

necessary paths. Second, we added dynamic pointer access control

by providing primitives that allow libVig developers to enable/dis-

able dereferenceability of a pointer between libVig calls. Third, we

added the ability to record symbolic traces, described next.

5.2.2 Proving that VigNAT satisfies NAT RFC semantics. We

think of the formalized NAT semantics as “trace properties”: given

a trace of the interaction between an NF and the outside world,

what must hold true of the trace for it to have been generated by

a correct NAT NF? More specifically, the NAT properties (shown

in §4.1 and Fig. 6) are in the form of pre- and post-conditions for

actions triggered by the arrival of a packet. The pre-conditions, ex-

pressed on the abstract NAT state plus the incoming packet, select

which action applies. The corresponding post-condition states what

must hold of the abstract state and the potential outgoing packet

after the action is completed.

In order to verify that the desired properties hold, Vigor collects

from the SEE a trace of each explored execution path. This trace

summarizes how the VigNAT code interacted, during symbolic

execution, with (a model of) the outside world, be it the libVig

library or the DPDK framework. Since the traces have common

prefixes, they form a tree—the NF’s execution tree. In the context of

this section, a symbolic trace is a path from the root of the execution

tree to a node in the tree, be it an internal or a leaf node. In other

words, the set of symbolic traces considered by Vigor consists of

all execution path traces and all their prefixes.

Each trace has two parts: a sequence of calls that were made

across the traced interface, and a set of constraints on symbolic

program state. Fig. 9 shows a simple example of a trace for the code

in Fig. 1 using the ring data structure. The seven calls in this trace

result from the execution of lines 8→9→12→13→14→16 in Fig. 1.

loop_invariant_produce and loop_invariant_consume are markers

indicating the beginning and the end of a loop iteration. In the

ring_pop_front call, packet is an output parameter pointing to the

popped packet; the trace records its initial and final value.

The constraints section shows the relationship between the dif-

ferent symbols. In this simple example there is only one constraint:

y , 9 is the result of the application of packet_constraints (Fig. 2)

in the ring model. The initial value x is unconstrained.

The Validator now takes each trace, weaves into it the properties

to be proven, and turns it into a verification task. This is a C pro-

gram that contains the sequence of calls from the trace, enriched

with metadata on the symbolic variables used as arguments and

1loop_invariant_produce(ring=[..]) ==> []
2ring_full(ring=[..]) ==> true
3ring_empty(ring=[..]) ==> false
4can_send() ==> true
5ring_pop_front(ring=[..],
6 packet={.port=:x:} --> {.port=:y:}) ==> []
7send(packet={.port=:y:}) ==> []
8loop_invariant_consume(ring=[..]) ==> []
9--- constraints ---
10:y: != 9

Figure 9: Symbolic trace for a path through the code in Fig. 1.
Colons (:val:) designate a symbol, --> separates the input
and output value of a pointer argument, ==> marks the re-
turn value of a function call, [..] indicates omitted details.

return values, as well as the constraints that describe the relation-

ships between these symbolic variables at each point in the trace.

The Validator also inserts lemmas into the trace, to help the proof

checker. In essence, the Validator translates each symbolic trace

into a proof that the trace satisfies the desired properties. It then

passes the proof to the proof checker to verify it.

Fig. 10 shows the Validator-transformed version of Fig. 9. The

seven calls are now on lines 6, 8, 10, 12, 15, 18, and 22. The uninitial-

ized arg1 and arg2 variables are unconstrained symbols initially. The

constraints on return values recorded in Fig. 9 turn into the @assume

statements on lines 9,11, and 13. The symbolic constraint from l.10

in Fig. 9 turns into the @assume on l.17 of the proof. These four

@assume statements constitute the pre-condition of this symbolic

trace. In order to set up the post-condition that needs to be verified,

the Validator initializes special handle variables packet_is_sent and
sent_packet on lines 19 and 20 to capture externally visible effects

immediately after the send() call. Then it inserts the NF specifica-

tion (semantic property) into the trace on ll. 24-26:

1if (packet_is_sent) {
2 assert(sent_packet->port != 9);
3}

Vigor verifies that the NF spec holds after every loop iteration.

Once the proof checker completes all verification tasks received

from the Validator, we have a proof that the trace properties weaved

in by the Validator hold for all possible executions of the stateless

code. Vigor proves that VigNAT satisfies the NAT specification by

weaving the properties of §4.1 into the symbolic traces, similarly

to ll. 24-26 in Fig. 10. Trace verification is highly parallelizable:

to verify all 431 traces resulting from the 108 execution paths of

stateless VigNAT takes 38 minutes on a single core and 11 minutes

on a 4-core machine. As will be noted later, this verification time

includes not only proving P1 but also P4 and P5.

5.2.3 Validating the libVig symbolic model. We say a symbolic

model is valid if the behavior it exhibits is indistinguishable from
the behavior of the libVig implementation captured by the formal

interface contracts
4
. Any behaviors of the model that are not ob-

served during ESE are irrelevant to its validity for this particular

4
It is sufficient to show that the model over-approximates the contracts, because any

proof that holds for the over-approximation holds for an exact model as well.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea

1struct ring* arg1;
2struct packet arg2;
3bool packet_is_sent = false;
4struct packet* sent_packet = NULL;
5

6loop_invariant_produce(&arg1);
7//@ open loop_invariant(&arg1);
8bool ret1 = ring_full(arg1);
9//@ assume(ret1 == true);
10bool ret2 = ring_empty(arg1);
11//@ assume(ret2 == false);
12bool ret3 = can_send();
13//@ assume(ret3 == true);
14//@ close packetp(&arg2, packet(arg2.port));
15ring_pop_front(arg1, &arg2);
16//@ openpacketp(&arg2, _);
17//@ assume(arg2.port != 9);
18send(&arg2);
19packet_is_sent = true;
20sent_packet = &arg2;
21//@ close loop_invariant(&arg1);
22loop_invariant_consume(&arg1);
23

24/*@ if (packet_is_sent) {
25 assert(sent_packet->port != 9);
26} @*/

Figure 10: The trace of Fig. 9, translated into a proof.

proof. This is the insight behind our lazy proof technique: it doesn’t
matter whether a model is universally valid, but rather what mat-

ters is whether the parts of the model used during symbolic execution
are valid—this is a much weaker property than universal validity,

but is sufficient for our purposes. The symbolic traces capture all

necessary information on how the model is used.

The technique for proving that the libVig model is consistent

with the libVig interface contracts is similar to the one we use

for proving NAT semantics. Only this time, instead of weaving

the NAT pre- and post-conditions into the traces, the Validator

weaves in the assertions for the given trace’s path constraint. It then

asks the proof checker to verify whether the assertions hold based

solely on the post-conditions of the libVig functions. If verification

succeeds, then it means that, after each invocation of the libVig

model, the outcome covers all possible outcomes prescribed by the

libVig interface contracts.

A libVig model can be over-approximate, under-approximate, or

both. The question that the Validator aims to answer is whether, for

the particular NF and properties, the model is sufficiently accurate.

If a model is “too under-approximate” for the desired proof, it will

cause the validation phase to fail, because its narrow behavior

does not cover the spectrum of behaviors allowed by the contracts.

If it is “too over-approximate” for the target proof, it will either

cause exhaustive symbolic execution (ESE) or validation to fail—the

former if the model exhibits behavior that is too general and makes

it impossible to verify the low-level properties, the latter if low-

level properties verify but a loop invariant or a high level semantic

property is violated. When ESE completes, we have proof that the

low-level properties hold, as long as the model is valid. ESE failure

means that either there is a violation of a low-level property or the

model offered by libVig is not suitable—Vigor does its best to help

the developer distinguish between the two, but there is still room

for improvement. In either case, it’s back to the drawing board:

either the NF developer needs to fix her bug, or the Vigor developer

needs to alter the model.

Vigor also uses a model we wrote of the DPDK packet processing

framework’s send, receive, and free calls. We do not formally vali-

date this model, though there is no fundamental reason it cannot

be done. We make it part of Vigor’s trusted computing base (§5.4).

5.2.4 Proving that VigNAT correctly uses libVig. There is one

caveat to the proof in the previous section: if a libVig method imple-

mentation is invoked and the corresponding pre-condition does not

hold, then the behavior of that method is undefined. For example,

passing a null argument when the contract says it must be non-

null could cause the implementation to crash, behave incorrectly,

or behave correctly. It is therefore imperative that, in conjunction

with validating the model’s behavior, Vigor also validate the caller’s

behavior with respect to the interface contracts.

The method for proving that the VigNAT stateless code uses

the libVig data structures consistently with the libVig interface

contracts is the same as above, except that the Validator weaves in

the pre-conditions contained in the libVig interface contracts. In

fact, the Validator weaves in the NAT pre- and post-conditions and

the libVig pre- and post-conditions in one go, and generates a single

verification task per trace that simultaneously verifies properties

P1, P4, and P5.
The trickiest part in verifying the libVig pre-conditions is track-

ing memory ownership across the interface. A pointer returned

by a libVig method (either as a return value or via an output pa-

rameter) references memory owned at first by libVig; upon return,

ownership transfers to the caller. After using/modifying the pointer,

the NF code calls another function to return ownership to libVig.

A pointer passed as an argument to a libVig method may be the

address of a libVig data structure (equivalent to the this pointer

in C++/Java or the self reference in Python). This type of pointer

remains opaque to the stateless code: it can be copied, assigned, and

compared for equality, but cannot be dereferenced. The Validator

and proof checker need not look at the memory pointed to by

such pointers but only keep track of aliasing information. The

pointed-to memory is owned by libVig at all time. Vigor verifies

that the stateless code obeys this pointer discipline during symbolic

execution, using our addition to the SEE for enabling/disabling

dereferenceability of a pointer between libVig calls.

A pointer used as an output parameter points to where the caller

expects libVig’s return result to be written. In this case, the pointed-

to memory is owned by the calling code. The Validator and proof

checker trace the evolution of the pointed-to memory by including

it in the function’s input set before the call and in the function’s

output set after the call. A special case of output pointer is a double

pointer to a library data structure (e.g., X** p) as appears in the data

structure allocation functions. The VigNAT code owns the pointee

*p, so the Validator tracks it, but the pointee of the pointee **p is a

library data structure, thus the memory is owned by the library, so

there is no need to track it. Vigor currently does not support other

cases of double or deeper pointers.

A Formally Verified NAT SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Vigor also checks for memory leaks. Even though stateless code

cannot dynamically allocate memory, leaks are possible if it uses

libVig incorrectly, such as forgetting to call a release method. Un-

like simple low-level properties (e.g., integer overflow) that can be

stated as a simple assert, absence of memory leaks is a global prop-

erty. Vigor therefore must keep track of memory ownership and

validate that ownership is properly returned to libVig before the

end of the execution. This facility, for example, caught an accidental

memory leak in VigNAT where we failed to release DPDK memory

corresponding to a packet returned by DPDK, thus violating the

DPDK interface contracts.

5.3 The Vigor Workflow
The Vigor workflow described above can be summarized as fol-

lows: We split the NAT NF into a stateless and a stateful part, the

latter contained in the libVig library. Then we use formal theo-

rem proving to verify P3—correctness of the data structures im-

plemented in libVig. We use exhaustive symbolic execution (ESE)

with a modified version of KLEE [9] to explore all paths in the

stateless part (using symbolic models of the data structures) and

verify P2—low-level properties, like crash freedom, memory safety,

and no overflows—as well as VigNAT’s disciplined use of pointers.

This step proceeds under the assumptions that the stateless code

uses the libVig data types according to their interface contracts (P4)
and the libVig model is faithful to the libVig interface contracts (P5)
for the particular execution paths explored during ESE. Both of

these assumptions we prove a posteriori using a combination of

our Vigor Validator and the VeriFast proof checker [28]. Finally, we

use this same combination of tools to prove VigNAT’s semantic

properties (P1), i.e., that it conforms to our formalization of RFC

3022 [53]. P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 together formally prove VigNAT’s

correctness, under the assumptions described in the next section.

5.4 Assumptions
The trusted computing base for a Vigor-verified NF consists of the

Vigor toolchain (the Clang LLVM compiler, VeriFast, KLEE, and our

own Validator) and the environment in which the NF runs (DPDK,

device drivers, OS kernel, BIOS, and hardware). We assume that

the compiler implements the same language semantics employed

by Vigor (e.g., same byte length for C primitive types). We wrote

symbolic models for three DPDK functions and for system time,

which as of this writing we have not verified. They are small (about

400 LOC), so we convinced ourselves manually that they are correct

over-approximations. One could envision adopting an environment

that has a formal specification, like seL4 [34], in which it becomes

possible to prove the validity of these models.

6 PERFORMANCE EVALUATION
Having shown in previous sections how we verify VigNAT’s cor-

rectness, we now demonstrate that this formal verification does not

come at the cost of performance: compared to an unverified NAT

written on top of DPDK, our verified NAT offers similar latency

and less than 10% throughput penalty. We focus our evaluation on

comparing VigNAT (labeled Verified NAT in the graphs) to three

other NFs:

(a) No-op forwarding is implemented on top of DPDK; it re-

ceives traffic on one port and forwards it out another port without

any other processing. It serves as a baseline that shows the best

throughput and latency that a DPDK NF can achieve in our experi-

mental environment.

(b) Unverified NAT is also implemented on top of DPDK; it im-

plements the same RFC as VigNAT and supports the same number

of flows (65,535), but uses the hash table that comes with the DPDK

distribution. It was written by an experienced software developer

with little verification expertise, different from the one who wrote

and verified VigNAT. It serves to compare VigNAT to a NAT that

was not written with verification in mind.

(c) Linux NAT is NetFilter [5], set up with straightforward mas-

querade rules and tuned for performance [29]. We expect it to be

significantly slower than the other two, because it does not benefit

from DPDK’s optimized packet reception and transmission. We

use it to make the point that VigNAT performs significantly bet-

ter than the typical NAT currently used in Linux-based home and

small-enterprise routers, as one would expect from a DPDK NAT.

We use the testbed shown in Fig. 11 as suggested by RFC 2544 [7].

The Tester and the Middlebox machines are identical, with an Intel

Xeon E5-2667 v2 processor at 3.30 GHz, 32 GB of DRAM, and

82599ES 10 Gbps DPDK-compatible NICs. The Middlebox machine

runs one of the four NFs mentioned above (we use one core). The

Tester machine runs MoonGen [22] to generate traffic and measure

packet loss, throughput, and latency; for the latency measurements,

we rely on hardware timestamps for better accuracy [49]. We use

DPDK v.16.07 on Ubuntu Linux with kernel 3.13.0-119-generic.

Figure 11: Testbed topology for performance evaluation.

First, we measure the latency experienced by packets between

the Tester’s outbound and inbound interfaces. We first run a set of

experiments in which all the NATs are configured to expire flows

after 2 seconds of inactivity. In each experiment, the Tester gener-

ates 10–64,000 “background flows,” which produce in total 100,000

pps and never expire throughout the experiment, and 1,000 “probe

flows,” which produce 0.47 pps and expire after every packet. We

use the background flows to control the occupancy of the flow

table, while we measure the latency of the packets that belong to

probe flows. We focus on the probe flows because, from a perfor-

mance point of view, they are the worst-case scenario for a NAT

NF: each of their packets causes the NAT to search its flow table

for a matching flow ID, not find any match, and create a new entry.

Fig. 12 shows the average latency experienced by the probe flows

as a function of the number of background flows, for the three DPDK

NFs: the Verified NAT (5.13µsec) has 2% higher latency than the

Unverified NAT (5.03µsec), and 8% higher than No-op forward-

ing (4.75µsec). So, on top of the latency due to packet reception and

transmission, the Unverified and Verified NAT add, respectively,

0.28µsec and 0.38µsec of NAT-specific packet processing. For all
three NFs, latency remains stable as flow-table occupancy grows,

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea

which shows that the two NATs use good hash functions to spread

the load uniformly across their tables. The only case where latency

increases (to 5.3µsec) is for the Verified NAT, when the flow table

becomes almost completely full (the green line curves upward at

the last data point). The Linux NAT has significantly higher latency

(20µsec).

0

2

4

6

1 10 20 30 40 50 60 64
Number of background flows (thousands)

La
te

nc
y

of
 p

ro
be

 fl
ow

s,
 (µ

se
c)

No-op Unverified NAT Verified NAT

Figure 12: Average latency for probe flows. Confidence inter-
vals are approximately 20 nanosec, not visible at this scale.

To give a sense of latency variability, Fig. 13 shows the comple-

mentary cumulative distribution function (CCDF) of the latency

experienced by the probe flows, when there are 60,000 background

flows (i.e., 92% occupancy): the Verified NAT has a slightly heavier

tail than the Unverified NAT; all three NFs have outliers that are two

orders of magnitude above the average, but these are due to DPDK

packet processing, not NAT-specific processing (the three curves

coincide for latency exceeding 6.5µsec). The CCDFs computed for

different numbers of background flows look similar.

0.0

0.2

0.4

0.6

0.8

1.0

µsec

La
te

nc
y

C
C

D
F

Verified NAT
Unverified NAT
No-op

4.5 5 5.5 6 6.5 300

Figure 13: Latency CCDF for probe flows.

We get similar results in a second set of experiments, where

the Tester produces the same flow mix as before, but the NATs

are configured to expire flows after 60 seconds of inactivity (hence

neither the probe flows nor the background flows ever expire).

In this case, the average latency of the Verified NAT is slightly

lower (5.07µsec), while that of the Unverified NAT the same as

before (5.03µsec).

0

1

2

3

1 10 20 30 40 50 60 64
Number of flows (thousands)

Th
ro

ug
hp

ut
 (M

pp
s)

No-op Unverified NAT Verified NAT

Figure 14: Maximum throughput with a maximum loss rate
of 0.1%.

Finally, we measure the highest throughput achieved by each NF.

In each experiment, the Tester generates a fixed number of flows

that never expire, each producing 64-byte packets at a fixed rate, and

wemeasure throughput and packet loss. During all experiments, the

Middlebox is CPU bound. Fig. 14 shows the maximum throughput

achieved by each NF with less than 0.1% packet loss, as a function

of the number of generated flows. The Verified NAT (1.8 Mpps)

has 10% lower throughput than the Unverified NAT (2 Mpps). This

difference in throughput comes from the difference in NAT-specific

processing latency (0.38µsec vs. 0.28µsec) imposed by the twoNATs:

in our experimental setup, this latency difference cannot be masked,

as each NF runs on a single core and processes one packet at a time.

The Linux NAT achieves significantly lower throughput (0.6 Mpps).

In essence, these results indicate that the performance of the

libVig flow table (which has a formal specification and proof) is

close to that of the DPDK hash table (which has neither), though

not the same. The implementations of the two data structures are

quite different. We did not try to reuse/adapt the implementation

of the DPDK hash table, because it resolves hash conflicts through

separate chaining—items that hash to the same array position are

added to the same linked list—a behavior that is hard to specify in

a formal contract. Instead, the libVig flow table resolves conflicts

through open addressing: if an item hashes to an occupied array

position, it is stored in the next array position that is free, together

with auxiliary metadata that speeds up lookup. We have not yet

optimized our implementation at the instruction level, so it has an

overall slower access time because there are, on average, more can-

didate memory locations for each item
5
; the difference is greatest

for lookups that find no match, because these result in searching

all candidate memory locations.

In summary, our experimental evaluation shows that it is possi-

ble to have a NAT network function that both offers competitive

performance and is formally verified.

7 DISCUSSION
Developing and verifying VigNAT is a first step toward the broader

goal of verified, high-performance NFs. The Vigor approach and

prototype have several limitations, and also offer opportunities for

future research. In this section, we describe some of these.

5
This is the case for the particular implementations used, respectively, by the Unverified

and Verified NAT, not for separate chaining and open addressing in general.

A Formally Verified NAT SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Vigor will not produce an incorrect proof, but it may fail to prove

a property that actually holds for a given NF, because of an invalid

model. For example, in §3, if Vigor uses model (b) from Fig. 4, it

cannot prove that the given NF correctly implements the discard

protocol—even though that is the case—because the model is too

abstract. So, if a proof fails, and the reported reason for the failure

does not lead the NF developer to a bug in their code, it may be

that the given NF exercises libVig functionality that is not properly

captured by a symbolic model; in this case, the NF developer can

request from the libVig developers a more detailed model.

The current version of Vigor cannot verify concurrent code.

We expect that the biggest challenge will be the development and

verification of useful concurrent data structures.

We do not have yet experience with applying Vigor to mature,

legacy code. Such software often has state handling code sprinkled

throughout, so refactoring it to put all state in libVig data structures

could be challenging. It would also require annotating loops and

extracting loop invariants, but we expect to be able to automate

these tasks using known techniques [23, 47].

More generally, we hope to reduce the human effort needed to

expand libVig and use Vigor by automating most tasks: (a) Many

lemmas needed for Step 3 are boiler-plate, and we should be able to

generate them automatically. (b) For proving low-level properties,

it may be enough to use simple over-approximate models that leave

outputs unconstrained, and such models can be generated automat-

ically. We can also leverage techniques that learn invariants from

traces [13, 45] to refine symbolic models or produce initial drafts for

libVig contracts. (c) Much of the effort in verifying libVig goes into

writing intermediate lemmas in order to bridge logical leaps that

VeriFast cannot make on its own. Using a proof assistant or a more

powerful theorem prover would reduce this effort [4, 12]. (d) Gen-

erating formal contracts that specify standards (e.g., as described in

an RFC) will always require manual effort; however, standards often

have structure that is amenable to natural language processing, so

we could, perhaps, employ automated techniques [37] to generate

first drafts, which can then be refined by humans.

8 RELATEDWORK
As described in §2, our work on VigNAT falls in the area of NF
verification, under the broader umbrella of “data-plane verification.”

The closest work to ours is that of Dobrescu et al. [19], which

verified NFs written in Click [35], including a NAT. They proved the

low-level properties of crash freedom and bounded execution for

these NFs. Their approach relies on exhaustive symbolic execution

of individual Click elements and on-demand composition of the

resulting analyses to reason about Click pipelines. Like Vigor, their

approach puts all state in special data structures, however, it does

not verify the data structures themselves nor that the NF uses

them correctly. It is for this reason that Dobrescu et al.’s work

cannot prove semantic properties—the step forward that enables

such proofs is the “lazy proofs” technique we described here.

Orthogonally to NF verification is what we refer to as network
verification: verify network properties (reachability, loops, etc.) of

a combination of modeled network devices. There is a lot of prior

work in this area [24, 25, 30–32, 38, 39, 46, 52, 55, 59].

Stoenescu et al. [55] focus on network verification, but neverthe-

less rely on more detailed NF models than other work in this area,

and they test their models for faithfulness to the corresponding NF

implementations. Vigor also relies on models (not of entire NFs but

of state-accessing functions), but it does not rely on testing to gain

trust in the models’ faithfulness. Instead, Vigor formally verifies

that the models are guaranteed to be valid for the proof, which

means that replacing a model with the corresponding implementa-

tion preserves the proof, modulo the assumptions in §5.4.

Many before us have applied verification techniques to net-

worked and distributed systems.We share tools and techniques with

this work—symbolic execution, formal contracts, proof checkers—

but the approach of using different verification techniques for dif-

ferent parts of the code, and combining the results through lazy

proofs, is novel. Musuvathi et al. [41] tested the Linux TCP im-

plementation for conformance to a formal specification. Bishop et

al. [3] tested several implementations of TCP/IP and the sockets

API for conformance to a formal specification. Kuzniar et al. [36]

tested OpenFlow switches for interoperability with reference im-

plementations. Hawblitzel et al. [26] verified network applications

written in Dafny—a high-level language with built-in verification

support. Beringer et al. [2] verified an OpenSSL implementation,

proving functional correctness and cryptographic properties.

There exists a body of prior work that has made significant

progress in verifying properties of systems software. Much of

this work can be applied to NF verification as well. For example,

seL4 [34], CompCert [54], and FSCQ [11] show how to prove se-

mantic properties of systems. Unfortunately, they all require the

use of high-level (sometimes esoteric) programming languages and

deep expertise in verification, which we consider a high barrier to

adoption. The motivation behind Vigor is to make the verification

of network functions accessible to most (ideally all) NF developers.

9 CONCLUSION
We presented a NAT box along with a technique and toolchain

for proving that it is semantically correct according to a formal

interpretation of RFC 3022. Our main contribution is exploiting the

specifics of NF structure to propose a new verification technique

that stitches together exhaustive symbolic execution with formal

proof checking based on separation logic. This technique, called

“lazy proofs,” can scalably prove both low-level and semantic prop-

erties of our NF. Experimental results demonstrate the practicality

of our approach: the verified NAT box performs as well as an un-

verified DPDK NAT and outperforms the standard Linux NAT. We

hope our technique will eventually generalize to proving properties

of many other software NFs, thereby amortizing the tedious work

that has gone into building a library of verified NF data structures.

ACKNOWLEDGMENTS
We thank Jonas Fietz, Vova Kuznetsov, Christian Maciocco, Mia

Primorac, Martin Vassor, and Jonas Wagner for insightful technical

discussions, as well as the members of the Network Architecture

Lab and Dependable Systems Lab at EPFL for valuable feedback. We

thank our shepherd, Arjun Guha, and the anonymous reviewers for

their comments and guidance. This work is supported by a Swiss

National Science Foundation Starting Grant and an Intel grant.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea

REFERENCES
[1] Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and Leino, K. R. M. Boogie:

A Modular Reusable Verifier for Object-Oriented Programs. In Formal Methods
for Components and Objects (2005).

[2] Beringer, L., Petcher, A., Katherine, Q. Y., and Appel, A. W. Verified Correct-

ness and Security of OpenSSL HMAC. In USENIX Security Symp. (2015).
[3] Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., and Wans-

brough, K. Rigorous Specification and Conformance Testing Techniques for

Network Protocols, as applied to TCP, UDP, and Sockets. SIGCOMM Computer
Communication Review 35, 4 (2005).

[4] Blanchette, J., Bulwahn, L., and Nipkow, T. Automatic Proof and Disproof in

Isabelle/HOL. Frontiers of Combining Systems (2011).
[5] Boye, M. Netfilter Connection Tracking and NAT Implementation. In Seminar

on Network Protocols in Operating Systems (2013).
[6] Boyer, R. S., Elspas, B., and Levitt, K. N. SELECT – A Formal System for

Testing and Debugging Programs by Symbolic Execution. SIGPLAN Notices 10
(1975).

[7] Bradner, S., and McQuaid, J. Benchmarking Methodology for Network Inter-

connect Devices. RFC 2544, RFC Editor, 1999.

[8] Brocade Vyatta Network OS. http://www.brocade.com/en/products-services/

software-networking/network-functions-virtualization/vyatta-network-os.

html. Accessed: 2017-01-24.

[9] Cadar, C., Dunbar, D., Engler, D. R., et al. KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs. In Symp. on
Operating Sys. Design and Implem. (2008).

[10] Canini, M., Venzano, D., Perešíni, P., Kostić, D., and Rexford, J. A NICE

Way to Test OpenFlow Applications. In Symp. on Networked Systems Design and
Implem. (2012).

[11] Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M. F., and Zel-

dovich, N. Using Crash Hoare Logic for Certifying the FSCQ File System. In

Symp. on Operating Systems Principles (2015).
[12] Chlipala, A. Mostly-Automated Verification of Low-Level Programs in Compu-

tational Separation Logic. SIGPLAN Notices 46, 6 (2011).
[13] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. Counterexample-Guided

Abstraction Refinement. In Intl. Conf. on Computer Aided Verification (2000).

[14] Clarke, L. A. A Program Testing System. In Annual ACM Conf. (1976).
[15] CVE-2013-1138. Available from CVE Details, CVE-ID CVE-2013-1138., 2013.

[16] CVE-2014-3817. Available from CVE Details, CVE-ID CVE-2014-3817., 2014.

[17] CVE-2015-6271. Available from CVE Details, CVE-ID CVE-2015-6271., 2015.

[18] CVE-2014-9715. Available from CVE Details, CVE-ID CVE-2014-9715., 2014.

[19] Dobrescu, M., and Argyraki, K. Software Dataplane Verification. In Symp. on
Networked Systems Design and Implem. (2014).

[20] Dobrescu, M., Egi, N., Argyraki, K., Chun, B.-G., Fall, K., Iannaccone, G.,

Knies, A., Manesh, M., and Ratnasamy, S. RouteBricks: Exploiting Parallelism

To Scale Software Routers. In Symp. on Operating Systems Principles (2009).
[21] Data Plane Development Kit. http://dpdk.org. Accessed: 2017-06-16.

[22] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., and Carle, G.

MoonGen: A Scriptable High-Speed Packet Generator. In Internet Measurement
Conference (2015).

[23] Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin, D. Dynamically

Discovering Likely Program Invariants to Support Program Evolution. IEEE
Transactions on Software Engineering 27, 2 (2001).

[24] Fayaz, S. K., Yu, T., Tobioka, Y., Chaki, S., and Sekar, V. BUZZ: Testing Context-

Dependent Policies in Stateful Networks. In Symp. on Networked Systems Design
and Implem. (2016).

[25] Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Ma-

hajan, R., and Millstein, T. A General Approach to Network Configuration

Analysis. In Symp. on Networked Systems Design and Implem. (2015).
[26] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J. R., Parno, B., Roberts,

M. L., Setty, S., and Zill, B. IronFleet: Proving Practical Distributed Systems

Correct. In Symp. on Operating Systems Principles (2015).
[27] Howden, W. Symbolic Testing and the DISSECT Symbolic Evaluation System.

IEEE Transactions on Software Engineering 3, 4 (1977).
[28] Jacobs, B., and Piessens, F. The VeriFast Program Verifier. Tech. Rep. CW-520,

Department of Computer Science, KU Leuven, 2008.

[29] Kadlecsik, J., and Pásztor, G. Netfilter Performance Testing. Tech. rep., Netfilter

Project, Berlin, Germany, 2004.

[30] Kazemian, P., Chan, M., Zeng, H., Varghese, G., McKeown, N., and Whyte, S.

Real Time Network Policy Checking Using Header Space Analysis. In Symp. on
Networked Systems Design and Implem. (2013).

[31] Kazemian, P., Varghese, G., and McKeown, N. Header Space Analysis: Static

Checking For Networks. In Symp. on Networked Systems Design and Implem.
(2012).

[32] Khurshid, A., Zou, X., Zhou, W., Caesar, M., and Godfrey, P. B. VeriFlow:

Verifying Network-Wide Invariants in Real Time. In Symp. on Networked Systems
Design and Implem. (2013).

[33] King, J. C. Symbolic Execution and Program Testing. J. ACM 19, 7 (1976).

[34] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,

Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al. seL4: Formal

Verification of an OS Kernel. In Symp. on Operating Systems Principles (2009).
[35] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. The Click

Modular Router. ACM Transactions on Computer Systems 18, 3 (2000).
[36] Kuzniar, M., Peresini, P., Canini, M., Venzano, D., and Kostic, D. A SOFT

Way for OpenFlow Switch Interoperability Testing. In Proceedings of the 8th
international conference on Emerging networking experiments and technologies
(2012).

[37] Lee, B.-S., and Bryant, B. R. Automated Conversion from Requirements Docu-

mentation to an Object-oriented Formal Specification Language. In Symposium
on Applied Computing (2002).

[38] Lopes, N. P., Bjørner, N., Godefroid, P., Jayaraman, K., and Varghese, G.

Checking Beliefs in Dynamic Networks. In Symp. on Networked Systems Design
and Implem. (2015).

[39] Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P. B., and King, S. T.

Debugging the Data Plane with Anteater. In ACM SIGCOMM Conf. (2011).
[40] MS13-064. Available from CVE Details, CVE-ID MS13-064., 2013.

[41] Musuvathi, M., Engler, D. R., et al. Model Checking Large Network Protocol

Implementations. In Symp. on Networked Systems Design and Implem. (2004),
vol. 4.

[42] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. SoftBound:

Highly Compatible and Complete Spatial Memory Safety for C. SIGPLAN Notices
44, 6 (2009).

[43] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. CETS: Compiler

Enforced Temporal Safety for C. SIGPLAN Notices 45, 8 (2010).
[44] O’Hearn, P. W., Reynolds, J. C., and Yang, H. Local Reasoning about Programs

that Alter Data Structures. In CSL (2001).

[45] Padhi, S., Sharma, R., and Millstein, T. Data-Driven Precondition Inference

with Learned Features. In Intl. Conf. on Programming Language Design and
Implem. (2016).

[46] Panda, A., Lahav, O., Argyraki, K., Sagiv, M., and Shenker, S. Verifying

Reachability in Networks with Mutable Datapaths. In Symp. on Networked
Systems Design and Implem. (2017).

[47] Perkins, J. H., and Ernst, M. D. Efficient Incremental Algorithms for Dynamic

Detection of Likely Invariants. ACM SIGSOFT Software Engineering Notes 29, 6
(2004).

[48] Postel, J. Discard Protocol. RFC 863, RFC Editor, 1983.

[49] Primorac, M., Argyraki, K., and Bugnion, E. How to Measure the Killer

Microsecond. In ACM SIGCOMMWorkshop on Kernel-Bypass Networks (2017).
[50] Ramamoorthy, C., Ho, S.-B., and Chen, W. On the Automated Generation of

Program Test Data. IEEE Transactions on Software Engineering 2, 4 (1976).
[51] Reynolds, J. C. Separation Logic: A Logic for Shared Mutable Data Structures.

In IEEE-LCS (2002).
[52] Ryzhyk, L., Bjørner, N., Canini, M., Jeannin, J.-B., Schlesinger, C., Terry,

D. B., and Varghese, G. Correct by Construction Networks Using Stepwise

Refinement. In Symp. on Networked Systems Design and Implem. (2017).
[53] Srisuresh, P., and Egevang, K. Traditional IP Network Address Translator

(Traditional NAT). RFC 3022, RFC Editor, 2001.

[54] Stewart, G., Beringer, L., Cuellar, S., and Appel, A. W. Compositional

CompCert. SIGPLAN Notices 50, 1 (2015).
[55] Stoenescu, R., Popovici, M., Negreanu, L., and Raiciu, C. SymNet: scalable

symbolic execution for modern networks. In ACM SIGCOMM Conf. (2016).
[56] Tange, O. GNU Parallel - The Command-Line Power Tool. ;login: The USENIX

Magazine 36, 1 (2011).
[57] Clang 5 documentation - UndefinedBehaviorSanitizer - Available checks. https:

//clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks. Ac-

cessed: 2017-01-24.

[58] VigNAT Project Repository. https://vignat.github.io, 2017.

[59] Xie, G. G., Zhan, J., Maltz, D. A., Zhang, H., Greenberg, A., Hjalmtysson, G.,

and Rexford, J. On Static Reachability Analysis of IP Networks. In Intl. Conf.
on Computer Communications (INFOCOM) (2005).

[60] Zaostrovnykh, A., Argyraki, K., and Candea, G. Nework software verification

survey. https://vignat.github.io/survey, Feb. 2016.

http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization/vyatta-network-os.html
http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization/vyatta-network-os.html
http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization/vyatta-network-os.html
http://dpdk.org
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
https://vignat.github.io
https://vignat.github.io/survey

	Abstract
	1 Introduction
	2 Background
	3 The Vigor Approach
	4 Proven Properties
	4.1 Semantic Properties
	4.2 Low-Level Properties

	5 Design and Implementation
	5.1 A Library of Verified NF Data Types
	5.2 Lazy Proofs
	5.3 The Vigor Workflow
	5.4 Assumptions

	6 Performance Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

