86 research outputs found

    Crystal structure of a tripartite complex between C3dg, C-terminal domains of factor H and OspE of Borrelia burgdorferi

    Get PDF
    Complement is an important part of innate immunity. The alternative pathway of complement is activated when the main opsonin, C3b coats non-protected surfaces leading to opsonisation, phagocytosis and cell lysis. The alternative pathway is tightly controlled to prevent autoactivation towards host cells. The main regulator of the alternative pathway is factor H (FH), a soluble glycoprotein that terminates complement activation in multiple ways. FH recognizes host cell surfaces via domains 19–20 (FH19-20). All microbes including Borrelia burgdorferi, the causative agent of Lyme borreliosis, must evade complement activation to allow the infectious agent to survive in its host. One major mechanism that Borrelia uses is to recruit FH from host. Several outer surface proteins (Osp) have been described to bind FH via the C-terminus, and OspE is one of them. Here we report the structure of the tripartite complex formed by OspE, FH19-20 and C3dg at 3.18 Å, showing that OspE and C3dg can bind simultaneously to FH19-20. This verifies that FH19-20 interacts via the “common microbial binding site” on domain 20 with OspE and simultaneously and independently via domain 19 with C3dg. The spatial organization of the tripartite complex explains how OspE on the bacterial surface binds FH19-20, leaving FH fully available to protect the bacteria against complement. Additionally, formation of tripartite complex between FH, microbial protein and C3dg might enable enhanced protection, particularly on those regions on the bacteria where previous complement activation led to deposition of C3d. This might be especially important for slow-growing bacteria that cause chronic disease like Borrelia burgdorferi.Peer reviewe

    The role of the IT-state in D76N β2-microglobulin amyloid assembly: a crucial intermediate or an innocuous bystander?

    Get PDF
    The D76N variant of human β2-microglobulin (β2m) is the causative agent of a hereditary amyloid disease. Interestingly, D76N-associated amyloidosis has a distinctive pathology compared with aggregation of wild-type (WT) β2m which occurs in dialysis-related amyloidosis. A folding intermediate of WT-β2m, known as the IT-state, which contains a non-native trans Pro32, has been shown to be a key precursor of WT-β2m aggregation in vitro. However, how a single amino acid substitution enhances the rate of aggregation of D76N-β2m and gives rise to a different amyloid disease remained unclear. Using real-time refolding experiments monitored by CD and NMR, we show that the folding mechanisms of WT- and D76N-β2m are conserved in that both proteins fold slowly via an IT-state that has similar structural properties. Surprisingly, however, direct measurement of the equilibrium population of IT using NMR showed no evidence for an increased population of the IT-state for D76N-β2m, ruling out previous models suggesting that this could explain its enhanced aggregation propensity. Producing a kinetically trapped analogue of IT by deleting the N-terminal six amino acids increases the aggregation rate of WT-β2m, but slows aggregation of D76N-β2m, supporting the view that while the folding mechanisms of the two proteins are conserved, their aggregation mechanisms differ. The results exclude the IT-state as the cause of the rapid aggregation of D76N-β2m, suggesting that other non-native states must cause its high aggregation rate. The results highlight how a single substitution at a solvent-exposed site can affect the mechanism of aggregation and the resulting disease

    Transport of alpha-amylase across the basolateral membrane of the pancreatic acinar cell.

    No full text

    Mutations of Factor H Impair Regulation of Surface-bound C3b by Three Mechanisms in Atypical Hemolytic Uremic Syndrome*

    No full text
    Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy associated with mutations in complement proteins, most frequently in the main plasma alternative pathway regulator factor H (FH). The hotspot for the FH mutations is in domains 19–20 (FH19–20) that are indispensable for FH activity on C3b bound covalently to host cells. In aHUS, down-regulation of cell-bound C3b by FH is impaired, but it is not clear whether this is due to an altered FH binding to surface-bound C3b or to cell surface structures. To explore the molecular pathogenesis of aHUS we tested binding of 14 FH19–20 point mutants to C3b and its C3d fragment, mouse glomerular endothelial cells (mGEnC-1), and heparin. The cell binding correlated well, but not fully, with heparin binding and the cell binding site was overlapping but distinct from the C3b/C3d binding site that was shown to extend to domain 19. Our results show that aHUS-associated FH19–20 mutants have different combinations of three primary defects: impaired binding to C3b/C3d, impaired binding to the mGEnC-1 cells/heparin, and, as a novel observation, an enhanced mGEnC-1 cell or heparin binding. We propose a model of the molecular pathogenesis of aHUS where all three mechanisms lead eventually to impaired control of C3b on the endothelial cell surfaces. Based on the results with the aHUS patient mutants and the overlap in FH19–20 binding sites for mGEnC-1/heparin and C3b/C3d we conclude that binding of FH19–20 to C3b/C3d is essential for target discrimination by the alternative pathway
    • …
    corecore